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Abstract: In general, corrosions, degrading the mechanical strength of pipelines gradually with its age in a stochastic
way, is the predominant cause of pipeline leaks. In addition, the third-part damage is the leading cause of
pipeline ruptures, which occurs randomly in a statistical sense. Naturally, corrective replacement (CR) is done
immediately when the pipeline is subjected to a random failure. To reduce the failure probabilities, preventive
replacement (PR) policies are scheduled to meet the failure due to aging and the third-part damage. We model
three PR policies, using the renewal theory in reliability, and obtain their optimal solutions analytically to
minimize respective replacement cost rates. Finally, numerical examples are given to compare these policies.

1 INTRODUCTION

The pipeline systems have been increasingly con-
structed to meet the rapid development of the oil and
gas industry. Reliability assessment (Amirat, 2006),
failure probability estimation (Xie, et al., 2008), and
inspection of damage suffered for shock and corro-
sion (Sahraoui, et al., 2013) have been applied com-
monly for preventive replacement actions in pipelines
to prevent incidents.

In general, corrosions, degrading the mechani-
cal strength of pipelines gradually with its age in a
stochastic way, is the predominant cause of pipeline
leaks. In addition, the third-part damage is the lead-
ing cause of pipeline ruptures, which occurs randomly
in a statistical sense (Pluvinage and Elwany, 2008).

Naturally, corrective replacement (CR) (Barlow
and Proschan, 1965) should be done immediately
when any operating item is subjected to a random fail-
ure resulting the loss of productivity. For the pipeline
segment, the failure means leaks or ruptures referred
above. To reduce the failure probabilities, preventive
replacement (PR) policies are conducted in a common
way such that replacement actions are done preven-
tively at some thresholds or planned measurements
such as operating time, usage number, damage level,
repair cost, number of faults or repairs, etc. (Osaki,
2002).

When cracks or corrosions are located for the
pipeline segment, condition-based maintenances or
repairs with minimum reliability requirement are

usually conducted to save replacement cost, e.g.,
structural pipeline repairs using carbon composites
(Goertzen and Kessler, 2007), a carbon composite
overwrap pipeline repair system (Duell, 2008), and
carbon-fiber reinforced composites for pipeline repair
(Alexandera and Ochoa, 2010). However, we pro-
pose that the pipeline segment would still go into
a new degradation level after any repair that is ran-
domly taken place even though it is conducted per-
fectly. That is, the pipeline segment has aging cycles
degrading after repairs, and preventive replacement
should be done when it undergoes several cycles of
aging for the final renewal.

In this paper, we propose for a pipeline segment
that PR are scheduled (i) at a planned time T (0 <
T ≤∞) of operation, which is a classical policy called
age replacement, (ii) at the Nth (N = 1,2, · · ·) cy-
cle of aging, where intervals for aging cycles are
random variables Yn (n = 1,2, · · ·), (iii) at a number
K (K = 1,2, · · ·) of damages, in order to monitor the
fatal third-part damages.

Policies (i) and (ii) are taken to meet the failure
due to aging from both determinate and indeterminate
viewpoints, meanwhile, policy (iii) is planned to mon-
itor the failure caused by the third-part damage. That
is, the pipeline should be replaced preventively before
failure at T , N, or K, whichever takes place first. We
model the above PR policies, using the renewal the-
ory in reliability (Osaki, 1992), and obtain their op-
timal solutions analytically to minimize the expected
replacement cost rates. Finally, numerical examples
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are given to compare these policies.
In mathematics, we give the following notations

to describe the above two failure modes: An item,
which is used to denote any product functioning for
missions, e.g., pipeline segment mentioned above,
fails at a time X due to aging, where X is a ran-
dom variable and has a cumulative distribution func-
tion F(t) ≡ Pr{X ≤ t} with density function f (t).
Let r(t)≡ f (t)/F(t) denote the instant failure rate of
F(t), where Φ(t) ≡ 1−Φ(t) for any function Φ(t).
The failure rate r(t) increases strictly with t to r(∞)≡
limt→∞ r(t).

