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Abstract: Understanding the underlying process of Convolutional Neural Networks (ConvNets) is usually done through
visualization techniques. However, these techniques do not provide accurate information about the stability of
ConvNets. In this paper, our aim is to analyze the stability of ConvNets through different techniques. First,
we propose a new method for finding the minimum noisy image which is located in the minimum distance
from the decision boundary but it is misclassified by its ConvNet. Second, we exploratorly and quanitatively
analyze the stability of the ConvNets trained on the CIFAR10, the MNIST and the GTSRB datasets. We
observe that the ConvNets might make mistakes by adding a Gaussian noise with σ = 1 (barely perceivable by
human eyes) to the clean image. This suggests that the inter-class margin of the feature space obtained from a
ConvNet is slim. Our second founding is that augmenting the clean dataset with many noisy images does not
increase the inter-class margin. Consequently, a ConvNet trained on a dataset augmented with noisy images
might incorrectly classify the images degraded with a low magnitude noise. The third founding reveals that
even though an ensemble improves the stability, its performance is considerably reduced by a noisy dataset.

1 INTRODUCTION

The common pipeline in recognizing objects is to ex-
tract some features for each object and train a model
to classify the objects using the extracted features.
Conventionally, features are extracted using hand-
crafted methods such as HOG, SIFT, BoW, Gabor,
LBP and Fisher Vectors. These methods transform
an image into another space where classes of objects
are separable. In large-scale object recognition tasks,
objects are likely to be non-linearly separable using
these feature extraction methods. As the result, a non-
linear model such as SVM, Random Forest or Gaus-
sian Process is required to learn the non-linear deci-
sion boundaries in this space.

One problem with the hand-crafted features is
their limited representation power. This causes that
some classes of objects overlap with other classes
which adversely affect the classification performance.
Two common approaches for partially alleviating this
problem are to develop a new feature extraction al-
gorithm and to combine various methods. The prob-
lems with these approaches are that devising a new
hand-crafted feature extraction method is not trivial
and combining different methods might not separate
the overlapping classes.

Another solution is to automatically learn a func-
tion to transform the image into a feature space in
which classes are linearly separable. A Convolu-
tional Neural Network (ConvNet) is a highly non-
linear function which learns to extract these kinds of
features. Krizhevsky et al. (Krizhevsky et al., 2012)
developed a ConvNet to classify 1000 classes inside
the ImageNet dataset that was more accurate than the
methods based on hand-crafted features. More re-
cently, He et al. (He et al., ) designed a ConvNet
which surpassed the human performance on classifi-
cation of objects in the ImageNet dataset. Similarly,
Jin et al. (Jin et al., 2014), Ciresan et al. (Cirean et al.,
2012), Aghdam et al.(Aghdam et al., 2015) and Ser-
manet and Le Cunn (Sermanet and Lecun, 2011) uti-
lized ConvNets with different architectures to classify
43 traffic signs and obtained considerably higher clas-
sification accuracy compared with hand-crafted fea-
tures. In fact, the first three ConvNets beat the human
performance in recognizing traffic signs.

ConvNets are multi-layer feed forwards networks
consisting mainly of convolution, activation, pool-
ing, dropout, fully-connected and loss layers that are
trained using the Stochastic Gradient Descent (SGD)
method. In contrast to hand-crafted features, it is hard
to explain behaviour of a ConvNet under different cir-

370
Aghdam, H., Heravi, E. and Puig, D.
Analyzing the Stability of Convolutional Neural Networks against Image Degradation.
DOI: 10.5220/0005720703700382
In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 4: VISAPP, pages 370-382
ISBN: 978-989-758-175-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



cumstances without plugging data and analyzing the
output of each layer.

From optimization perspective, Glorot and Ben-
gio (Glorot and Bengio, 2010) investigated the prob-
lem of SGD and its sensitivity to the initialization.
They showed that logistic sigmoid activation can
derive the top layers to saturation. Sutskever et
al. (Sutskever et al., 2013) investigated the impor-
tance of initialization and momentum and showed that
a ConvNet can fail with a poor initialization or inap-
propriate tuning of momentum.

