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Abstract: In this paper, we present a player profiling system applicable for both human players and bots in video 
games. The Vindinium artificial intelligence (AI) contest is selected as the test-bed for analyzing the 
performance of our system. In this game, AI bots compete with each other in a systematically generated 
environment to achieve the highest score. Our profiling method is based on Hidden Markov Model (HMM) 
constructed by using consecutive actions of AI bots and improved with the initial training phase and our 
sliding window approach. The method is evaluated for three different performance criteria: recognition of 
bots, grouping bots that have similar game styles and tracking changes in the strategy of a single bot through 
the game. The results indicate that the method is promising with 90,04% binary classification success in 
average. 

1 INTRODUCTION 

Video games have become to take a very important 
place in our daily lives as a form of entertainment 
especially in the last 10 years with the development 
of software and hardware technologies. 

The growing increase in the number of users at 
every age group and the market share reaching 
billions of dollars have accelerated competition in 
the gaming industry to a high level and have led 
researchers and companies do advanced game/player 
analyses. These analyses have revealed out the 
importance of modelling and classifying players to 
provide them more engaging contents, to increase 
their play time, to present more intelligent non-
player characters and to identify which game janras 
they are tending towards (D. Kennerly, 2003), 
(K.S.Y. Chiu, and K.C.C. Chan, 2008). 

Data collection about players to create a 
successful player model by carrying out surveys 
have remained inadequate at present. It has been 
shown that in-game user interaction data are more 
valuable to analyse and model players (Yannakakis, 
G. N.; Spronck, P.; Loiacono, D.; and Andre, E. 
2013). That has increased the number of scientific 
work on player modelling using supervised and 
unsupervised machine learning methods (S. C. 
Bakkes, P. H. Spronck, and G. van Lankveld, 2012). 

In this work, we propose an HMM-based player 
profiling method. We selected the Vindinium game 
environment as a test-bed for evaluations. This is 
due to the extensive data that can be acquired 
through the website of the game and the ease of 
validation of our method. Our contributions include 
a sliding window approach for the evaluation of 
HMM results for player in-game action sequences 
and the flexibility provided in the HMM emission 
matrix formation.   

The rest of the paper is organised as follows. 
Section 2 mentions related research works in the 
area. Section 3 and section 4 define the problem and 
present the selected test-bed game (Vindinium), 
respectively. Section 5 presents the proposed method 
and the implementation details. Section 6 introduces 
the uses of the method and the experiment results. 
We conclude the paper in section 7. 

2 RELATED WORK 

Matsumoto and Thawonmas (Yoshitaka Matsumoto, 
Ruck Thawonmas, 2004) have used temporal action 
sequences to classify players with a supervised 
Hidden Markov Model. In their study, there are 
three basic player classes which have distinguishing 
characteristics. They have more successful results 
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from their previous work (Thawonmas, R., Ho, J.Y., 
and Matsumoto, Y. 2003) that uses action frequency 
analysis.  

Etheredge et. al. (2013) proposed a method that 
combines clustering algorithms and HMMs. The 
clustering part is implemented on the Blindmaze 
game that they created through their study. The 
implementation of HMMs is provided as a future 
work for classification by labeling clusters 
beforehand. 

In another study (Shin Jin Kang & Soo Kyun 
Kim, 2014), the authors presented an automated 
behavior analysis system using trajectory clustering 
and implemented it on one of the most successful 
massive multiplayer online game, World of Warcraft 
(WoW). They defined modes of players as 
socializing, exploring, in combat and idle just by 
using position and the camera angle of the player.  

Harrison and Robert (Brent Harrison, David L. 
Roberts, 2011) proposed a model to predict future 
behaviours of players, using the previous behaviour 
data. The order in game actions, frequencies and 
correlations are used to develop a two-step 
probabilistic behaviour prediction model, and they 
tested their model on the World of Warcraft game. 

As a different approach for player modeling, 
Drachen and Yannakakis used Self Organising Maps 
(SOM), on the commercial game Tomb Raider: 
Underworld data. Six fundamental features, death by 
opponent, by environment, by falling, total number 
of deaths, completion time and help on demand, are 
used for modeling high level player behaviours, and 
they obtained four clusters by unsupervised learning, 
and labeled them as Veterans, Solvers, Pacifists and 
Runners with the experts’ opinions (Drachen, A. 
Canossa and G.N. Yannakakis, 2009). 

