
Mixed Integer Program Heuristic for Linear Ordering Problem

Ehsan Iranmanesh and Ramesh Krishnamurti
School of Computing Science, Simon Fraser University, Burnaby, Canada

Keywords: Linear Ordering Problem, Linear Programming, Integer Linear Program, Mixed Integer Program Heuristic.

Abstract: The Linear Ordering Problem is a classic optimization problem which can be used to model problems in graph
theory, machine scheduling, and voting theory, many of which have practical applications. Relatively recently,
there has been some success in using Mixed Integer Program (MIP) heuristic for NP-hard optimization prob-
lems. We report our experience with using a MIP heuristic for the problem. Our heuristic generates a starting
feasible solution based on the Linear Programming solution to the IP formulation for the Linear Ordering
Problem. For each starting solution, a neighborhood is defined, again based on the LP solution to the problem.
A MIP solver is then used to obtain the optimal solution among all the solutions in the neighborhood. The
MIP heuristic shows promise for large problems of hard instances.

1 INTRODUCTION

In the Linear Ordering Problem, we are given a di-
rected graph G = (V,A) with nodes V = {1,2, . . . ,n}
and two directed arcs, (i, j) and (j, i), between every
pair of nodes i and j. Each arc (i, j) ∈ A has weight
ci j. Let < v1,v2, . . . ,vn > denote a linear ordering of
the nodes V = {1,2, . . . ,n}, where v1 precedes v2, v2
precedes v3, and so on, in this ordering. We seek a lin-
ear ordering σ such that ∑i, j:σ(i)≺σ(j) ci j is maximized,
where σ(i)≺ σ(j) denotes that σ(i) precedes σ(j) in
the linear ordering σ. This problem has been shown
to be NP-Hard (Garey and Johnson, 1979).

The Linear Ordering Problem (LOP) can be used
to model problems in graph theory, such as the feed-
back arc/node set problem and the node induced
acyclic sub digraph problem. The linear ordering
problem can also be used to model problems where
we need a rank ordering of certain objects using ag-
gregation of individual preferences, so that the rank-
ing we derive matches the individual preferences as
closely as possible. This has applications in voting
theory, as well as deriving a ranking of players/teams
in sports tournaments, to name a few. The linear
ordering problem also has applications in machine
scheduling, where a set of jobs with precedence con-
straints need to be scheduled on a single machine. For
a detailed treatment of the applications of the linear
ordering problem, see (Marti and Reinelt, 2011).

Since it can be used to model many problems of
practical importance, a great deal of attention has fo-
cused on techniques to obtain either optimal or near

optimal solutions to the linear ordering problem. A
standard method to solve such a problem optimally is
to first obtain an Integer Linear Programming (ILP)
formulation for the problem, and then obtain an opti-
mal integer solution, using established methods such
as branch and bound. The bounds used in such a
branch and bound method may be either a Linear
Programming Relaxation bound or a Lagrangian Re-
laxation bound. However, the computational time
required to obtain the optimal solution using such
methods grows rapidly with the size of the problem,
and these methods become impractical for large-sized
problems.

Algorithms/methods to obtain near optimal solu-
tions to these problems have also been developed.
An early example of using such an approach with
great success was the Local Search Algorithm for the
Traveling Salesman Problem (Lin, 1965). The local
search algorithm starts with some initial feasible solu-
tion and then iteratively improves the current solution
by searching solutions in its neighborhood. Since the
quality of the solutions obtained using a local search
algorithm often depends on the size of the neighbor-
hoods, techniques to investigate richer neighborhoods
have been developed. For a comprehensive survey of
such techniques, see (Ahuja et al., 2002). In practice,
local search algorithms have been shown to yield the
best performance on large instances of computation-
ally hard problems.

More recently, methods have evolved which use a
combination of local search methods and exact meth-
ods using ILP techniques (Dumitrescu and Stutzle,

152
Iranmanesh, E. and Krishnamurti, R.
Mixed Integer Program Heuristic for Linear Ordering Problem.
DOI: 10.5220/0005710701520156
In Proceedings of 5th the International Conference on Operations Research and Enterprise Systems (ICORES 2016), pages 152-156
ISBN: 978-989-758-171-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2003). In such hybrid methods, an instance of the
problem is solved by local search methods, while sub-
problems are solved optimally, both to explore the
neighborhood of a feasible solution, as well as ob-
tain good bounds on the optimal solution. Lourenco
first explored hybrid methods (Loureno, 1995), where
an iterated local search is used to solve the job-shop
problem, and ILP techniques are used to optimally
solve subproblems to perturb a locally optimal solu-
tion. Applegate et al. (Applegate et al., 1999) ex-
tend this approach for the Traveling Salesman Prob-
lem (TSP) by first running iterated local search mul-
tiple times on a TSP instance, and retain the best lo-
cally optimal tour each time. Then they construct a re-
stricted graph which has the same set of nodes as the
original graph, but with edges that appear at least once
in the tours retained. Finally, they solve the TSP op-
timally on the restricted graph using ILP techniques.
to obtain the optimal solution for the original TSP in-
stance.