Yosinski et al. (Yosinski et al., 2014) studied the
degree of which a ConvNet is able to transfer its
knowledge to a new problem. They mentioned that
the bottom layers of a ConvNet are more generalized
and they become more class specific in the top lay-
ers. Goodfellow et al. (Goodfellow et al., 2013) em-
pirically analyzed the forgetting problem of the SGD
when they are first utilized to train on one task and
then used to train on a second task. They found that
including a dropout layer in the network helps the
SGD method to remember the first task while it is
running on the second task. Besides, other aspects
of ConvNets such as the size of the receptive field
(Coates and Ng, 2011) and finding a shallow archi-
tecture corresponding to a deep architecture (Ba and
Caurana, 2013) are examined.

Notwithstanding, one of the important aspects of
ConvNets which is not adequately studied is their sta-
bility against image degradation. To be more spe-
cific, noise is a very common degradation that usually
occurs during image acquisition specially in insuffi-
ciently illuminated environment. For instance, a traf-
fic sign recognition system must be able to recognize
signs during day, at night and under different weather
conditions.

Contribution: In this paper, we aim to inspect
the behaviour of ConvNets when they are plugged
with noisy images. To this end, we first propose a
new method for finding the minimum additive noise
which causes the clean image to be incorrectly classi-
fied with a minimum score margin between the ac-
tual class and predicted incorrect class (Section 3).
We apply our method on different ConvNets trained
on various datasets and show that although the mini-
mum noise is hardly perceivable for human eyes, but
it easily tricks a ConvNet (Section 4). Then, we em-
pirically study the behavior of these ConvNets under
various levels of noise and illustrate that ConvNets
are not stable against noise. Next, we inspect what
happens if we augment our dataset using many noisy
versions of each image with various levels of noise
and noise configurations. Finally, we study the sta-
bility of ensemble of ConvNets and conclude that an

ensemble of ConvNets is more stable but it is as prone
as a single ConvNet to low level noise.

2 RELATED WORK

In contrast to hand-crafted features that their internal
process is easily explained, ConvNets are still a mys-
tery for machine learning experts. There is a large
body of work on understanding the internal process
of ConvNets through visualization of hidden units.
Zeiler and Fergus (Zeiler and Fergus, 2013) visualize
the hidden units using Deconvolutional Networks. To
be more specific, they reconstruct the images which
have highly activated each unit. By this way, we can
assess how each unit see the world and which parts
of objects activate each neuron more. Simonyan et
al. (Simonyan et al., 2013) find a L2-regularized im-
age for each class by maximizing the class specific
score. They also compute a class saliency map for the
input image.

Girshick et al. (Girshick et al., 2014) keep record
of activations for a specific unit by entering many im-
ages to ConvNet and calculating their activations on
the unit. Then, the images are sorted according to
their activation on this particular unit and illustrated.
Taking into account the fact that each unit in top lay-
ers has a corresponding receptive field on the image,
it is possible to see which parts are important for each
unit.

Mahendran and Vedaldi (Mahendran and Vedaldi,
2014) invert the d-dimensional representation of an
image computed by function Θ : RH×W×C −→ Rd .
This approach tells us that to which extend it is possi-
ble to reconstruct the image using the representation
function Θ. By applying this method on each layer
of the network we can understand which information
is preserved by each layer. Similarly, Dosovitskiy
and Brox (Dosovitskiy and Brox, 2015) reconstructed
the image by minimizing the squared Euclidean be-
tween the downsampled image and reconstructed im-
age. Recently, Nguyen et al. (Nguyen et al., 2015)
developed an evolutionary algorithm for generating
images that do not look like to any of objects in the
database but are classified with high score by Con-
vNet into one of object classes.

Even though the visualization approaches help us
to better understand the internal process of ConvNets,
they do not provide a tool for assessing the stability
of the network against noise. To address this prob-
lem, Szegedy et al. (Szegedy et al., 2013) proposed
a method for finding the L2 regularized noise which
minimizes the score of a specific class. To our knowl-
edge, this is the only published work which has stud-
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ied the stability of ConvNets. As we will discuss
shortly, their objective function has a problem which
might not generate the optimal results. Furthermore,
they have not thoroughly studied different aspects re-
lated to the performance of ConvNets that we dis-
cussed in the last part of Section 1.

3 ANALYZING STABILITY

A ConvNet is a non-linear vector function that
transforms a D-dimensional input vector into a M-
dimensional vector in the layer before the classifica-
tion layer. Ideally, small changes in the input should
produce small changes in the output. In other words,
if the classification score of the input image X ∈
RM×N computed by ConvNet for class c is sc(X ) = z,
then, the score of image Xnoisy = X + r obtained by
adding a small degradation r ∈ RM×N to X must also
be sc(X ) = z± ε. Note that c is the class with the
highest score when X is plugged into ConvNet.