3 PLAYER PROFILING IN 
GAMES 

The research problem that we address is given as 
follows. a1, a2 ... ,aT is the in-game action sequence 
of a player where each at (0 ≤ t ≤ T, T is the end of 
the game) consists of a feature set {f1, … ,fm}. 
Example features include hit, beer, mine, death and 
kill in our case. Given a training set of action 
sequences of different players, the problem is to 
distinguish new players competing with each other 
and determine their strategies. These action 
sequences must be considered temporally and noise 
in data must be handled. For this reason, temporal 
probabilistic models are suitable to model player 

patterns. According to the developed model, the 
player of a given game or it’s strategies during the 
game can be classified. In this particular research, 
we focus on the classification of AI bots but the 
methods to be presented can be used to classify 
human players as well. 

We address three main objectives as follows: 
• To derive a model for every bot that the can be 

distinguished from each other. 
• To group bots pursuing similar strategies. 
• Determine different strategies used by a player 
during a given game episode. 

4 A CASE STUDY ON THE 
VINDINIUM GAME 

In the scope of our study, the Vindinium game 
(http://vindinium.org) is selected as the main 
platform where four artificial intelligence characters 
(AI bots) fight against each other. In Vindinium, 
competitor AI bots obtain mines that bring them 
gold each turn by killing mine goblins. Another way 
to gain gold is to kill enemy bots and take 
possession of their mines. Fighting against goblins 
and enemy bots decreases a certain amount of health 
and causes bleeding that lessens the health of a bot 
each turn. AI bots could use four taverns located on 
the map to increase their health by drinking beer. 
Game maps are generated randomly where the 
objects on each map are placed symmetrical, 
therefore, a fair competition is guaranteed. A typical 
game lasts about 1200 turns. In each turn, one of the 
bots is allowed to make an action, in total, each bot 
completes the game with 300 actions. An example 
scene from the Vindinium game is shown at Figure 
1.  

Completed games can be viewed from the 
Vindinium website by game ids, and game logs can 
be downloaded from the browser cache. Each game 
log consists of turn data, and each turn data contains 
bot positions, mine counts, gold info, health status of 
each bot, and also the current state of the map. 

Game logs are transferred to the database system 
to be able to run queries to select appropriate data 
for our study. For example, interrupted or 
incomplete games can be eliminated by this way. 
Queries can also be made to select games of a 
certain hero or games that have a certain map size 
and contain a certain number of mines. 
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Figure 1: A screenshot from the Vindinium game. Bots 
names and scores are shown on the right side. The 
percentage distribution of the gained golds for each bot is 
shown on the colored bar. The bar on the bottom shows 
the progress of the game. Mines belonging to the bots can 
be seen on the tiled map with corresponding colors. 

5 TEMPORAL-PROBABILISTIC 
PLAYER PROFILING 

Hidden Markov Model (HMM) is selected as the 
main method to determine temporal relationships 
between states of the game probabilistically. The 
main reason HMM is selected as the main method 
for player profiling is temporal and sequence based 
action structure of Vindinium game. An HMM 
consists of an unobservable Markov chain and 
observable state probability transition definitions for 
each state in the chain. Observation ot is produced 
by hidden st state at time t and holds the information 
to predict the next state which indicates that this 
process has Markov property meaning that an 
observation is only a function of the current state, 
and a state is only dependent on its previous state 
independent from the earlier states. 

Figure 2 shows the basic components of an 
HMM.  s1, s2, s3 (si)  represent hidden states. o1, o2, o3 
(oj) represent the observations emitted by hidden 
states. π1, π2, π3 (πi = P(si))  are initial probabilities of 
hidden states. Observation probability in state si  can 
be shown as bij = bi(om) = P(om | si), and the transition 
probabilities can be represented by aij = P(si | sj). In 
brief, an HMM is formed by three components λ = 
{A (aij), B (bi (om)), π (πi)} (L. R. Rabiner, 1989) as 
A transition matrix, B emission matrix and π initial 

distribution matrix. An observation sequence to train 
HMM is shown as q=q1, q2 ... ,qK and qK is an 
element of observation set {o1,…,om}. 

The learning phase of HMM uses Baum-Welch 
expectation maximization algorithm to find the best 
sets for state transition and emission probability 
matrixes (Luis Javier Rodriguez, Ines Torres, 2003). 
Local maximum likelihood estimate of HMM 
parameters are derived for given observation 
sequences. 

