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Abstract: While many advances towards effective anomaly detection techniques targeting specific applications have been
made in recent years, little work has been done to develop application-agnostic approaches to the subject. In
this article, we present such an approach, in which anomaly detection methods are treated as formal, structured
objects. We consider a general class of methods, with an emphasis on methods that utilize structural properties
of the data they operate on. For this class of methods, we develop a decomposition intosub-methods—simple,
restricted objects, which may be reasoned about independently and combined to form methods. As we show,
this formalism enables the construction of software that facilitates formulating, implementing, evaluating, as
well as algorithmically finding and calibrating anomaly detection methods.

1 INTRODUCTION

Anomaly detection tasks are encountered in many
areas of science, technology, and business, and au-
tomated anomaly detection methods are indispens-
able in many applications, such as intrusion detec-
tion and fraud detection (Lazarevic et al., 2003; Phua
et al., 2010). As manual analysis of the ever growing
datasets encountered in many application domains be-
comes increasingly difficult, the need for such meth-
ods can be expected to grow.

For this need to be effectively met, approaches
that enable researchers and organizations to effec-
tively develop and implement appropriate methods
are required.

While there are excellent tools available for cer-
tain applications (Twitter, 2015; Etsy, 2015), there is
a notable lack of application-agnostic tools and ap-
proaches.

Considering the disparate nature of data encoun-
tered in applications, and the often subjective notion
of what constitutes an anomaly, it seems unlikely that
specific methods that work well across a majority of
applications can be found. A more viable approach
might be to instead focus on developing application-
agnostic tools that facilitate formulating, implement-
ing, evaluating, or calibrating methods.

We believe that taking a formal, high-level ap-
proach to the subject—where the focus is on what can
be said about anomaly detection methodsin general,
rather than in the context of any specific application
or task—is a vital step towards this goal.

The aim of this article is to present a particular
such approach—where methods are treated as formal
objects, which map datasets tosolutions(i.e. a col-
lection of anomaly scores, or a set of ‘most anoma-
lous’ items), and which may be decomposed into
sub-methodsthat may in turn be recombined into
methods—and to demonstrate the utility of this ap-
proach in reaching the goals outlined above.

We target a general class of methods—with a fo-
cus on methods that utilize the structure of the dataset
to findcontextualor collectiveanomalies—for which
we develop a formalism for decomposing methods
into a collection of such sub-methods, amenable to
being shared between applications involving similar
types of data.

This enables an approach to developing methods
where the principal consideration is the collection of
applicable sub-methods (as constrained by the tar-
geted task). These sub-methods may then be com-
bined to form methods (either manually or algorith-
mically) until one that accurately solves the task at
hand is found.

To demonstrate the utility of this approach, we ap-
ply it to a number of tasks involving sequences, as
well as to finding and calibrating methods for such
tasks (given a collection of sub-methods and labeled
testing data).

2 RELATED WORK

Throughout the years, many anomaly detection
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methods and applications has been studied. Plenty of
surveys and books which discuss these in detail have
been published (Hodge and Austin, 2004; Agyemang
et al., 2006; Chandola et al., 2009; Fu, 2011).

To our knowledge, the formal, method-centric ap-
proach we take to anomaly detection is unique. How-
ever, there have been a few attempts to provide a gen-
eral treatment of anomaly detection in relation to spe-
cific applications. For instance, in (Chandola, 2009),
a high-level, formal discussion of common anomaly
detection problems for sequences is presented. We
build on this approach, taking it further and general-
izing it to other types of tasks and data.

Our discussion of anomaly detection in sequences
shows how diverse applications and methods related
to sequences can be reconciled (Chandola et al., 2012;
Chandola, 2009; Fu, 2011) and treated coherently.

We discuss a few specific tasks, including the de-
tection ofpoint anomalies(individual anomalous ele-
ments, also referred to asoutliers) (Fox, 1972; Abra-
ham and Chuang, 1989; Abraham and Box, 1979;
Galeano et al., 2006; Tsay et al., 2000),novelties
(previously unseen elements) (Markou and Singh,
2003a; Markou and Singh, 2003b; Ma and Perkins,
2003), elements anomalous with regard to nearby el-
ements (Basu and Meckesheimer, 2007) andanoma-
lous subsequences(Keogh et al., 2005; Keogh et al.,
2007; Fu et al., 2006).