However, f is strongly degraded as ‖r‖ increases.
Therefore, at a certain point, the degraded image
Xnoisy is no longer recognizable. We are interested
in finding r with minimum ‖r‖ that causes the Xnoisy
and the X are classified differently. Szegedy et
al. (Szegedy et al., 2013) investigated this problem
and they proposed to minimize the following objec-
tive function with respect to r:

minimize λ|r|+ loss(X + r,c)

s.t X + r ∈ [0,1]M×N (1)

where c is the actual class label, λ is the regularizing
weight and loss(X + r,c) returns the loss of the de-
graded image X + r given the actual class of image
X . It is worth mentioning that loss is a vector that
shows the classification score of the input image for
each class.

Denoting the loss vector by L ∈ [0,1]K where K is
the total number of the classes, L [k] returns the score
of the predicted class where k = argmaxL . The im-
age is classified correctly if k = c. If max(L) = 0.9,
the ConvNet is 90% confident that the input image
belongs to class k. However, there might be another
image where max(L) = 0.3. This means that the im-
age belongs to class k with probability 0.3.

Conversely, assume two images that are misclas-
sified by ConvNet. In the first image, L [k] = 0.9 and
L [c] = 0.1 meaning that the network believes the in-
put image belongs to class k with probability 0.9 but
it belongs to class c with probability 0.1. In the sec-
ond image, the beliefs of ConvNet are L [k] = 0.51
and L [c] = 0.49. Even tough in both cases the images

are misclassified, however, the degrees of misclassifi-
cation are different.

One problem with the objective function (1) is that
it tends to find r such that loss(X + r,c) approaches
to zero. In other words, it tries to find r such that
L [c] = ε and L [k] = 1− ε. Assume a r such that
loss(X + r,c) = 0.3 and L [k] = 0.7. In other words,
the input image X is misclassified using the current
degradation r. Yet, the goal of the objective function
(1) is to settle in a point where loss(X + r,c) = ε. As
the result, it might change r which results in a greater
‖r‖. Consequently, the degradation found by mini-
mizing the objective function (1) might not be opti-
mal. To address this problem, we propose the follow-
ing objective function to find the degradation r:

r∗ = argmin
r

ψ(loss(X + r),c)+λ‖r‖2 (2)

ψ(L ,c) =
{

β×L [c] argmaxL = c
L [k]−L [c] otherwise (3)

where λ is the regularizing weight, β is a multiplier
to penalize those values of r that do not properly de-
grade the image so it is not misclassified by ConvNet.
The above objective function finds the value r such
that degrading the input image X using r causes the
image to be classified incorrectly and the difference
between the highest score in L and the true label of X
is minimum. This guarantees that X + r will be out-
side the decision boundary of actual class l but it will
be as close as possible to the decision boundary.

Our proposed objective function has an important
property. It finds the degradation r that causes the im-
age to be misclassified with a slim margin compared
with the actual class. In other words, the degraded im-
age lies very close to the decision boundary in the fea-
ture space computed by the layer just before the clas-
sification layer. This quantitatively shows the margin
between two classes.

Minimizing (2) using gradient descent method is
not trivial. For this reason, we minimize the objec-
tive function (2) using evolutionary algorithms. To
this end, we use real-value encoding scheme for rep-
resenting the population. The size of each chromo-
some in the population is equal to the number of the
elements in r. Each chromosome represents a solu-
tion for r. We use tournament method with tour size
5 for selecting the offspring. Then, a new offspring is
generated using arithmetic, intermediate or uniform
crossover operators. Finally, the offspring is mutated
by adding a small number in range [−10,10] on some
of the genes in the population. Finally, we use elitism
to always keep the best solution in the population.
The algorithm is terminated when the maximum num-
ber of iterations reach or the solution is not improved
in the last 50 iterations.
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Figure 1: Minimum additive noise, found by optimizing (2), which causes test images in the CIFAR10 (left) and the MNIST
(right) datasets are misclassified. Ci(c,k,w) shows a convolution layer with k filters of size w×w applied on the input with c
channels. P(m,n) indicates a MAX pooling layer with kernel size m×m and stride n. Finally, FC(x) depicts a fully connected
layer with x neurons. In the case of CIFAR10, the feature maps are padded with border size 2 before applying the convolution
filters (best viewed in color and electronically).