The third-part damage occurs at a non-
homogeneous Poisson process with mean-value
function H(t) ≡ ∫ t

0 h(u)du, where we denote
p j(t) ≡ [H(t) j/ j!]e−H(t) ( j = 0,1,2, · · ·) be the
probability that an exact number j of damages occur
in [0, t]. The item either fails with probability p or
continues to function with probability q = 1− p at
each damage. Then, the damage causing the item to
be failure occurs in [0, t] with probability

Fp(t) =
∞

∑
j=1

pq j−1
∞

∑
i= j

[H(t)]i

i!
e−H(t)

= 1− e−pH(t).

In other words, the item fails at age X or at damage
p, whichever takes place first. Then, the probability
that the unit fails at age X is

∫ ∞

0
F p(t)dF(t), (1)

and the probability that it fails at damage p is
∫ ∞

0
F(t)dFp(t), (2)

where note that (1)+ (2)=1. Thus, the mean time to
item failure is

MTTF =
∫ ∞

0
tF p(t)dF(t)+

∫ ∞

0
tF(t)dFp(t)

=
∫ ∞

0
F(t)F p(t)dt. (3)

2 REPLACEMENT MODELS

Naturally, corrective replacement (CR) is done imme-
diately when the item is subjected to a random failure
resulting the loss of productivity. To reduce the failure
probabilities for aging X and damage p, the following
preventive replacement (PR) policies are scheduled:
(a) Replacement done at a planned time T (0 < T ≤

∞) of operation, which is a classical policy called
age replacement (Barlow and Proschan, 1965)
and has been commonly conducted in real appli-
cations;

(b) Replacement done at the Nth (N = 1,2, · · ·) cy-
cle of aging, where intervals for aging cycles are
random variables Yn having an identical distri-
bution G(t) ≡ Pr{Yn ≤ t} with density function
g(t). Noting that when N = 1, the policy de-
grades to a random replacement that was newly
proposed for the uncertain need of replacement
performance. Denote G(n)(t) (n = 0,1,2, · · ·)
be the n-fold Stieltjes convolution of G(t), and
G(n)(t)−G(n+1)(t) means the item has entered the
(n+1)th aging cycle.

(c) Replacement done at a number K (K = 1,2, · · ·)
of damages in order to monitor the fatal third-part
damages.

Policies (a) and (b) are taken to meet the failure due
to aging X from both determinate and indeterminate
viewpoints, meanwhile, policy (c) is planned to mon-
itor the failure caused by the third-part damage. That
is, the item should be replaced preventively before X
or p at T , N, or K, whichever takes place first. In
addition, the item is supposed to be replaced at fail-
ure p when the Kth damage makes the item fail with
probability p.

Let cp denote the cost for preventive replacement
policies at T , N and K, and c f (c f > cp) denote the
cost for corrective replacement at failures X and p.
Using the theory of renewal process (Osaki, 1992),
the expected replacement cost rate can be given by
the expected cost per replacement cycle divided by
the expected duration of its cycle.

Then, the probability that the item is replaced at
time T is

F(T )[1−G(N)(T )]
K−1

∑
j=0

q j p j(T ), (4)

the probability that it is replaced at aging cycle N is
K−1

∑
j=0

q j
∫ T

0
F(t)p j(t)dG(N)(t), (5)

the probability that it is replaced at damage number
K is

qK
∫ T

0
F(t)[1−G(N)(t)]pK−1(t)h(t)dt, (6)

the probability that it is replaced at failure for age X
is

K−1

∑
j=0

q j
∫ T

0
[1−G(N)(t)]p j(t)dF(t), (7)

and the probability that it is replaced at failure for
damage p is

K−1

∑
j=0

pq j
∫ T

0
F(t)[1−G(N)(t)]p j(t)h(t)dt, (8)
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where note that (4)+(5)+(6)+(7)+(8)=1. Thus, the
mean time to replacement is