3 GENERALITY

When attempting to provide a formal basis for a con-
cept as broad asanomaly detection methods, it is vital
that care is taken to ensure that the breadth of the con-
cept is captured by the resulting formalism.

In a widely cited survey of the subject, Chandola
et al. (Chandola et al., 2009) discuss a few key aspects
of anomaly detection tasks: the nature of the data and
the types of anomalies involved, the expected solution
format, and the type of supervision employed. Our
aim is to provide a formalism which captures or gen-
eralizes these three aspects.

First, we formulate our formalism in a data- and
solution-agnostic manner, so its applicability is inde-
pendent of the nature of data and solutions.

Second, we target a general type of anomalies.
Most methods are focused on detectingpoint anoma-
lies—individual elements anomalous compared to the
rest of the rest of the data. Such methods are appropri-
ate for unstructured data (i.e. data in which individual
elements are not related). However, the datasets en-
countered in applications (e.g. sequences, graphs, and
spatial data) often have structure that can be exploited

to better detect anomalies.
Chandola et al. discuss two other categories of

anomalies:contextual anomalies—elements anoma-
lous compared to acontext(some subset of the data;
typically ‘nearby’ elements)—andcollective anoma-
lies—collections of elements anomalous compared to
the rest of the data. These can both be seen as gener-
alizations of the concept of point anomalies.

Our formalism targets a fourth such category:
collective contextual anomalies—collections of ele-
ments anomalous compared to a context—which nat-
urally generalizes the other three1.

An illustration of these four anomaly types is
shown in Figure 1.

Figure 1: Examples of apoint anomaly(top), acontextual
anomaly(above center), acollective anomaly(below cen-
ter), and acollective contextual anomaly(bottom) in uni-
variate real-valued sequences. Anomalies are shown in light
red; appropriate contexts in black.

Third, Chandola et al. classify methods as un-
supervised, semi-supervised, or supervised based on
whether they incorporate zero, one, or two classes of
labeled training data. We formalize methods as maps
from datasets to solutions; an approach naturally
suited to expressing unsupervised methods. However,
semi-supervised and supervised methods may also be
expressed by replacing the input dataset with the dis-
joint union of the evaluation data and one or two sets
of training data.

4 SUB-METHODS

Formally, an anomaly detection method may be
treated as a mappingm : D → S, that associates with
each potential input datasetd ∈ D a solutions∈ S,
where:

• D is an application-dependent set of well-formed
datasets (e.g. all real-valued sequences, or all po-
tential sets of users of a social network). We will

1Contextual and point anomalies correspond to single-
element collections; for collective and point anomalies, the
context is the entire dataset.
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Figure 2: A dataset (center right) inD = P (C×B) = P (N2×R), constructed by linearly combining periodic data (far left)
and data containing an anomaly (center left). We use the pattern on the far right to indicate contextual data.

assume that any datasetd is a set of items in some
application-specific setX, so2 D ⊆ P (X).

• S is a corresponding application-dependent set
of potential solutions (e.g. all sequences of real-
valued anomaly scores, or all potential sets of
anomalous clusters of users in a social network).

For any given application, the setM = D → Scor-
responds to all potential methods.

When designing a method targeting point anoma-
lies, there are two aspects to consider: whatanomaly
measureshould be used to compare each item to the
rest of the data, and how the results of these compar-
isons should be aggregated to form a solution.

Targeting collective anomalies means an addi-
tional aspect must be considered: how the set ofcan-
didate anomaliesshould be selected.

When targeting contextual anomalies, one must
instead consider how a context should be associated
with each candidate anomaly.

Since our formalism targets collective contextual
anomalies, it must capture all four of these aspects.

This may be achieved by decomposing anym∈ M
into four sub-methods, each responsible for one as-
pect. We will encode these as functions:

• The selection of candidate anomalies may be en-
coded as a function

α : D → P (D),

which maps any dataset to a set of candidate
anomalies3 (subsets of that data; i.e.∀x,∀y ∈
f (x) : y ⊂ x). For methods targeting point and
contextual anomalies,α produces singleton sets;
i.e.α(d) = {{x}|x∈ d}.