We applied the above optimization proce-
dure on the ConvNets trained using the CI-
FAR10 (Krizhevsky, 2009), the MNIST (LeCun et al.,
1998) and the GTSRB (Stallkamp et al., 2012)
datasets. Figure 1 and Figure 2 illustrate the archi-
tecture of the utilized ConvNets and additive noise r
obtained for a few samples from these datasets.

Inspecting all the images in these figures, we real-
ize that the ConvNets can easily make mistakes even
for the noises which are not perceivable by human
eyes. In addition, taking into account the fact that
our proposed objective function results noisy images
which are very close to the decision boundary of each
class, we observe that the margin between the classes
are very slim since adding a noise with a high signal-
to-noise ratio (i.e. low-power noise) can alter the clas-
sification score drastically.

Furthermore, these results suggests that the func-
tion presenting by a ConvNet is highly non-linear
where small changes in the input may cause a signif-
icant change in the output. In other words, the mag-
nitude of gradient of the ConvNets in the last feature

extract layer are large. When the output changes dra-
matically, it might fall into a wrong class in the fea-
ture space. Hence, the image is incorrectly classified.
Note that because of our proposed objective function,
the difference between the wrongly predicted class
and the true class is positive but it is very close to
zero.

To further investigate the stability of ConvNets
against noise, we carry out several experiments in the
next Section to analyze different aspects of ConvNets.

4 EXPERIMENTS

We trained the ConvNets shown in Figure 1 and Fig-
ure 2 on the clean datasets. In the case of the GT-
SRB dataset, we augmented the dataset following the
same procedure in (Aghdam et al., 2015). Beside
the single ConvNet, we also created an ensemble of
ConvNets for the GTSRB dataset. The classifica-
tion performance of the CIFAR10 and the MNIST
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Figure 2: Minimum additive noise, found by optimizing (2), which causes the test images in the GTSRB dataset are misclas-
sified. The network architecture is taken from (Aghdam et al., 2015) (best viewed in color and electronically).

ConvNets on the clean test set is shown in Table 1.
In addition, the performance of the ConvNet trained
on GTSRB dataset is available in (Aghdam et al.,
2015). Tolerance against Noise: Having the Con-
vNets trained, we assess their stability under degra-
dation by additive noise. To this end, we degrade
each sample in the test set using the Gaussian noise
with σ ∈ {1,2,4,8,10,14,18,20,25,30,35,40} and
for each value of sigma, we generate 150 noisy im-
ages. By this way, 1800 degraded images are gen-
erated for each clean sample in the test set. Then,
the ConvNets are evaluated using the noisy test sets.
We performed this procedure on the CIFAR10, the
MNIST and the GTSRB datasets. Figure 3, Figure
4 and Figure 5 to Figure 7 show the results.

Each chart illustrates per class scatter plot of the
peak signal-to-noise ratio (PSNR), calculated using
the noisy images and the clean images, against the
classification score of each sample. A high PSNR

value corresponds to a small value of σ in the Gaus-
sian noise. As the result, all images with PSNR≈ 50
are degraded using a Gaussian noise with σ = 1 and
those with PSNR≈ 15 are degraded using a Gaussian
noise with σ = 40. The red points are related to the
misclassified samples and the gray points depict the
correctly classified samples.

We observe that there are many noisy images
which are misclassified by the ConvNets trained on
the CIFAR10 dataset regardless of the their PSNR.
Note that, the Gaussian noise with σ = 1 is not easily
perceivable for a human eye. However, we see that
this low magnitude noise might change the classifica-
tion result. This is due to the fact that, the CIFAR10
dataset contains complex objects stored in very small
images. A small change in the image, may alter the
geometry and appearance of the object. Although
small changes might not be perceivable by human
eyes, they numerically change the appearance and

VISAPP 2016 - International Conference on Computer Vision Theory and Applications

374



Table 1: Class specific precision and recall computed on the original CIFAR10 (left) and the MNIST (right) datasets.