T F(T )[1−G(N)(T )]
K−1

∑
j=0

q j p j(T )

+
K−1

∑
j=0

q j
∫ T

0
tF(t)p j(t)dG(N)(t)

+qK
∫ T

0
tF(t)[1−G(N)(t)]pK−1(t)h(t)dt

+
K−1

∑
j=0

q j
∫ T

0
t[1−G(N)(t)]p j(t)dF(t)

+
K−1

∑
j=0

pq j
∫ T

0
tF(t)[1−G(N)(t)]p j(t)h(t)dt

=
K−1

∑
j=0

q j
∫ T

0
F(t)[1−G(N)(t)]p j(t)dt. (9)

Therefore, the expected cost rate is

C(T,N,K) =

cp +(c f − cp){∑K−1
j=0 q j ∫ T

0 [1−G(N)(t)]p j(t)dF(t)
+∑K−1

j=0 pq j ∫ T
0 F(t)[1−G(N)(t)]p j(t)h(t)dt}

∑K−1
j=0 q j ∫ T

0 F(t)[1−G(N)(t)]p j(t)dt
.

(10)

In particular, when the item is replaced only at fail-
ure, i.e., when T → ∞, N→ ∞ and K→ ∞,

C1 ≡ lim
T,N,K→∞

C(T,N,K) =
c f∫ ∞

0 F(t)F p(t)dt
, (11)

and when T → 0 for any N and K,

C2 ≡ lim
T→0

C(T,N,K) = ∞. (12)

3 OPTIMAL T ∗, N∗ AND K∗

We have to avoid the high failure cost without any PR
in (11). Meanwhile, it is unreasonable to make fre-
quent replacements to waste PR cost, such as an ex-
treme case in (12). In order to minimize the respective
cost rates of the above three replacement policies, we
next obtain analytically optimum time T ∗, aging cycle
N∗, and damage number K∗, respectively.

3.1 Optimal T ∗

Suppose that the item should be replaced preventively
before failure X or p at time T (0 < T ≤ ∞). Then,
putting that N → ∞ and K→ ∞ in (10), the expected
cost rate is

C(T ) =
c f − (c f − cp)F(T )F p(T )∫ T

0 F(t)F p(t)dt
. (13)

Differentiating C(T ) with respect to T and setting
it equal to zero,

[r(T )+ ph(T )]
∫ T

0
F(t)F p(t)dt− [1−F(T )F p(T )]

=
cp

c f − cp
. (14)

Let L(T ) denote the left-hand side of (14),

dL(T )
dT

=

[
dr(T )

dT
+ p

dh(T )
dT

]∫ T

0
F(t)F p(t)dt.

Thus, if r(T )+ ph(T ) increases strictly with T , then
L(T ) increases strictly with T from 0 to

lim
T→∞

L(T ) =
∫ ∞

0
F(t)F p(t)[r(∞)+ ph(∞)− r(t)− ph(t)]dt.

Therefore, when limT→∞ L(T ) > cp/(c f − cp),
there exists a finite and unique T ∗ (0< T ∗<∞) which
satisfies (14), and the resulting cost rate is

C(T ∗) = (c f − cp)[r(T ∗)+ ph(T ∗)], (15)

and when limT→∞ L(T )≤ cp/(c f −cp), T ∗ = ∞, and
the resulting cost rate is given in (11).

When F(t) = 1 − e−αtβ
(β > 1), p j(t) ≡

[(ωt) j/ j!]e−ωt , and G(N)(t) = ∑∞
j=N [(t

δ) j/ j!]e−tδ
,

Table 1 presents optimal T ∗ and its cost rates
C(T ∗)/cp when α = 2.0, β = 1.2, ω = 1.0 and δ =
0.5.