• The selection of contexts may be encoded as a
function

β : D×D → D,

which maps any dataset and one of its candi-
date anomalies to the context of that candidate

2We denote the power set of a setX by P (X).
3Here, and in the remainder of this section, we assume

that information about the ‘original’ position of data items
in the dataset is implicitly preserved when the data is rear-
ranged or transformed. This issue is resolved in Section 5
through the requirement that the contextual data of each
item is unique.

anomaly (a subset of the dataset, disjoint with the
candidate anomaly; i.e.∀x,∀y⊂ x : β(x,y)⊆ x\y).
For methods targeting point and collective anoma-
lies,β(x,y) = x\ y.

• The comparison of candidate anomalies and con-
texts may be encoded as a function

γ : D×D → A,

which assigns a dissimilarity scorea ∈ A (where
A is some method-specific set) to any candidate
anomaly-context pair.

• The aggregation of anomaly scores may be en-
coded as a function

δ : P (D×A)→ S,

which maps any collection of candidate anomaly-
dissimilarity score pairs to a solution.

Any tuple (α,β,γ,δ) (for givenS, D, andA) may
be combined4 to form anm∈M. Conversely, anym∈
M may be defined5 as a tuplem= (D,S,A,α,β,γ,δ).

For any given application, appropriate methods
may be designed by reasoning about which choices
of these sub-methods are applicable.

As an illustration of this approach, consider an
application involving grids of real-valued data con-
taining collective contextual anomalies (regions of the
grid, anomalous with regard to their surroundings), as
illustrated in Figure 2. Assume that the desired so-
lution format is a grid of real-valued anomaly scores;
i.e. S= D. What choices of sub-methods might be
suitable?

First, α should produce candidate anomalies
roughly on the scale of the anomalies we wish to
capture. For instance, anα that produces non-
overlapping square regions of size 6-by-6 may be em-
ployed:

D ∋ α7−→ { , , . . .} ∈ P (D)

4Specifically by—for d ∈ D—letting X = α(d),
Y = {(x,β(x,d)) | x∈ X}, Z= {(x,γ(x,y)) | (x,y) ∈Y}, and
m(d) = δ(Z).

5Note that this implies no loss of generality; any
m : D → S may be encoded by e.g. lettingA = S, α(d) =
{d}, γ(d,y) = m(d), andδ({s}) = s.

A Formal Approach to Anomaly Detection

319



Second,β should produce as context some appro-
priately sized neighborhoodof the candidate anomaly,
such as the union of all adjacent such square regions:

D×D ∋
(

,

)
β7−→ ∈ D,

(
,

)
β7−→ , . . .

Third, γ may be selected to compute the mean
value of the items in the candidate anomaly, and the
mean values in each 6-by-6 region of the context, and
produce as anomaly score the mean absolute differ-
ence between the former and the latter (this means
thatA= R)6:

D×D∋
(

,

)
γ7−→ ∈ A,

(
,

)
γ7−→ , . . .

Finally,δ should be selected to associate with each
element the anomaly score of the candidate anomaly
to which it belongs:

P (D×A) ∋ {( , ), . . .} δ7−→ ∈ S

It would be an easy task to construct software that
takes implementations ofα, β, γ, andδ and combines
them into a corresponding method implementation.
Such software might be useful in constructing, cali-
brating, or evaluating methods.

However, its utility would be limited by the fact
that α, β, γ, andδ are all formulated in terms ofD,
and would thus have to be implemented anew for each
new application.

If the sub-methods could be defined such that
implementations could be shared between applica-
tions with similar (rather than identical) data, soft-
ware could then be coupled with a library of imple-
mented sub-methods, drastically increasing its utility.

5 CONTEXTUAL AND
BEHAVIORAL ATTRIBUTES

To accomplish this, we may instead define our sub-
methods to operate on eitherbehavioralor contextual
attributes of the data.

6We illustrate values inR as colored squares. To im-
prove the clarity of the presentation, we normalize anomaly
scores so that the most and least anomalous values of our
example are colored red and green, respectively.