CIFAR10
cls precision recall cls precision recall
1 0.81 0.82 6 0.63 0.77
2 0.89 0.89 7 0.87 0.83
3 0.71 0.73 8 0.80 0.86
4 0.64 0.58 9 0.90 0.88
5 0.79 0.75 10 0.91 0.80

accuracy (top-1): 78.95%

MNIST
cls precision recall cls precision recall
1 0.99 0.99 6 0.99 0.99
2 1.00 0.99 7 0.99 0.99
3 0.99 0.99 8 0.99 0.98
4 0.98 1.00 9 0.99 0.99
5 0.99 0.99 10 0.99 0.99

accuracy (top-1): 98.98%

Figure 3: Evaluating the ConvNet trained on the CIFAR10 dataset by creating a noisy test set (see the text). Red and
Gray points illustrate misclassified and correctly classified samples, respectively. High resolution images are available at
deim.urv.cat/ rivi/cnn-noise-tolerance/.

shape pattern. For this reason, the ConvNet makes
mistakes with little degradations in the input image.

Inspecting the results obtained from the ConvNet
trained on the MNIST dataset shows that despite the
simplicity of the objects in this dataset, the MNIST
ConvNet is also vulnerable to noise and it makes mis-
takes even with a low magnitude degradation. In ad-
dition, the scatter plots illustrate that the ConvNet
makes mistakes regardless of the object classes. This
is due to the fact that images in the MNIST dataset
do not have any texture and they can be considered
as binary images. Consequently, the network learns
edges and edgelets to recognize the digits. However,
when the image is degraded using a Guassian noise, it
changes the edge patterns dramatically. As the result,
the degraded image is misclassified.

The ConvNet trained on the GTSRB dataset uti-
lizes 48×48 images. In addition, the appearance and
perspective of the objects in this dataset do not vary
significantly. Hence, the ConvNet learns parts and
patterns with higher abstraction level compared with
the two other ConvNets. For this reason, small degra-
dation of the image does not significantly alter the
representation vector computed by the ConvNet and it
is classified correctly in most of the cases. However,
we observe that the ConvNet makes more mistakes
starting from σ = 8(PSNR' 30).

Result: The above results reveal that ConvNets
are not noise-tolerant and their classification score

might negatively alter with a small change in the in-
put. This is due to the fact that a ConvNet is a highly
non-linear function. Therefore, a slight change in the
input causes a great change in the output. From an-
other perspective, these results show that the margin
between two classes are very small in which a small
variation in the input moves the sample to another
class.

Beside the exploratory analysis, we conducted a
quantitative analysis as well. To be more specific,
we evaluated the performance of the ConvNets on the
noisy datasets in terms of precision and recall. Table
2 and Table 3 show the results. Comparing the results
with Table 1 and (Aghdam et al., 2015) we see a dras-
tic performance reduction in all three ConvNets. This
is more obvious in the case of the MNIST dataset for
the same reason we mentioned earlier.

Effect of Ensemble: It is shown that ensemble of
ConvNets can increase the classification performance
(Aghdam et al., 2015; Jin et al., 2014; Cirean et al.,
2012). To see if the ensemble makes the classification
more robust against noise, we created an ensemble for
each of the datasets. Each ensemble contains 5 Con-
vNets initialized and trained separately. We evaluated
the ensembles using the same noisy test sets. Table 4
and Table 5 show the results.

Result: We observe that the ensembles of the CI-
FAR10 and the GTSRB ConvNets produce more ac-
curate results compared with the corresponding single
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Figure 4: Evaluating the ConvNet trained on the MNIST dataset by creating a noisy test set (see the text). Red and
Gray points illustrate misclassified and correctly classified samples, respectively. High resolution images are available at
deim.urv.cat/ rivi/cnn-noise-tolerance/.

Table 2: Class specific precision and recall computed on the noisy version of the GTSRB dataset (refer to the text).

Class precision recall class precision recall class precision recall class precision recall
0 0.9198 0.9997 11 0.9626 0.9470 22 0.9988 0.9758 33 0.9865 0.9977
1 0.8993 0.9874 12 0.9565 0.9654 23 0.8392 0.8911 34 0.9866 0.9973
2 0.8808 0.9525 13 0.9811 0.9902 24 0.9178 0.9098 35 0.9933 0.9382
3 0.8524 0.8744 14 0.9721 0.9969 25 0.9288 0.9700 36 0.9849 0.9928
4 0.9707 0.8651 15 0.9898 0.9578 26 0.9105 0.9592 37 0.9507 0.9875
5 0.8387 0.9015 16 0.9993 0.9319 27 0.9470 0.9891 38 0.9651 0.9792
6 0.9324 0.7122 17 0.9911 0.9911 28 0.9777 0.9915 39 0.9724 0.9100
7 0.9377 0.8698 18 0.9682 0.8998 29 0.8453 0.9966 40 0.9061 0.9629
8 0.8324 0.9039 19 0.6640 0.7462 30 0.8102 0.7670 41 0.9508 0.9268
9 0.9606 0.9453 20 0.8314 0.9997 31 0.9666 0.8699 42 0.9082 0.9126
10 0.9864 0.8797 21 0.8995 0.9997 32 0.9773 0.8472

accuracy (top-1): 93.23%

Table 3: Class specific precision and recall computed on the noisy versions of the CIFAR10 (left) and the MNIST (right)
datasets (refer to the text).