Table 1: Optimal T ∗ and its cost rates for p and cp/(c f −
cp).

cp p = 0.01 p = 0.1
c f − cp T ∗ C(T ∗)/cp T ∗ C(T ∗)/cp

0.01 0.166 37.491 0.167 46.516
0.03 0.424 15.000 0.428 18.025
0.05 0.663 9.821 0.672 11.647
0.07 0.896 7.442 0.913 8.755
0.10 1.245 5.558 1.279 6.487
0.30 4.007 2.332 4.374 2.672
0.50 8.430 1.620 9.910 1.853
0.70 15.883 1.312 19.886 1.500
1.00 36.091 1.080 48.465 1.235
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3.2 Optimal N∗

Suppose that the item should be replaced preventively
before failure X or p at aging cycle N (N = 1,2, · · ·).
Then, putting that T → ∞ and K→ ∞ in (10), the ex-
pected cost rate is

C(N) =

cp +(c f − cp)∑N−1
j=0 {

∫ ∞
0 [G( j)(t)−G( j+1)(t)]

×F p(t)dF(t)+
∫ ∞

0 [G( j)(t)−G( j+1)(t)]F(t)dFp(t)}
∑N−1

j=0
∫ ∞

0 [G( j)(t)−G( j+1)(t)]F(t)F p(t)dt
.

(16)

Forming the inequality C(N +1)−C(N)≥ 0,

[Q1(N)+ pQ2(N)]
N−1

∑
j=0

∫ ∞

0
[G( j)(t)−G( j+1)(t)]F(t)F p(t)dt

−
N−1

∑
j=0

{∫ ∞

0
[G( j)(t)−G( j+1)(t)]F p(t)dF(t)

+
∫ ∞

0
[G( j)(t)−G( j+1)(t)]F(t)dFp(t)

}
≥ cp

c f − cp
, (17)

where

Q1(N)≡
∫ ∞

0 [G(N)(t)−G(N+1)(t)]F p(t)dF(t)
∫ ∞

0 [G(N)(t)−G(N+1)(t)]F(t)F p(t)dt
,

Q2(N)≡
∫ ∞

0 [G(N)(t)−G(N+1)(t)]F(t)F p(t)h(t)dt
∫ ∞

0 [G(N)(t)−G(N+1)(t)]F(t)F p(t)dt
.

Let L(N) denote the left-hand side of (17),

L(N +1)−L(N) =

[Q1(N +1)+ pQ2(N +1)−Q1(N)− pQ2(N)]

×
N

∑
j=0

∫ ∞

0
[G( j)(t)−G( j+1)(t)]F(t)F p(t)dt.

Thus, if Q1(N)+ pQ2(N) increases strictly with N,
then L(N) increases strictly with N to

lim
N→∞

L(N) =
∫ ∞

0
F(t)F p(t)[Q1(∞)+ pQ2(∞)− r(t)− ph(t)]dt.

Therefore, when limN→∞ L(N) > cp/(c f − cp),
there exists a finite and unique minimum N∗ (1 ≤
N∗ < ∞) which satisfies (17), and the resulting cost
rate is

(c f − cp)[Q1(N∗−1)+ pQ2(N∗−1)]<C(N∗)

≤ (c f − cp)[Q1(N∗)+ pQ2(N∗)]. (18)

In particular, when L(1)≥ cp/(c f − cp), N∗ = 1.

When F(t) = 1 − e−αtβ
(β > 1), p j(t) ≡

[(ωt) j/ j!]e−ωt , and G(N)(t) = ∑∞
j=N [(t

δ) j/ j!]e−tδ
,

Table 2 presents optimal N∗ and its cost rates
C(N∗)/cp when α = 2.0, β = 1.2, ω = 1.0 and δ =
0.5.

