State of the Art in Skinning Techniques for Articulated Deformable Characters

Nadine Abu Rumman, Marco Fratarcangeli

2016

Abstract

Skinning is an indispensable component of the content creation pipeline for character animation in the context of feature films, video games, and in the special effects industry. Skinning techniques define the deformation of the character skin for every animation frame according to the current state of skeletal joints. In this state of the art report, we focus on the existing research in the areas of skeleton-based deformation, volume preserving techniques and physically based skinning methods. We also summarize the recent research in deformable and soft bodies simulations for articulated characters, and discuss various geometric and examples-based approaches.

References

  1. Abu Rumman, N. and Fratarcangeli, M. (2015). Positionbased skinning for soft articulated characters. Computer Graphics Forum, 34(6):240-250.
  2. Alexa, M. (2002). Linear combination of transformations. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7802, pages 380-387, New York, NY, USA. ACM.
  3. Allen, B., Curless, B., and Popovic, Z. (2002). Articulated body deformation from range scan data. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7802, pages 612-619, New York, NY, USA. ACM.
  4. Angelidis, A. and Singh, K. (2007). Kinodynamic skinning using volume-preserving deformations. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 2007, San Diego, California, USA, August 2-4, 2007, pages 129- 140.
  5. Baran, I. and Popovic, J. (2007). Automatic rigging and animation of 3d characters. In ACM SIGGRAPH 2007 papers, SIGGRAPH 7807, New York, NY, USA. ACM.
  6. Bender, J., Müller, M., Otaduy, M. A., and Teschner, M. (2013). Position-based methods for the simulation of solid objects in computer graphics. In EUROGRAPHICS 2013 State of the Art Reports. Eurographics Association.
  7. Bharaj, G., Thormählen, T., Seidel, H.-P., and Theobalt, C. (2012). Automatically rigging multi-component characters. Comp. Graph. Forum, 31(2pt3):755-764.
  8. Bloor, M. I. G. and Wilson, M. J. (1990). Using partial differential equations to generate free-form surfaces: 91787. Comput. Aided Des., 22(4):202-212.
  9. Botsch, M. and Kobbelt, L. (2003). Multiresolution surface representation based on displacement volumes. Computer Graphics Forum, 22(3):483-491.
  10. Bro-nielsen, M. and Cotin, S. (1996). Real-time volumetric deformable models for surgery simulation using finite elements and condensation. In Computer Graphics Forum, pages 57-66.
  11. Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popovic, Z. (2005). Physically based rigging for deformable characters. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7805, pages 301-310, New York, NY, USA. ACM.
  12. Capell, S., Green, S., Curless, B., Duchamp, T., and Popovic, Z. (2002). Interactive skeleton-driven dynamic deformations. In Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7802, pages 586-593, New York, NY, USA. ACM.
  13. Chadwick, J. E., Haumann, D. R., and Parent, R. E. (1989). Layered construction for deformable animated characters. SIGGRAPH Comput. Graph., 23(3):243-252.
  14. Chen, C.-H., Lin, I.-C., Tsai, M.-H., and Lu, P.-H. (2011). Lattice-based skinning and deformation for real-time skeleton-driven animation. In Proceedings of the 2011 12th International Conference on Computer-Aided Design and Computer Graphics, CADGRAPHICS 7811, pages 306-312, Washington, DC, USA. IEEE Computer Society.
  15. Coquillart, S. (1990). Extended free-form deformation: A sculpturing tool for 3d geometric modeling. In Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7890, pages 187-196, New York, NY, USA. ACM.
  16. Desbrun, M. and Gascuel, M.-P. (1995). Animating soft substances with implicit surfaces. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7895, pages 287-290, New York, NY, USA. ACM.