In a different approach using local search to solve
the TSP, Burke et al. (Burke et al., 2000; Burke et al.,
2001) employ ILP techniques to optimally solve a
subproblem, whose solution corresponds to the opti-
mal solution among a large number of solutions in the
neighborhood of a feasible solution. Maniezzo et al.
(Maniezzo, 1999) uses an exact method to solve the
Quadratic Assignment Problem, with an approximate
heuristic method, an approximate non-deterministic
tree search in an ant colony optimization algorithm,
to obtain a good bound on the optimal solution.

In related work, Mixed Integer Programming
(MIP) heuristics use Local Branching (LB), Vari-
able neighborhood Branching (VNB), or Variable
neighborhood Decomposition Search (VNDS-MIP),
to solve 0− 1 Mixed Integer Linear Programming
(MILP) problems. Fischetti et al. (Fischetti and Lodi,
2003) use LB, which starts with a feasible solution to
the 0−1 MILP P. Constraints are then added to P that
exclude all solutions with hamming distance greater
than or equal to k, for some fixed k. The problem thus
derived is then solved optimally using a MIP solver.
Local search is used to find the optimal value for k.

2 PROBLEM FORMULATIONS

The linear ordering problem may be formulated as an
integer linear program. For each pair of nodes i, j, xi j
is defined as follows:

xi j =

1, if i ≺ j (node i precedes node j)
in the ordering

0, otherwise

The weight of arc (i, j) in the given instance is
denoted ci j. The ILP formulation for LOP is given
below (Marti and Reinelt, 2011). We refer to this as
Problem LOP:

Maximize ∑
(i, j)∈A

ci jxi j (1)

s.t. (2)
xi j + x ji = 1 ∀i, j ∈V (3)
xi j + x jk + xki 6 2 ∀i, j,k ∈V (4)
xi j ∈ {0,1} ∀i, j ∈V (5)

The objective function (1) maximizes the total
weights. The Constraint (3) ensures that either i ≺ j
or j ≺ i, but not both. The constraint (4) prohibits a
cycle where i ≺ j, j ≺ k, and k ≺ i. The constraint
(5) constrains the variables xi j to take values in the set
{0,1}.

3 METHODS USED

Both the heuristics we use for this problem in this pa-
per are based on a MIP solver. Each heuristic fixes
the value (assigns a value of either 0 or 1) for each
variable in a subset of the variables, and keeps the re-
maining variables free. The subproblem that needs to
be solved to determine the values the free variables
assume is then solved optimally using the MIP solver.
The only difference between the heuristics is in the
method they use to determine the subset of variables
whose values are fixed.

Algorithm 3 below outlines the MIP heuristic we
use to solve the LOP. We first derive a feasible inte-
ger solution to the problem from an optimal LP so-
lution to LOP. We call such a solution a starting so-
lution. Any feasible integer solution, including the
starting solution, specifies an ordering of the nodes.
Let the starting solution, denoted vs, specify the or-
dering < vs

1,v
s
2, . . . ,v

s
n >. Given a starting solution vs

to the LOP, and a set N of neighborhood solutions fea-
sible to the LOP, we obtain the optimal solution in set
N using the MIP solver CPLEX (Algorithm 2). We
use the solution thus obtained as our new starting so-
lution, and repeat this procedure for a number of iter-
ations. We return the best feasible solution obtained.

Algorithm 1 below specifies the steps used to ob-
tain a starting solution from the optimal LP solution
to the LOP. Let x̂ = x̂i j,(i, j) ∈ A denote the opti-
mal LP solution. If n ≤ 50, a starting solution xs is
obtained by solving the LOP optimally, with addi-
tional constraints xi j = 1 if x̂i j ≥ 0.9, and xi j = 0 if
x̂i j ≤ 0.1. The sequence obtained is the starting solu-
tion. If n≥ 50, the LOP is solved approximately, with
additional constraints xi j = 1 if x̂i j ≥ 0.9, and xi j = 0

Mixed Integer Program Heuristic for Linear Ordering Problem

153

if x̂i j ≤ 0.1. Let vi =< vi
1,v

i
2, . . . ,v

i
n > denote the in-

termediate ordering thus obtained. If k = bn/2c, we
form two subproblems, P1 with nodes {vi