By contextual attributes, we mean attributes
which identify and relate individual items of a dataset,
such as the position in spatial data, the index in se-
quential data, or the vertex in graph data. These may
be thought of as ‘tags’ for each item in a dataset,
and must be unique.Behavioral attributes, are any
other attributes. These are ideally relevant only to the
anomaly measure.

Accordingly, we will henceforth assume thatD
may be decomposed asD = P (C×B), whereC and
B are (application-specific) sets of contextual and be-
havioral data, respectively. In our example applica-
tion, these may be represented asC = N2 (capturing
the two-dimensional nature of the data) andB= R.

The sub-methods may then be replaced as follows:

• Behavioral data should be irrelevant when select-
ing candidate anomalies, soα may be replaced by

α′ : P (C)→ P (P (C)),

which operates on contextual data rather than on
the full dataset.

• Similarly, β may be replaced by

β′ : P (C)×P (C)→ P (C).

• When targeting point or contextual anomalies,γ
may be replaced with a function

γ′ : B×P (B)→ A,

that maps behavioral attributes of the candidate
item and the context to an anomaly score.
When targeting collective or collective contextual
anomalies, however, both contextual and behav-
ioral aspects are likely to be relevant when com-
puting the anomaly measure. Thus, replacingγ
with sub-methods operating on eitherC or B is
not feasible.
A better approach would be to breakγ apart into
smaller sub-methods, isolating the relation of con-
textual and behavioural considerations to a single,
constrained sub-method.
Many anomaly measures compare one feature to
a set of similar features, and are not formulated to
operate on contextual data. For these,γ may be
seen as encoding two responsibilities: extracting
features from candidate anomalies and contexts,
and comparing these to form anomaly scores.
These responsibilities may be encoded as (where
F is some method-specific set of features)

ε : D×D→ F ×P (F), and

ζ : F ×P (F)→ A.

Note that the anomaly measureζ is not coupled to
eitherC or B, so it is independent ofD (as long as
the features it operated on can be extracted).
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In turn, ε may be seen as encoding two respon-
sibilities: breaking the context up into a set of
items, and extracting a single feature from each
such item.
These responsibilities may be encoded separately
as

η : P (C)→ P (P (C))

(note the similarity toα′), and

θ : D → F.

• Behavioral data should be irrelevant when aggre-
gating anomaly scores, soδ may be replaced by

δ′ : P (P (C)×A)→ S.

If S is known,δ′ may in turn be replaced further.
Reasonably, anySshould involve assigning labels
or scores either to individual items or to subsets
of the data, so we may assume thatS= P (G×L),
where eitherG = C or G = P (C), andL is some
set of labels.
WhenS= P (C×L), and all candidate candidate
anomalies are singleton sets (i.e. when point or
contextual anomalies are targeted)δ′ may be set
to

δ′({({c1},a1), . . .}) = {(c1, ι(a1)), . . .}
for some functionι : A→ L.
Typically, eitherA= L = R, in which caseι may
be set as the identity function, orA= R andL =
{0,1}, in which caseι may be set as a threshold
function.
Analogously, whenS= P (P (C)×L), δ′ may be
set to

δ′({(C1,a1), . . .}) = {(C1, ι(a1)), . . .}.

Finally, whenS= P (C× L) and there are non-
singleton candidate anomalies,δ′ may be set to

δ′({(C1,a1), . . .}) =
{
(c j ,κ(A j)) | c j ∈

⋃
Ci

}
,

whereA j = {ak | c j ∈Ck}, i.e. for each data item,
the anomaly scores for all candidate anomalies
to which it belongs are aggregated through some
functionκ : P (A)→ L.

The above sub-methods allow for decompos-
ing methods to various degrees; i.e. a method
may be specified as(D,S,A,α′,β′,γ′,δ′), or
(D,S,F,A,α′,β′,η,θ,ζ,δ′), et cetera. Crucially,
it is an easy task to write software that constructs a
corresponding method for any such combination7,

7In the interest of saving space, we elide a precise for-
mulation of how the sub-methods would be composed.

and by extension, software that can algorithmically
find appropriate methods given a set of potentially
applicable sub-methods.

For a given choice ofC, the number of interest-
ing sub-methods can be rather limited (as we will see
in Section 8). Thus, implementations of a few sub-
methods may be used to handle a wide range of tasks.