  17. Dionne, O. and de Lasa, M. (2013). Geodesic voxel binding for production character meshes. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7813, pages 173-180, New York, NY, USA. ACM.
  18. Feng, W.-W., Kim, B.-U., and Yu, Y. (2008). Real-time data driven deformation using kernel canonical correlation analysis. In ACM SIGGRAPH 2008 Papers, SIGGRAPH 7808, pages 91:1-91:9, New York, NY, USA. ACM.
  19. Forstmann, S. and Ohya, J. (2006). Fast skeletal animation by skinned arc-spline based deformation. EG 2006 Short Papers, pages 1-4.
  20. Forstmann, S., Ohya, J., Krohn-Grimberghe, A., and McDougall, R. (2007). Deformation styles for splinebased skeletal animation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7807, pages 141-150, Aire-laVille, Switzerland, Switzerland. Eurographics Association.
  21. Galoppo, N., Otaduy, M. A., Tekin, S., Gross, M. H., and Lin, M. C. (2007). Soft articulated characters with fast contact handling. Comput. Graph. Forum, 26(3):243- 253.
  22. Gao, M., Mitchell, N., and Sifakis, E. (2014). Steklovpoincaré skinning. In The Eurographics / ACM SIGGRAPH Symposium on Computer Animation, SCA 7814, Copenhagen, Denmark, 2014., pages 139-148.
  23. Gilles, B., Bousquet, G., Faure, F., and Pai, D. K. (2011). Frame-based elastic models. ACM Trans. Graph., 30(2):15:1-15:12.
  24. Girard, M. and Maciejewski, A. A. (1985). Computational modeling for the computer animation of legged figures. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7885, pages 263-270, New York, NY, USA. ACM.
  25. Goktekin, T. G., Reisch, J., Peachey, D., and Shah, A. (2007). An effects recipe for rolling a dough, cracking an egg and pouring a sauce. In ACM SIGGRAPH 2007 Sketches, SIGGRAPH 7807, New York, NY, USA. ACM.
  26. Gourret, J.-P., Thalmann, N. M., and Thalmann, D. (1989). Simulation of object and human skin formations in a grasping task. In Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7889, pages 21-30, New York, NY, USA. ACM.
  27. Guskov, I., Sweldens, W., and Schröder, P. (1999). Multiresolution signal processing for meshes. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7899, pages 325-334, New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.
  28. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. (2012). Rig-space physics. ACM Trans. Graph., 31(4):72:1-72:8.
  29. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R., and Gross, M. (2013). Efficient simulation of secondary motion in rig-space. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7813.
  30. Hejl, J. (2004). Hardware skinning with quaternions. In Kirmse, A., editor, Game Programming Gems 4, pages 487-495. Charles River Media.
  31. Hong, M., Jung, S., Choi, M.-H., and Welch, S. (2006). Fast volume preservation for a mass-spring system. Computer Graphics and Applications, IEEE, 26(5):83-91.
  32. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. (2006). Subspace gradient domain mesh deformation. ACM Trans. Graph., 25(3):1126-1134.
  33. Jacka, D., Reid, A., Merry, B., and Gain, J. (2007). A comparison of linear skinning techniques for character animation. In Proceedings of the 5th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, AFRIGRAPH 7807, pages 177-186, New York, NY, USA. ACM.
  34. Jacobson, A., Baran, I., Kavan, L., Popovic, J., and Sorkine, O. (2012). Fast automatic skinning transformations. ACM Trans. Graph., 31(4):77:1-77:10.
  35. Jacobson, A., Baran, I., Popovic, J., and Sorkine, O. (2011). Bounded biharmonic weights for real-time deformation. ACM Trans. Graph., 30(4):78:1-78:8.
  36. Jacobson, A., Deng, Z., Kavan, L., and Lewis, J. (2014). Skinning: Real-time shape deformation. In ACM SIGGRAPH 2014 Courses.