Table 2: Optimal N∗ and its cost rates for p and cp/(c f −
cp).

cp p = 0.01 p = 0.1
c f − cp N∗ C(N∗)/cp N∗ C(N∗)/cp

0.01 1 47.309 1 55.374
0.03 1 16.725 1 19.495
0.05 1 10.609 1 12.320
0.07 2 7.912 2 9.123
0.10 2 5.772 2 6.646
0.30 7 2.314 8 2.646
0.50 15 1.605 20 1.835
0.70 31 1.300 43 1.487
1.00 80 1.072 120 1.226

3.3 Optimal K∗

Suppose that the item should be replaced preventively
before failure X or p at damage number K (K =
1,2, · · ·). Then, putting that T → ∞ and N → ∞ in
(10), the expected cost rate is

C(K) =
c f − (c f − cp)qK ∫ ∞

0 F(t)pK−1(t)h(t)dt

∑K−1
j=0 q j ∫ ∞

0 F(t)p j(t)dt
. (19)

Forming the inequality C(K +1)−C(K)≥ 0,

[Q3(K)+ pQ4(K)]
K−1

∑
j=0

q j
∫ ∞

0
F(t)p j(t)dt

−
K−1

∑
j=0

q j
[∫ ∞

0
p j(t)dF(t)+ p

∫ ∞

0
F(t)p j(t)h(t)dt

]

≥ cp

c f − cp
, (20)

where

Q3(K)≡
∫ ∞

0 pK(t)dF(t)∫ ∞
0 F(t)pK(t)dt

,

Q4(K)≡
∫ ∞

0 F(t)pK(t)h(t)dt∫ ∞
0 F(t)pK(t)dt

.

Let L(K) denote the left-hand side of (20),

L(K +1)−L(K) =
[

Q3(K +1)+ pQ4(K +1)−Q3(K)− pQ4(K)

]

×
K

∑
j=0

q j
∫ ∞

0
F(t)p j(t)dt.

Thus, if Q3(K)+ pQ4(K) increases strictly with K,
then L(K) increases strictly with K to

lim
K→∞

L(K) =
∫ ∞

0
F(t)F p(t)[Q3(∞)+ pQ4(∞)− r(t)− ph(t)]dt.
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Therefore, when limK→∞ L(K) > cp/(c f − cp),
there exists a finite and unique minimum K∗ (1 ≤
K∗ < ∞) which satisfies (20), and the resulting cost
rate is

(c f − cp)[Q3(K∗−1)+ pQ4(K∗−1)]<C(K∗)

≤ (c f − cp)[Q3(K∗)+ pQ4(K∗)]. (21)

In particular, when L(1)≥ cp/(c f − cp), K∗ = 1.

When F(t) = 1 − e−αtβ
(β > 1), p j(t) ≡

[(ωt) j/ j!]e−ωt , and G(N)(t) = ∑∞
j=N [(t

δ) j/ j!]e−tδ
,

Table 3 presents optimal K∗ and its cost rates
C(K∗)/cp when α = 2.0, β = 1.2, ω = 1.0 and δ =
0.5.

Table 3: Optimal K∗ and its cost rates for p and cp/(c f −
cp).

cp p = 0.01 p = 0.1
c f − cp K∗ C(K∗)/cp K∗ C(K∗)/cp

0.01 1 44.545 1 53.545
0.03 1 15.808 1 18.808
0.05 1 10.060 1 11.860
0.07 1 7.597 1 8.883
0.10 2 5.602 2 6.511
0.30 6 2.311 7 2.645
0.50 14 1.605 17 1.835
0.70 29 1.300 37 1.487
1.00 72 1.072 99 1.226

Note that Q1(N) and Q3(K) respectively increases
with N and K to r(∞), and Q3(N) and Q4(K) respec-
tively increases with N and K to h(∞). Thus, it is easy
to conclude for the above three replacement policies
that if

∫ ∞

0
F(t)F p(t)[r(∞)+ ph(∞)− r(t)− ph(t)]dt

>
cp

c f − cp
,

then all of finite and unique T ∗, N∗ and K∗ can be
found.

4 OPTIMAL (T ∗,N∗), (T ∗,K∗) AND
(N∗,K∗)

In order to make the functioning item more reliable
in real situations, maintenances with double PR sce-
narios, such as replacement policies scheduled for the
parts of an aircraft at a total hours of operation and
at a specified number of flights since the last major
overhaul, are commonly conducted. In this section,
we obtain numerically (T ∗,N) for given N, (T,N∗)

for given T , (T ∗,K) for given K, (T,K∗) for given T ,
(N∗,K) for given K and (N,K∗) for given N to mini-
mize their respective expected cost rates.