CIFAR10
cls precision recall cls precision recall
1 0.86 0.54 6 0.68 0.49
2 0.89 0.72 7 0.37 0.92
3 0.69 0.48 8 0.82 0.71
4 0.60 0.39 9 0.78 0.80
5 0.59 0.66 10 0.75 0.76

accuracy (top-1): 64.36%

MNIST
cls precision recall cls precision recall
1 0.98 0.99 6 0.98 0.97
2 0.99 0.99 7 0.99 0.98
3 0.98 0.98 8 0.99 0.98
4 0.96 0.99 9 0.98 0.98
5 0.99 0.98 10 0.98 0.97

accuracy (top-1): 98.51%

ConvNets when they are applied on the noisy test sets.
However, the fact remains that the performance of the
ensemble is significantly lower than the performance
of the ConvNets on the clean datasets. This founding
shows that an ensemble is not able to tackle the insta-
bility problem of the ConvNets against noisy images.
This is shown in the scatter plots beside Table 4 in
which images are still incorrectly classified using the

ensemble by adding a Gaussian noise with σ = 1.
Augmenting Noisy Images: It is a common prac-

tice to create a jittery dataset by applying simple
transformations such as cropping, contrast adjustment
and blurring on the original training dataset in order
to train a more accurate ConvNet. In this section, our
goal is to find out if augmenting the training dataset
with many noisy images improve the stability of the
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Figure 5: Evaluating the ConvNet trained on the GTSRB dataset (class 0 to class 14) by creating a noisy test set (see the
text). Red and Gray points illustrate misclassified and correctly classified samples, respectively. High resolution images are
available at deim.urv.cat/ rivi/cnn-noise-tolerance/.
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Figure 6: Evaluating the ConvNet trained on the GTSRB dataset (class 15 to class 29) by creating a noisy test set (see the
text). Red and Gray points illustrate misclassified and correctly classified samples, respectively. High resolution images are
available at deim.urv.cat/ rivi/cnn-noise-tolerance/.
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Figure 7: Evaluating the ConvNet trained on the GTSRB dataset (class 30 to class 42) by creating a noisy test set (see the
text). Red and Gray points illustrate misclassified and correctly classified samples, respectively. High resolution images are
available at deim.urv.cat/ rivi/cnn-noise-tolerance/.
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Table 4: Class specific precision and recall computed using the ensemble of 5 ConvNets on the noisy version of the GTSRB
dataset.

Class precision recall class precision recall class precision recall
0 0.9547 0.9970 15 0.9894 0.9762 30 0.8775 0.8524
1 0.9126 0.9917 16 0.9994 0.9585 31 0.9789 0.9101
2 0.8848 0.9667 17 0.9929 0.9947 32 0.9939 0.8542
3 0.9093 0.8982 18 0.9859 0.9030 33 0.9971 0.9982
4 0.9859 0.8896 19 0.8710 0.7784 34 0.9955 0.9995
5 0.8469 0.9429 20 0.9061 0.9996 35 0.9926 0.9678
6 0.9401 0.7909 21 0.9398 0.9993 36 0.9820 0.9984
7 0.9612 0.8853 22 0.9994 0.9788 37 0.9743 0.9956
8 0.8872 0.9279 23 0.9372 0.8838 38 0.9883 0.9832
9 0.9875 0.9653 24 0.9383 0.9024 39 0.9753 0.9266
10 0.9855 0.9311 25 0.9548 0.9872 40 0.8843 0.9732
11 0.9513 0.9786 26 0.9131 0.9877 41 0.9832 0.9909
12 0.9378 0.9791 27 0.9605 0.9953 42 0.9328 0.9631
13 0.9876 0.9919 28 0.9726 0.9912
14 0.9699 0.9991 29 0.8925 0.9985

accuracy (top-1): 95.15%

Table 5: Class specific precision and recall computed using two separate ensembles of 5 ConvNets on the noisy version of the
CIFAR10 (left) and MNIST (right) datasets.