  37. Jacobson, A. and Sorkine, O. (2011). Stretchable and twistable bones for skeletal shape deformation. In Proceedings of the 2011 SIGGRAPH Asia Conference, SA 7811, pages 165:1-165:8, New York, NY, USA. ACM.
  38. Jain, S. and Liu, C. K. (2011). Controlling physics-based characters using soft contacts. ACM Trans. Graph. (SIGGRAPH Asia), 30:163:1-163:10.
  39. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. (2007). Harmonic coordinates for character articulation. ACM Trans. Graph., 26(3).
  40. Ju, T., Schaefer, S., and Warren, J. (2005). Mean value coordinates for closed triangular meshes. ACM Trans. Graph., 24(3):561-566.
  41. Ju, T., Zhou, Q.-Y., van de Panne, M., Cohen-Or, D., and Neumann, U. (2008). Reusable skinning templates using cage-based deformations. ACM Trans. Graph., 27(5):122:1-122:10.
  42. Kavan, L., Collins, S., and O'Sullivan, C. (2009). Automatic linearization of nonlinear skinning. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D 7809, pages 49-56, New York, NY, USA. ACM.
  43. Kavan, L., Collins, S., Zára, J., and O'Sullivan, C. (2007). Skinning with dual quaternions. In Proceedings of the 2007 Symposium on Interactive 3D Graphics and Games, I3D 7807, pages 39-46, New York, NY, USA. ACM.
  44. Kavan, L. and Sorkine, O. (2012). Elasticity-inspired deformers for character articulation. ACM Trans. Graph., 31(6):196:1-196:8.
  45. Kavan, L. and Zára, J. (2005). Spherical blend skinning: A real-time deformation of articulated models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D 7805, pages 9-16, New York, NY, USA. ACM.
  46. Kim, J. and Pollard, N. S. (2011). Fast simulation of skeleton-driven deformable body characters. ACM Trans. Graph., 30(5):121:1-121:19.
  47. Kim, T. and James, D. L. (2011). Physics-based character skinning using multi-domain subspace deformations. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7811, pages 63-72, New York, NY, USA. ACM.
  48. Kim, Y. and Han, J. (2014). Bulging-free dual quaternion skinning. Journal of Visualization and Computer Animation, 25(3-4):323-331.
  49. Kry, P. G., James, D. L., and Pai, D. K. (2002). Eigenskin: Real time large deformation character skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7802, pages 153-159, New York, NY, USA. ACM.
  50. Kurihara, T. and Miyata, N. (2004). Modeling deformable human hands from medical images. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7804, pages 355-363, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  51. Larboulette, C., Cani, M.-P., and Arnaldi, B. (2005). Dynamic skinning: adding real-time dynamic effects to an existing character animation. In SCCG, pages 87- 93.
  52. Lasseter, J. (1987). Principles of traditional animation applied to 3d computer animation. SIGGRAPH Comput. Graph., 21(4):35-44.
  53. Le, B. H. and Deng, Z. (2012). Smooth skinning decomposition with rigid bones. ACM Trans. Graph., 31(6):199:1-199:10.
  54. Le, B. H. and Deng, Z. (2014). Robust and accurate skeletal rigging from mesh sequences. ACM Trans. Graph., 33(4):84:1-84:10.
  55. Lee, G. S., Lin, A., Schiller, M., Peters, S., McLaughlin, M., and Hanner, F. (2013). Enhanced dual quaternion skinning for production use. In ACM SIGGRAPH 2013 Talks, SIGGRAPH 7813, pages 9:1-9:1, New York, NY, USA. ACM.
  56. Lee, S.-H., Sifakis, E., and Terzopoulos, D. (2009). Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph., 28(4):99:1- 99:17.
  57. Lee, Y., Terzopoulos, D., and Waters, K. (1995). Realistic modeling for facial animation. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7895, pages 55-62, New York, NY, USA. ACM.
  58. Lewis, J. P., Cordner, M., and Fong, N. (2000). Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7800, pages 165-172, New York, NY, USA. ACM Press/AddisonWesley Publishing Co.
  59. Lipman, Y., Cohen-Or, D., Gal, R., and Levin, D. (2007a). Volume and shape preservation via moving frame manipulation. ACM Trans. Graph., 26(1).