 
Figure 2: Representation of hidden state transitions and 
observation emissions. 

5.1 HMM-based Bot Modeling in the 
Vindinium Game Environment 

All basic bot actions can be used as observable 
states, and combinations of these actions form 
hidden states. The basic actions of bots are as 
follows: 
hit: This action is observed when two bots are 
located in adjacent tiles on the game map. This 
results in reduced energy of the bots by a certain 
amount. 
beer: This action is observed when a bot is adjacent 
to a tavern and chooses to stay on the same tile for a 
turn facing to the tavern. 
mine: This action is observed when a bot is adjacent 
to a gold mine and chooses to stay on the same tile 
for a turn facing to that mine. As the result, the mine 
is acquired but the bot’s energy is reduced by a 
certain amount. 
death: This action is observed when the health of the 
bot is depleted to zero. Only fighting with the other 
AI bots could be the cause of death. 
kill: This action is observed after a fight that results 
in the death of the enemy. 
move: This action is observed when the player goes 
from one tile to an adjacent tile on the walkable 
areas of the map. 

Likewise hidden states are explained below: 
Fight Mode: This hidden mode indicates that the 
bot is in a war situation with the other bots. 
Accordingly, the bot executes one of the actions hit, 
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death or kill with a high probability, and it can be 
said that beer action is carried out rarely. The bots 
that are following a strategy to win the game by 
taking mines of enemy bots through killing them are 
most likely to be in Fight Mode. 
Mine Mode: This hidden mode indicates that the 
bot has a tendency to collect mines one after 
another. Accordingly, the bot executes action mine 
with a high probability and one of the actions beer, 
hit, kill or death with lower probabilities. The bots 
that are following a strategy to win the game by 
holding as many mines as possible are most likely to 
be in Mine Mode. 
Survive Mode: This hidden mode indicates that 
survival and keeping the possessed mines safe are 
considered at the highest priority to win the game by 
the bot. Accordingly, the bot executes action beer 
with a high probability and one of the actions mine, 
hit, kill or death with lower probabilities. 

Move action is considered as a means to perform 
other actions in the game. For that reason, it is 
omitted from the formation of the observation 
history. The relationships between hidden and 
observable states (“B” emission matrix) are initially 
given as a matrix shown in Table 1. To construct 
HMM, “A” state transition and “P” initial matrix 
created with equal values. During training, the 
values of this matrix are evolved to learn a 
corresponding profile. 

Table 1: “B” emission matrix explaining the relations 
between observations and modes. 

% Hit Beer Mine Death Kill 
Fight 65 15 0 10 10 
Mine 5 20 70 2,5 2,5 
Survive 15 50 20 7,5 7,5 

Another approach in this study is constructing an 
HMM by assigning a hidden state (such as HM-1, 
HM-2, HM-3, HM-4 and HM-5) for each observable 
state and assigning nearly probability 1 to the 
relation in the emission matrix as shown in Table 2. 
The values in this matrix are rearranged by the 
training process according to emission distribution 
probabilities and observation sequences acquired 
from the game data. 
The purpose of HMM-based player profiling is to 
determine the relationship between actions and 
hidden states as behaviour modes in bots action 
sequences. By this way, a well trained HMM is used 
to recognize bots from their strategies, and 
classification of them is also possible.

Table 2: Alternative “B” emission matrix. Observations 
are shown in columns and the hidden states are in rows. 

Hidden 
Mode 

Hit 
% 

Beer 
% 

Mine 
% 

Death 
% 

Kill 
% 

HM-1 100 0 0 0 0 
HM-2 0 100 0 0 0 
HM-3 0 0 100 0 0 
HM-4 0 0 0 100 0 
HM-5 0 0 0 0 100 

5.2 Selection of Training and Test 
Matches 

AI bots are able to compete in various maps with 
different sizes and different mine counts. The effect 
of these parameters on the behavior of the players is 
very high. For example, bots face each other and 
fight very often in small sized game maps in 
contrary, in large maps their meeting probabilities 
decrease. The total mine count of the map also 
effects the strategies of bots. Games are selected by 
taking these parameters into account. 

5.3 HMM Training Process and the 
Sliding Window Method 

Observation sequence of a selected game belonging 
to a bot is given to the initial HMM model and a 
hidden state sequence is obtained from the model. 
HMM matrices are updated using this sequence via 
the Baum-Welch algorithm. For each training game, 
a new HMM is constructed described above. To 
finish a training step, the average of HMM matrices 
are calculated, and this model is used to set initial 
values for the next training step. This process is 
illustrated in Figure 3. 