4.1 Optimal (T ∗,N∗)

Suppose that the item should be replaced preventively
before failure X or p at time T (0 < T ≤ ∞) or at
aging cycle N (N = 1,2, · · ·), whichever takes place
first. Then, putting that K → ∞ in (10), the expected
cost rate is

C(T,N) =

cp +(c f − cp){
∫ T

0 [1−G(N)(t)]F p(t)dF(t)
+
∫ T

0 [1−G(N)(t)]F(t)dFp(t)}∫ T
0 [1−G(N)(t)]F(t)F p(t)dt

. (22)

When F(t) = 1 − e−αtβ
(β > 1), p j(t) ≡

[(ωt) j/ j!]e−ωt , and G(N)(t) = ∑∞
j=N [(t

δ) j/ j!]e−tδ
,

Table 4 and Table 5 present optimal T ∗ for N, N∗ for
T , and their cost rates C(T ∗,N)/cp and C(T,N∗)/cp
when α = 2.0, β = 1.2, ω = 1.0, δ = 0.5 and p = 0.1.

Table 4: Optimal T ∗ and its cost rate for N and cp/(c f −cp).

cp N = 1 N = 5
c f − cp T ∗ C(T ∗,N)/cp T ∗ C(T ∗,N)/cp

0.01 0.198 47.789 0.167 46.511
0.03 0.572 18.906 0.428 18.024
0.05 0.986 12.416 0.672 11.647
0.07 1.457 9.474 0.912 8.755
0.10 2.311 7.176 1.279 6.487
0.30 18.222 3.445 4.391 2.674
0.50 73.222 2.665 10.009 1.856
0.70 191.840 2.278 20.158 1.503
1.00 ∞ 1.734 49.079 1.238

Table 5: Optimal N∗ and its cost rate for T and cp/(c f −cp).

cp T = 1.0 T = 15.0
c f − cp N∗ C(T,N∗)/cp N∗ C(T,N∗)/cp

0.01 1 52.846 1 57.711
0.03 3 18.736 1 20.287
0.05 6 11.756 2 12.659
0.07 23 8.759 2 9.290
0.10 ∞ 6.511 3 6.743
0.30 ∞ 3.014 9 2.674
0.50 ∞ 2.315 22 1.851
0.70 ∞ 2.015 ∞ 1.499
1.00 ∞ 1.790 ∞ 1.234
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4.2 Optimal (T ∗,K∗)

Suppose that the item should be replaced preventively
before failure X or p at time T (0< T ≤∞) or at dam-
age number K (K = 1,2, · · ·), whichever takes place
first. Then, putting that N → ∞ in (10), the expected
cost rate is

C(T,K) =

cp +(c f − cp)∑K−1
j=0 q j[∫ T

0 p j(t)dF(t)
+p

∫ T
0 F(t)p j(t)h(t)dt

]

∑K−1
j=0 q j ∫ T

0 F(t)p j(t)dt
. (23)

When F(t) = 1 − e−αtβ
(β > 1), p j(t) ≡

[(ωt) j/ j!]e−ωt , and G(N)(t) = ∑∞
j=N [(t

δ) j/ j!]e−tδ
,

Table 6 and Table 7 present optimal T ∗ for K, K∗ for
T , and their cost rates C(T ∗,K)/cp and C(T,K∗)/cp
when α = 2.0, β = 1.2, ω = 1.0, δ = 0.5 and p = 0.1.