  60. Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. (2007b). Gpu-assisted positive mean value coordinates for mesh deformations. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, SGP 7807, pages 117-123, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  61. Liu, L., Yin, K., Wang, B., and Guo, B. (2013). Simulation and control of skeleton-driven soft body characters. ACM Trans. Graph., 32(6):215:1-215:8.
  62. Adams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. (2011). Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph., 30(4):37:1-37:12.
  63. Merry, B., Marais, P., and Gain, J. (2006). Animation space: A truly linear framework for character animation. ACM Trans. Graph., 25(4):1400-1423.
  64. Milliron, T., Jensen, R. J., Barzel, R., and Finkelstein, A. (2002). A framework for geometric warps and deformations. ACM Trans. Graph., 21(1):20-51.
  65. Min, K.-H., Baek, S.-M., Lee, G. A., Choi, H., and Park, C.-M. (2000). Anatomically-based modeling and animation of human upper limbs. In Proceedings of International Conference on Human Modeling and Animation.
  66. Mohr, A. and Gleicher, M. (2003). Building efficient, accurate character skins from examples. In ACM SIGGRAPH 2003 Papers, SIGGRAPH 7803, pages 562- 568, New York, NY, USA. ACM.
  67. Moore, P. and Molloy, D. (2007). A survey of computerbased deformable models. In Machine Vision and Image Processing Conference, 2007. IMVIP 2007. International, pages 55-66.
  68. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. (2002). Stable real-time deformations. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 49-54, New York, NY, USA. ACM.
  69. Nealen, A., Mueller, M., Keiser, R., Boxerman, E., and Carlson, M. (2006). Physically based deformable models in computer graphics. Computer Graphics Forum, 25(4):809-836.
  70. Nieto, J. and Susin, A. (2013). Cage based deformations: A survey. In Deformation Models, volume 7 of Lecture Notes in Computational Vision and Biomechanics, pages 75-99. Springer Netherlands.
  71. Park, S. I. and Hodgins, J. K. (2006). Capturing and animating skin deformation in human motion. In ACM SIGGRAPH 2006 Papers, SIGGRAPH 7806, pages 881- 889, New York, NY, USA. ACM.
  72. Park, S. I. and Hodgins, J. K. (2008). Data-driven modeling of skin and muscle deformation. In ACM SIGGRAPH 2008 Papers, SIGGRAPH 7808, pages 96:1-96:6, New York, NY, USA. ACM.
  73. Popovic, J., Seitz, S. M., and Erdmann, M. (2003). Motion sketching for control of rigid-body simulations. ACM Trans. Graph., 22(4):1034-1054.
  74. Rhee, T., Lewis, J. P., and Neumann, U. (2006). Real-time weighted pose-space deformation on the GPU. Comput. Graph. Forum, 25(3):439-448.
  75. Rohmer, D., Hahmann, S., and Cani, M. (2008). Local volume preservation for skinned characters. Comput. Graph. Forum, 27(7):1919-1927.
  76. Rumman, N. A. and Fratarcangeli, M. (2014). Position based skinning of skeleton-driven deformable characters. In Proceedings of the 30th Spring Conference on Computer Graphics, SCCG 7814, pages 83-90, New York, NY, USA. ACM.
  77. Rumman, N. A., Schaerf, M., and Bechmann, D. (2015). Collision detection for articulated deformable characters. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games, MIG 7815, pages 215- 220, New York, NY, USA. ACM.
  78. Saito, S., Zhou, Z.-Y., and Kavan, L. (2015). Computational bodybuilding: Anatomically-based modeling of human bodies. ACM Trans. Graph., 34(4):41:1-41:12.
  79. Savoye, Y. and Franco, J.-S. (2010). Cageik: Dual-laplacian cage-based inverse kinematics. In Proceedings of the 6th International Conference on Articulated Motion and Deformable Objects, AMDO'10, pages 280-289, Berlin, Heidelberg. Springer-Verlag.