As an illustration of the sub-methods proposed
above, we may consider how they may be used to re-
place theα, β, γ, andδ we applied to our example
data. To indicate contextual data, we will use the pat-
tern to the far right in Figure 2.

Our choice ofα corresponds to an analogousα′:

P (C) ∋ α′
7−−→ { , , . . .} ∈ P (P (C))

The same goes for our choice ofβ:

P (C)2 ∋
(

,

)
β′7−−→ ∈ P (C)

(
,

)
β′7−−→ , . . .

Our choice ofγ corresponds to anε that produces
as features the mean value of each 6-by-6 region (so
F = R), and aζ that computes the mean absolute dif-
ference between the feature extracted from the candi-
date anomaly and the features extracted from the con-
text:

D2 ∋
(

,

)
ε7−→ ( ,{ , , })∈F×P (F)

(
,

)
ε7−→ ( ,{ , , . . .}), . . .

F ×P (F) ∋ ( ,{ , , }) ζ7−→ ∈ A,

( ,{ , , . . .}) ζ7−→ , . . .

In turn, this ε corresponds to anη that extracts
disjoint such square regions, and aθ that computes
the mean value of its inputs:

P (C) ∋ η7−→ { , , } ∈ P (P (C)),

η7−→ { , , , . . .}, . . .

D ∋ θ7−→ ∈ F,
θ7−→ , . . .

Our δ may be replaced with an analogousδ′:

P (P (C)×A) ∋ {( , ), . . .} δ′7−−→ ∈ S
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Finally, since the solution format isS= P (C×L)
for L=A=R, and we are dealing with collective con-
textual anomalies, we may utilizeκ. The candidate
anomalies are disjoint, soκ should produce the single
elements of the sets it receives:

P (A) ∋ { } κ7−→ ∈ L, { } κ7−→ , . . .

6 PARAMETRIC SUB-METHODS

Assuming thatD = P (C×B) andS= P (G×L), the
construction of am∈ M = D → S from e.g. someα′,
β′, γ′, andδ′ may be seen as the application of a func-
tion

f (α′,β′,γ′,δ′) : A′
C×B′

C×Γ′
C,B,A×∆′

C,A,G,L → M,

whereA′
C = P (C)→ P (P (C)), et cetera.

Likewise, the construction of e.g. aγ′ from some
ε andζ may be seen as the application of a function

g(ε,ζ) : EC,B,F ×ZF,A → Γ′
C,B,A.

Taking this approach one step further, we may
consider parametric sub-methods—functions that
take some tuple of parameters and produce a sub-
method.

For instance, our choice of anα′ that produces re-
gions of size 6-by-6 may be seen as a special case of
a parametric sub-method

α′
rect(w,h) : N×N→ (P (N2)→ P (P (N2))) = A′

N2

that produces regions of widthw and heighth.
As we will see in Sections 8 and 9, parametric sub-

methods naturally arise in applications, and are very
helpful when formulating methods as well as when
heuristically searching for appropriate methods.

7 HIGHER ORDER METHODS

Similarly, we may considerhigher order methods,
which map methods to methods.

For instance, consider the function

τ : TC′,B′,C,B×MC,B,G,L ×TG,L,G′,L′ → MC′,B′,G′,L′ ,

defined by
τ(ti ,m, to) = to ◦m◦ ti,

which takes aninput transform

ti ∈ TC′,B′,C,B = P (C′×B′)→ P (C×B),

for someC′, B′, a method

m∈ MC,B,G,L = P (C×B)→ P (G×L),

and anoutput transform

to ∈ TG,L,G′ ,L′ = P (G×L)→ P (G′×L′),

for someG′, L′, and produces a method

m′ ∈ P (C′×B′)→ P (G′×L′).

Many methods found in the literature involve a
pre-analysis transformation of the data into some for-
mat more amenable to analysis, either through dimen-
sionality reduction (Ding et al., 2008) or a change of
data representation (i.e. ofC or B) (Lin et al., 2007).
Such methods may be accommodated through the use
of τ together with appropriateti andto.