In this work, we propose to use a sliding window 
approach for the consideration of actions of the 
player.  Instead of taking individual actions as 
observations, action segments are considered as 
observation data. The sliding window method is 
illustrated in Figure 4 allows us to take each single 
observation into account considering previous and 
subsequent actions as episodes of game parts. 
Proposed method has used to visualise HMM results 
for grouping of bots and process monitoring which 
explained in detail in section 6. 
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Figure 3: HMM training process. 

 
Figure 4: The observation sequence of a game is divided 
into windows with size 3. Each observation is taken into 
account with one previous and one subsequent action. 

6 EXPERIMENTS 

The HMM-based profiling method is evaluated in 
three different experiment sets. In these experiments, 
recognition of a certain bot, bot clustering and game 
strategy recognition performances are measured. 

6.1 Experiment 1: Recognition of Bots 

For classification of bots, 12 bots are selected as 
training data with over 100 games satisfying the 
completed game criteria. Final HMM’s are created 
for each bot as shown in Figure 3 above. 

Then, observation sequence of a test match is 
given to the trained HMMs of selected bots, and log 
probabilities are calculated via the Viterbi algorithm. 
The test match is considered to belong to the bot 
associated with the HMM model that generates the 
highest probability value. For all the test matches 
belonging to a bot, the log probability results are 
obtained. If the HMM belonging to the test bot gives 
the maximum log probability, it is counted as a true 
match. By this way, the percentages of recognition 
accuracy are calculated. 

6.1.1 Selection of Test Groups 

Recognition performance of each trained HMM for 
each bot is tested in groups. Group sizes are selected 
as 2, 4, 8 and 12. For each group size, all possible 
combinations of bots are constructed. All test 
matches of a bot in a group are given to the HMM 

models of other bots in the group, and recognition 
percentages are calculated. After calculation of 
results is completed for each group size, recognition 
performances are set as the average of recognition 
percentages for each bot. 

6.1.2 Results 

Recognition results for groups with sizes 2, 4, 8 and 
12 are given in Table 3 are obtained by using the 
emission matrix values for HMM shown in Table 1. 
Emission matrix values given in Table 2 produce the 
results given in Table 4. Bots named “miner”, 
“fighter” and “mybot” are programmed for test 
purposes in the process of this study. The rest of the 
9 bots are selected using the criteria described 
above. “miner” bot tries to maximize its gold count 
by taking mines killing guardian goblins. “fighter” 
bot often kills other bots and possesses its mines by 
the rules to win the game. “mybot” tries to be alive 
mostly and takes mines or fights with other bots 
according to its situation. The main reason for high 
recognition rates of these bots is that their strategies 
are so simple, definitive and fixed.  

Considering the results shown in Table 4, it was 
observed that recognition performances are 
increased compared to Table 3. It can be said that 
the main reason of this improvement is the 
increasing number of hidden states. Here we 
assumed that there is a hidden state for each 
observable state for HMM and have one to one 
relation. Emission matrix values are given 
accordingly as 99,99%. These values are adjusted in 
the process of training of HMM considering 
observation sequences of training games. 
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Table 3: Recognition results for groups sizes of 2, 4, 8 and 
12. The emission matrix whose values are given in Table 1 
is used. 

 

Table 4: Recognition results for groups sizes of 2, 4, 8 and 
12. The emission matrix whose values are given in Table 2 
is used. 

 

According to results shown in Table 3, 
recognition performance of our model evaluated as 
85,04% which is 1,7 times better than random 
recognition performance 50% for groups with size 2. 
For groups with size 4, recognition performance 
increases from 25% to 68,36% which is 2,73 times 
better. Likewise, groups with size 8 recognition lift 
factor is 4,12 and for groups with size 12 it is 
calculated as 5,45. Recognition performance and lift 
factors are given in Figure 5 and Figure 6, 
respectively. Figure 7 and Figure 8 show the same 
results obtained by using performance values taken 
from Table 4. 

6.2 Experiment 2: Grouping of Bots 

Even though AI bots in the Vindinium game are 
written by different people, they may have very 
similar strategies. Considering the responses as log 
probability values obtained from HMM models for a 
given observation sequence, it could be shown that 
for some bots the values are very close to each other. 
If the games belonging to a bot are examined 
through the eyes of an expert, it could be said that 
certain bots adopted nearly same strategies. 