  80. Schumacher, C., Thomaszewski, B., Coros, S., Martin, S., Sumner, R., and Gross, M. (2012). Efficient simulation of example-based materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7812, pages 1-8, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  81. Sederberg, T. W. and Parry, S. R. (1986). Free-form deformation of solid geometric models. In Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 7886, pages 151-160, New York, NY, USA. ACM.
  82. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. (2008). Example-based dynamic skinning in real time. ACM Trans. Graph., 27(3):29:1-29:8.
  83. Shinar, T., Schroeder, C., and Fedkiw, R. (2008). Twoway coupling of rigid and deformable bodies. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7808, pages 95-103, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association.
  84. Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. (2001). Shape by example. In Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D 7801, pages 135-143, New York, NY, USA. ACM.
  85. Sueda, S., Kaufman, A., and Pai, D. K. (2008). Musculotendon simulation for hand animation. ACM Trans. Graph., 27(3):83:1-83:8.
  86. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. (1987). Elastically deformable models. SIGGRAPH Comput. Graph., 21(4):205-214.
  87. Turner, R. and Thalmann, D. (1993). The elastic surface layer model for animated character construction. In PROCEEDINGS OF COMPUTER GRAPHICS INTERNATIONAL 7893, pages 399-412. SpringerVerlag.
  88. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. (2013). Implicit skinning: Real-time skin deformation with contact modeling. ACM Trans. Graph., 32(4):125:1-125:12.
  89. Vaillant, R., Guennebaud, G., Barthe, L., Wyvill, B., and Cani, M.-P. (2014). Robust iso-surface tracking for interactive character skinning. ACM Trans. Graph., 33(6):189:1-189:11.
  90. von Funck, W., Theisel, H., and Seidel, H. (2008). Volumepreserving mesh skinning. In Proceedings of the Vision, Modeling, and Visualization Conference 2008, VMV 2008, Konstanz, Germany, October 8-10, 2008, pages 409-414.
  91. von Funck, W., Theisel, H., and Seidel, H.-P. (2006). Vector field based shape deformations. ACM Trans. Graph., 25(3):1118-1125.
  92. Wang, R. Y., Pulli, K., and Popovic, J. (2007). Real-time enveloping with rotational regression. ACM Trans. Graph., 26(3).
  93. Wang, X. C. and Phillips, C. (2002). Multi-weight enveloping: Least-squares approximation techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA 7802, pages 129-138, New York, NY, USA. ACM.
  94. Wilhelms, J. (1994). Modeling animals with bones, muscles, and skin. Technical report, University of California.
  95. Yang, X., Somasekharan, A., and Zhang, J. J. (2006). Curve skeleton skinning for human and creature characters. Computer Animation and Virtual Worlds, 17(3- 4):281-292.
  96. Zhou, K., Huang, J., Snyder, J., Liu, X., Bao, H., Guo, B., and Shum, H.-Y. (2005). Large mesh deformation using the volumetric graph laplacian. In ACM SIGGRAPH 2005 Papers, SIGGRAPH 7805, pages 496- 503, New York, NY, USA. ACM.
Download


Paper Citation


in Harvard Style

Rumman N. and Fratarcangeli M. (2016). State of the Art in Skinning Techniques for Articulated Deformable Characters . In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016) ISBN 978-989-758-175-5, pages 200-212. DOI: 10.5220/0005720101980210


in Bibtex Style

@conference{grapp16,
author={Nadine Abu Rumman and Marco Fratarcangeli},
title={State of the Art in Skinning Techniques for Articulated Deformable Characters},
booktitle={Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)},
year={2016},
pages={200-212},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005720101980210},
isbn={978-989-758-175-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 1: GRAPP, (VISIGRAPP 2016)
TI - State of the Art in Skinning Techniques for Articulated Deformable Characters
SN - 978-989-758-175-5
AU - Rumman N.
AU - Fratarcangeli M.
PY - 2016
SP - 200
EP - 212
DO - 10.5220/0005720101980210