For instance, dimensionality reducing transforma-
tions may be applied to our example method to ob-
tain equivalent methods that operate on a lower di-
mensionality:

Here,ti , t ′i , to, t
′
o ∈ TZ2,R,Z2,R and

m= τ(ti ,m′, to) = τ(ti ,τ(t ′i ,m
′′, t ′o), to).

Another interesting higher order method, which
may be used to combine methods into ensembles, is
µ : P (MC,B,G,L)×UG,L → MC,B,G,L, given by

µ(m,u)(d) = u({mi(d) | mi ∈ m}),
whereu∈UG,L = P (P (G×L))→ P (G×L) is some
function that combines solutions.

Crucially, ti , to andu may be used analogously to
sub-methods to construct methods, either manually or
algorithmically.

8 AN APPLICATION TO
SEQUENCES

Anomaly detection tasks involving sequences8 are
commonly encountered in applications, and have

8We here consider onlyregular sequences, as opposed
to irregular time series, for whichC=R, and which may be
considered a type of one-dimensional spatial data.
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been extensively studied. For sequences, we may let
C= N.

We will now illustrate how our approach may be
used to formulate methods through an application to
sequences. In the interest of saving space, we will
restrict our attention toS= P (G× L) = P (N×R)
(solutions which consist of real-valued per-element
anomaly scores).

First, consider the following real-valued sequence
(in D = P (N×R)):

This sequence consists of a sinusoid with added
noise, and two abnormalities: two extrema (in its lat-
ter half) and a trend of stray elements (beginning near
its middle). Either abnormality may be considered an
anomaly with regard to the (hypothetical) underlying
application, so detecting either or both might be valu-
able.

To detect the extrema, methods targeting point
anomalies may be employed. As previously dis-
cussed, when point anomalies are targeted, andG =
C, it suffices to specifyγ′ (an anomaly measure) and
ι (a method of aggregating anomaly scores). We will
restrict our consideration toA= L =R, and may thus
let ι(x) = x.

A common choice of anomaly measures arek-
nearest neighbor-based measures, which for any given
candidate anomaly compute the mean distance to itsk
nearest elements (for some distance measured). We
may capture such measures through a parametric sub-
method

γ′kNN(k,d) : N× (R×R→ R)→ (R×P (R)→R),

where γ′kNN(k,d)(x,y) produces the mean of thek
smallest values in{d(x,yi) | yi ∈ y}.

Applying γ′kNN(3,dE) (for dE(x,y) = |x− y|) to
our sequence gives the following result (the anomaly
score is indicated through color and point size; large,
bright points indicate anomalous items):

As expected, it captures the extrema but not the
trend of stray elements. The elements of this trend
are contextual anomalies with regard to alocal con-
text, which consists of all elements within some dis-
tancem of a candidate anomaly (with respect to the
sequence ordering). This may be captured through an
appropriateβ′:

β′
local(m) ∈ Z→ (P (N)×P (N)→ P (N)).

Figure 3: Left: results obtained by applyingγ′kNN(3,dDTW)
to the UCR power usage dataset (Chen et al., 2014). Right:
results obtained by applyingγ′kNN(3,dDTW) andβ′

novelty to
a variant of the same data, where at a certain point, an ar-
tificial anomaly has been superimposed on subsequent se-
quences.

Applying β′
local(10) together withγ′kNN(3,dE) to

the sequence gives the following result:

Capturing the entirety of this trend might not be
desirable; in some applications,novelties—such as
the onset of such trends—are more interesting.

Novelties can be captured through anovelty con-
text

β′
novelty: P (N)×P (N)→ P (N),

whereβ′
novelty(d,c) produces all elements ind that

come before the elements ofc (with respect to the se-
quence ordering).

Replacingβ′
local(10)with β′

noveltygives the follow-
ing result:

It should be noted thatβ′
local andβ′

novelty are both
special cases of a more general parametricβ′

asym(b,a),
which produces as context theb andaelements before
and after the candidate anomaly.

The sub-methods illustrated above may just as
well be applied to sequences of other types of ele-
ments. For instance, consider an application involv-
ing sequences of real-valued vectors of some fixed
length (i.e.D = P (N×Rn)), as illustrated in Fig-
ure 3. Here, point and contextual anomalies may be
captured through e.g.γ′kNN(3,eDTW), where

eDTW : Rn×Rn → R
is thedynamic time warpdistance (Berndt and Clif-
ford, 1994).