Table 6: Optimal T ∗ and its cost rate for K and cp/(c f −cp).

cp K = 1 K = 5
c f − cp T ∗ C(T ∗,K)/cp T ∗ C(T ∗,K)/cp

0.01 0.173 46.768 0.167 46.512
0.03 0.469 18.299 0.428 18.024
0.05 0.781 11.943 0.671 11.647
0.07 1.128 9.073 0.912 8.754
0.10 1.748 6.840 1.278 6.486
0.30 13.067 3.244 4.422 2.677
0.50 52.892 2.510 10.339 1.867
0.70 149.037 2.173 21.277 1.518
1.00 ∞ 1.902 52.995 1.256

Table 7: Optimal K∗ and its cost rate for T and cp/(c f −cp).

cp T = 1.0 T = 15.0
c f − cp K∗ C(T,K∗)/cp K∗ C(T,K∗)/cp

0.01 1 52.470 1 55.486
0.03 2 18.695 1 19.457
0.05 3 11.755 1 12.251
0.07 12 8.511 2 9.084
0.10 ∞ 6.511 2 6.631
0.30 ∞ 3.014 7 2.673
0.50 ∞ 2.315 18 1.851
0.70 ∞ 2.015 ∞ 1.499
1.00 ∞ 1.790 ∞ 1.234

4.3 Optimal (N∗,K∗)

Suppose that the item should be replaced preventively
before failure X or p at aging cycle N (N = 1,2, · · ·)
and at damage number K (K = 1,2, · · ·), whichever
takes place first. Then, putting that T → ∞ in (10),
the expected cost rate is

C(N,K) =

cp +(c f − cp)∑K−1
j=0 q j

{∫ ∞
0 [1−G(N)(t)]p j(t)dF(t)

+p
∫ ∞

0 F(t)[1−G(N)(t)]p j(t)h(t)dt
}

∑K−1
j=0 q j ∫ ∞

0 F(t)[1−G(N)(t)]p j(t)dt
.

(24)

When F(t) = 1 − e−αtβ
(β > 1), p j(t) ≡

[(ωt) j/ j!]e−ωt , and G(N)(t) = ∑∞
j=N [(t

δ) j/ j!]e−tδ
,

Table 8 and Table 9 present optimal K∗ for N, N∗ for
K, and their cost rates C(N,K∗)/cp and C(N∗,K)/cp
when α = 2.0, β = 1.2, ω = 1.0, δ = 0.5 and p = 0.1.

Table 8: Optimal K∗ and its cost rate for N and cp/(c f −
cp).

cp N = 1 N = 5
c f − cp K∗ C(N,K∗)/cp K∗ C(N,K∗)/cp

0.01 1 49.245 1 53.503
0.03 1 18.224 1 18.797
0.05 2 12.015 1 11.855
0.07 2 9.133 1 8.881
0.10 4 6.918 2 6.508
0.30 32 3.350 7 2.647
0.50 ∞ 2.632 18 1.839
0.70 ∞ 2.325 38 1.492
1.00 ∞ 2.094 104 1.232

Table 9: Optimal N∗ and its cost rate for K and cp/(c f −
cp).

cp K = 1 K = 5
c f − cp K∗ C(N∗,K)/cp K∗ C(N∗,K)/cp

0.01 1 49.245 1 54.974
0.03 1 18.224 1 19.382
0.05 2 11.788 1 12.263
0.07 3 8.873 1 9.213
0.10 ∞ 6.650 1 6.925
0.30 ∞ 3.176 ∞ 2.648
0.50 ∞ 2.481 ∞ 1.849
0.70 ∞ 2.184 ∞ 1.506
1.00 ∞ 1.960 ∞ 1.250

5 CONCLUSIONS

We have considered two failures of aging and the
third-part damage in pipeline segments, where aging
failure time is a random variable with cumulative dis-
tribution F(t), and the third-part damage occurs at a
non-homogeneous Poisson process and cause pipeline
failure with probability p. The proposed three preven-
tive replacement models, i.e., policies done at time T
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and at the Nth aging cycle are planned to meet fail-
ures due to aging, and the policy done at number K
of third-part damage is planned to monitor the fatal
damage with p, have been formulated using the re-
newal theory in reliability. The three PR policies have
been optimized to minimize their respective replace-
ment cost rates, and their optimal joint PR polices
with two variables have also been obtained. Numeri-
cal examples have been given to shown the analytical
optimum solutions.
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