CIFAR10
cls precision recall cls precision recall
1 0.88 0.57 6 0.74 0.52
2 0.91 0.78 7 0.39 0.94
3 0.73 0.53 8 0.88 0.72
4 0.67 0.42 9 0.82 0.81
5 0.70 0.63 10 0.65 0.86

accuracy (top-1): 67.88%

MNIST
cls precision recall cls precision recall
1 0.98 0.99 6 0.98 0.98
2 0.98 1.00 7 0.99 0.98
3 0.99 0.99 8 1.00 0.98
4 0.97 0.99 9 0.99 0.98
5 0.99 0.99 10 0.99 0.97

accuracy (top-1): 98.69%

Table 6: Class specific precision and recall computed using the ConvNet train on a training dataset augmented with noisy
images on the noisy version of the GTSRB dataset.

Class precision recall Class precision recall Class precision recall
0 0.9970 0.9906 15 0.9812 0.9750 30 0.9496 0.9448
1 0.9503 0.9728 16 0.9951 0.9728 31 0.9486 0.9466
2 0.9281 0.9586 17 0.9911 0.9884 32 0.9859 0.9393
3 0.9170 0.9004 18 0.9325 0.9723 33 0.9931 0.9733
4 0.9205 0.9242 19 0.9386 0.9417 34 0.9905 0.9833
5 0.8263 0.8987 20 0.9624 0.9451 35 0.9820 0.9815
6 0.9506 0.9386 21 0.9872 0.9805 36 0.9851 0.9786
7 0.9173 0.8734 22 0.9982 0.9962 37 0.9948 0.9825
8 0.8823 0.8834 23 0.9840 0.9485 38 0.9575 0.9761
9 0.9648 0.9558 24 0.9877 0.9663 39 0.9491 0.9753
10 0.9336 0.9596 25 0.9687 0.9710 40 0.9917 0.9613
11 0.9519 0.9678 26 0.9556 0.9631 41 0.9834 0.9684
12 0.9019 0.9960 27 0.9965 0.9831 42 0.9845 0.9400
13 0.9451 0.9852 28 0.9935 0.9695
14 0.9933 0.9956 29 0.9976 0.9913

accuracy (top-1): 96.08%
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network. To this end, we generated 15 noisy im-
ages for each image in the training set with different
signal-to-noise ratios. Then, the ConvNets are trained
using the new noisy training sets. Finally, we evaluate
the ConvNets using the noisy test sets. Table 6 illus-
trates the result. Because of space limitation we could
not include the results from the CIFAR10 and the
MNIST datasets. However, the complete results are
available at deim.urv.cat/ rivi/cnn-noise-tolerance/.

Result: While augmenting the training set with
noisy images improves the performance, however, we
observe that the ConvNets are still sensitive to noise.
For instance, the scatter plots beside Table 6 shows
that even after training with noisy training set, it is
still possible to generate a Gaussian noise with σ = 1
in order to incorrectly classify the images.

5 CONCLUSIONS

In this paper we studied the degree of which Con-
vNets are tolerant against noise. For this purpose,
we first proposed a method for finding the minimum
noisy image close to the decision boundary that is
misclassified by the ConvNet. We applied our method
on the ConvNets trained on the CIFAR10, the MNIST
and the GTSRB datasets and showed that it is possi-
ble to generate low magnitude noises which are hardly
perceivable by human eyes but they alter the classifi-
cation score of the ConvNets. Then, we carried out
several experiments to study different aspects of sta-
bility. First, we randomly generated many noisy im-
ages with various signal-to-noise ratios and classified
them using the three ConvNets. We found out that the
three ConvNets makes mistakes even with very low
magnitude noisy images. This can be explained by the
fact that the inter-class margin of the feature vectors
computed by ConvNets might be very small. Another
possibility is that because ConvNets are highly non-
linear functions, a small change in the input causes a
significant change in the output. For these two rea-
sons, images may fall into wrong classes when they
are degraded by a low magnitude noise. Second, we
examined the effect of ensemble of ConvNets and
found that although ensembles improve the classifica-
tion accuracy but they are still very vulnerable to low
magnitude noises. Third, we investigated the effect
of augmenting the training datasets with many noisy
images on the stability. Results reveal that even Con-
vNets trained on noisy datasets are not stable against
noise and they easily make mistakes by low magni-
tude noises.
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