Now consider the following three sequences:
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Here, the top sequence contains a collective
anomaly (at its center), the middle sequence con-
tains a (local) contextual collective anomaly (also at
its center), and the bottom sequence contains a few
change points (which may be considered contextual
collective anomalies with respect to a novelty con-
text).

For these anomalies to be detectable, the candi-
date anomalies under consideration should be subse-
quences of the original sequence. To this end, we may
employ an appropriateα′, e.g.

α′
win(w,s) : N×N→ (P (N)→ P (P (N)))

where α′
win(w,s) selects everysth subsequence of

width w:

α′
win(w,s)({c1, . . .}) = {{c1, . . . ,cw},{c1+s, . . .} . . .}.

To form an appropriate anomaly measure, we may
employ

ηwin(w,s) : N×N→ (P (N)→ P (P (N))),
defined identically toα′

win, together with

θvec(n) : N→ (P (N×R)→ Rn)

defined by θvec(n)({(i,xi), . . .}) = [xi , . . . ,xi+n−1],
and

ζkNN(k,d) :N×(Rn×Rn→R)→ (Rn×P (Rn)→R)
defined analogously withγ′kNN(k,d).

Finally, sinceS= P (N×R), someκ must be em-
ployed, e.g.κmean(x) = ∑xi/|x|.

Applying e.g.α′
win(40,5), ηwin(40,5), θvec(40),

ζkNN(3,eDTW), andκmean to our first sequence gives
the following result:

Combining the above sub-method choices with
β′

local(75) results in a method that captures the
anomaly in the middle sequence:

Finally, usingβ′
noveltygives a method that captures

novel change points in the last sequence:

While there are countless potentially interesting
anomaly measures (i.e.γ′ or ζ) to apply to sequences,
the choices of other sub-methods are rather limited.

For methods that involves contiguous sub-
sequences and contexts (likely a vast majority of in-
teresting methods) it seems that the only reasonable

approach would be to employα′
win, β′

asym and ηwin
(when applicable).

While θvec handles behavioral data, and is thus
technically dependent onB, its results are not affected
by the individual behavioral values, and it could be
extracted into a more portable sub-method, indepen-
dent ofC. This would likely be involved in most in-
teresting methods involving sequences.

Finally, there are only a few interesting choices of
κ (e.g. it could produce the mean, median, maximum,
minimum of its input values).

Thus, these sub-methods may be considered to
fairly exhaustively cover anomaly detection tasks in
sequences (with the exemption ofγ′/ζ, transforms,
and ensemble methods). It should further be noted
that sinceγ′ andζ are formulated independently ofC,
the same implementation ofγ′ or η may be used for
sequences, grids, graphs, et cetera, as long as an ap-
propriateθ is provided.

9 OPTIMIZATION

The application-agnostic and modular nature of our
formalism enables the construction of software that
heuristically searches for appropriate methods. Given
any collection of sub-method implementations, to-
gether with some means of assessing its associated
methods—e.g. a functione : M → R—we may find
optimal methods by iteratively constructing and eval-
uating sub-method combinations.

One way to construct such ane is to employ a set
T ⊂D×Sof labeled training data, together with some
dissimilarity measure for solutionse′ : S×S→ R, to
form

e(m) = ∑
(di ,si)∈T

e′(m(di),si).

This function provides us with a convenient means
of evaluating methods. Software that implementse
can be used to easily evaluate and compare methods
(especially if bundled with a collection of sub-method
implementations) for novel applications.

Furthermore, it gives rise to a supervised,
application-agnostic optimization problem—
minimizing e given a set of (potentially parametric)
sub-methods. If some means of efficiently solving
this problem could be found, the task of finding
appropriate methods for any given application could
be reduced to selecting appropriate sets of candidate
sub-methods and training data.

To illustrate this approach, we implemented a
rudimentary solver for the optimization problem.
This solver takes a collection of parametric sub-
methods (with an ordered or unordered set of candi-
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Figure 4: A few sample sequences from the evaluation
data, with anomaly scores taken from a method with a
low evaluation error (6.4), corresponding toα′

win(30,10),
β′

local(100), ηwin(30,5), θvec(30), ζkNN(δDTW,1), and
κmean.