 
Figure 5: HMM and random recognition performance 
results for groups with sizes 2,4,8 and 12 according to 
results shown in Table 3. 

 
Figure 6: Lift factor values against random recognition 
performance according to results shown in Table 3. 

 
Figure 7: HMM and random recognition performance 
results for groups with sizes 2,4,8 and 12 according to 
results shown in Table 4. 

 
Figure 8: Lift factor values against random recognition 
performance according to results shown in Table 4. 
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For a detailed examination of strategies of these 
bots through the game, observation sequences 
belonging to their specific matches are divided into 
certain sized windows. Window sequences are given 
the HMMs of bots, and log probabilities are 
calculated for each of them. 

In order to show that the window model could be 
used to detect similarities between bots with similar 
strategies for a given test match, four bots are 
selected two of each have similar gameplay 
strategies. 

Log probability results obtained from a test 
match using HMM’s of the selected bots for each 
window are given in Figure 9 and Figure 10. In this 
test case, the window size is selected as 10. x-axis 
shows the sequence number of windows, and y-axis 
shows the log probability values calculated using 
HMM’s of each selected bot for given test match. As 
it can be seen in the  figures,  two  of  the  bots  have  

 
Figure 9: Observation sequence of the test game 
(Id:uxuykwpv) is given to the HMMs of 4 bots and 
window log probability results are shown in y-axis (This 
game can be viewed at: http://vindinium.org/uxuykwpv). 

 
Figure 10: Observation sequence of the test game (Id: 
hiwqdgec) is given to the HMMs of 4 bots and window 
log probability results are shown in y axis (This game can 
be viewed at: http://vindinium.org/hiwqdgec). 

very similar log probability responses for each 
window. Human observers also state that these 
players have similar strategies analyzing the 
previous games of the selected bots. 

6.3 Experiment 3: Process Monitoring 

A single AI bot may follow different strategies in 
different games. It can even change its strategy 
during the same game in different time frames 
depending on the situation. To observe these 
strategy changes, the trained HMM of selected bots 
can be used in conjunction with the proposed 
window model. In Vindinium, three basic strategies 
can be adopted to win the game based on our 
experiences. The first one is to kill other bots and 
acquire their mines to collect more gold which we 
label as Fighter, the second strategy is to get as 
many as mines by killing goblin guardians and have 
the highest mine count through the game that could 
be labeled as Miner, the third one is trying not to die 
and hold a certain number of mines which could be 
characterized as Survivor. 

 
Figure 11: Strategy changes of a selected bot for 10 
random games are shown with different colors. X-axis 
shows the window sequence numbers. Y-axis shows game 
ids. Strategies are colored as it is shown in the legend. 

To represent the strategies described above, we 
generated the observation sequences for each of 
them with a human observer’s (expert) opinion 
considering the possible actions and action 
sequences that could arise by the bots following 
these strategies. Using these observation sequences, 
HMMs are generated for each strategy. Using these 
HMMs that represent our three basic strategies, for 
each window of action sequence of a test match 
belonging to a bot we could assign a strategy for a 
specific window. 
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Figure 12: Strategy change of the selected bot for 10 ran-
dom games is shown. X-axis shows the window sequence 
numbers. Y-axis shows game ids. Strategies are colored as 
shown in the legend. Games can be viewed at the 
corresponding http://vindinium.org/<game_id> link. 

7 CONCLUSIONS 

We have presented our HMM-based player profiling 
method supported with the sliding window 
approach. Hidden state representation which 
associated one to one observable state mapping for 
initial HMM emission matrix is another 
improvement over standard HMM. We selected the 
Vindinium game environment as our testbed. To the 
best of our knowledge, this is the first time 
Vindinium AI contest data are considered for bot 
player modeling. The method has been evaluated for 
three different performance criteria: recognition, 
grouping and strategy monitoring of AI bots. The 
results indicate that the method can identify bots 
with average success rate of 90,04% for groups with 
size 2, 76,67% for groups with size 4, 61,74% for 
groups with size 8 and 53,75% for groups with size 
12. The method could also be used for grouping of 
the bots and it can determine strategy changes of 
bots during a game. This work forms a promising 
basis for our future studies on human player 
profiling. The method with its generic representation 
could be easily implemented for other games. 
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