Figure 5: Average training vs evaluation error for 50 solver
runs, with 10 training items and 100 and evaluation items.

date values for each parameter) and a setT ⊂ P (C×
[0,1]) of training data. It uses the Euclidean distance
(with a prior rescaling of the anomaly scores to[0,1])
ase′.

The solver employs a naı̈ve, two-phase optimiza-
tion heuristic: In the first phase, the solver evalu-
ates all valid combinations of sub-methods. For each
such combination, it randomly samples the parameter
space (the product of the sets of sub-method param-
eter values) a fixed number of times, and evaluates
each resulting method on the training data.

In the second phase, the solver uses hill climb-
ing to calibrate the sub-method combination that pro-
duced the lowest error in the first phase9.

We applied this solver to a procedurally generated
data set consisting of real-valued sequences with col-
lective contextual anomalies10, as illustrated in Fig-

9Specifically, by starting at the point (out of those sam-
pled) with the smallest error, and iteratively—until a (local)
minimum is found—evaluating all adjacent points (chang-
ing one parameter at a time) and moving to the one with the
lowest error.

10Specifically: 500-element, sinusoidal real-valued se-
quences with an angular frequencyω∈U(1,2) and two dis-
tinct amplitudesa1,a2 (wherea1 = 1, anda2 is U(1.3,1.7)

Figure 6: The training error at each iteration for a set of
solver executions. Each sub-method combination is sam-
pled 20 times before the solver switches to hill climbing.

ure 4.
We used the sub-methods presented in the previ-

ous section11 and a set of 20 randomly sampled train-
ing items, let the solver take 20 random samples of
each valid sub-method combination, and repeated the
experiment 50 times. The resulting methods were
then evaluated on a set of 100 items.

As seen in Figure 5, a large share of the result-
ing methods seem to perform close to optimally. The
solver occasionally gets stuck in local minima, pro-
ducing poorly performing methods. Considering the
simplistic nature of the solver, this is hardly surpris-
ing, and it is likely that a more sophisticated solver
would have performed better. The per-iteration train-
ing data error for 20 experiments is shown in Figure 6,
and a few solutions produced by one method with a
low evaluation error is shown in Figure 4.

10 CONCLUSIONS

We have introduced an application-agnostic approach
to anomaly detection, in which anomaly detection
methods are treated as formal objects that may be de-
composed and recombined.

We have applied this formalism to sequences,
showing that it may be used to easily express a wide
range of anomaly detection tasks for this type of data.

Finally, we have demonstrated that our approach
may be used to construct application-agnostic soft-

with probability 0.5 andU(0.3,0.7) with probability 0.5),
arranged in aa-b-c-b-a pattern, where the width of thec re-
gion isU(15,30) (rounded so that the amplitude transition
happens at the nearest sign change), and the width of theb
regions isU(80,100) (also rounded).The labels were set to
1 in the anomalous regions and 0 elsewhere.

11Specifically,α′
win(w,s), β′

local(m), β′
novelty, the trivial

β′ used for collective anomalies,ηwin(w,s′), θvec(w), and
ζkNN(d,k), for s,s′in{5,10, . . . ,25}, w ∈ {30,35, . . . ,60},
k∈ {1,2, . . . ,5}, m∈ {80,90, . . . ,130}, d ∈ {dE ,dDTW}
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ware that facilitates implementing and evaluating
methods, and that can be used to automatically find
appropriate methods (given labeled training data and
a set of candidate sub-methods).

Future Work. We foresee several venues for future
work.

First, there are plenty of interesting sub-methods,
transforms, ensemble methods, and non-sequence
types of data (e.g. graphs, spatial data) to which our
formalism could be extended. There is work to be
done both in terms of studying these and in terms of
creating flexible and efficient implementations.

There is also work to be done on efficiently solv-
ing the optimization problem outlined in Section 9;
we have demonstrated that it may solved for simple
tasks, but it remains to be seen if it can be effectively
solved for real-world tasks.

Finally, modifying or extending our formalism
could be valuable. For instance, associating addi-
tional information with sub-methods could enable al-
gorithms that can optimize or approximate the result-
ing methods.
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