1,v
i
2, . . . ,v

i
k},

and P2 with nodes {vi
k+1,v

i
k+2 . . . ,v

i
n}. We solve sub-

problems P1 and P2 optimally using CPLEX, to ob-
tain subsequences v1 =< v1

1,v
1
2 . . . ,v

1
k > and v2 =<

v2
k+1,v

2
k+2, . . . ,v

2
n >. The two subsequences are then

concatenated to obtain the starting sequence vs =<
v1

1,v
1
2, . . . ,v

1
k ,v

2
k+1, . . . ,v

2
n >. For instances with at

least 200 objects, solving the LP is time consuming.
Therefore we use a random permutation of the nodes
as a starting solution.

We describe below the set N of neighboring so-
lutions to feasible solution v =< v1,v2, . . . ,vn >.
The solution v can be also considered as a se-
quence of the integers v1, v2, . . . , vn, where <
v1,v2, . . . ,vn > is a permutation of the integers <
1,2, . . . ,n >. Given such a sequence, we can de-
fine a subsequence vi, j =< vi,vi+1, . . . ,v j >, where
1 ≤ i ≤ j ≤ n. The neighborhood Ni j (with re-
spect to the subsequence vi, j) is defined as the set
of all orderings w =< w1,w2, . . . ,wn >, where wi =
vi for 1 ≤ i ≤ i− 1, and wi = vi for j + 1 ≤ i ≤
n. Note that in the ordering w, the subsequence
w1,i−1 =< w1,w2, . . . ,wi−1 > is identical to the sub-
sequence v1,i−1 =< v1,v2, . . . ,vi−1 >, and the sub-
sequence w j+1,n =< w j+1,w j+2, . . . ,wn > is identi-
cal to the subsequence v j+1,n =< v j+1,v j+2, . . . ,vn >.
However, the subsequence wi, j =< wi,wi+1, . . . ,w j >
can be any reordering of the subsequence vi, j =<
vi,vi+1, . . . ,v j >. In addition, for every pair k, l,1 ≤
k ≤ i− 1, i+ 1 ≤ l ≤ j, wk ≺ wl , and for every pair
p,q, i≤ p≤ j, j+1≤ q≤ n, wp≺wq. In other words,
every node in the subsequence w1,i−1 precedes every
node in the subsequence wi, j, and every node in the
subsequence wi, j precedes every node in the subse-
quence w j+1,n. Thus the size of the neighborhood set
Ni j is (j− i+1)!, which is exponential in the size of
the subsequence s = (j− i+1). The subsequence it-
self is specified in terms of the start position i, and the
size of the subsequence, s.

4 EMPIRICAL ANALYSIS

The computational experiments were conducted on
an Intel Core i7 with 2.8 GHz 64-bit processor, 16.0
GB of RAM and OSX Yosemite 64-bit as the Operat-
ing System. The heuristic was implemented in C++.
The LP and MILP problems were solved with CPLEX
12.5. All the experiments ran under the time limita-
tion of 500 seconds.

Algorithm 1: LP Based Heuristic to obtain Starting
Solution.

Input : Cost Matrix [C]n×n
Output: An ordering v =< v1,v2, . . . ,vn > of

the nodes in the graph G = (V,A)
1 Solve LP relaxation of the problem and get the

x̂ = {xi j}i, j∈N ;
2 ∀i, j, set the variable xi j = 1 where x̂i j >= 0.9;
3 ∀i, j, set the variable xi j = 0 where x̂i j <= 0.1;
4 Solve LOP optimally with the additional

constraints 2 and 3 above;
5 if n≤ 50 then
6 return optimal ordering vs;
7 end
8 if n≥ 50 then
9 Solve LOP approximately with MIP solver;

10 Obtain the intermediate ordering
vi =< vi

1,v
i
2, . . . ,v

i
n >;

11 Generate two subproblems P1 with nodes
{vi

1,v
i
2, . . .v

i
k} and P2 with nodes

{vi
k+1,v

i
k+2, . . . ,v

i
n} (where k = bn/2c);

12 Solve each subproblem optimally by
CPLEX and get subsequences
v1 =< v1

1, . . . ,v
1
k >, v2 =< v2

k+1, . . . ,v
2
n >;

13 Concatenate the two subsequences to return
sequence vs =< vs

1, . . . ,v
s
k,v

s
k+1, . . . ,v

s
n >;

14 end

4.1 Data Set

Instances RandAI: These instances are generated
from a uniform distribution in the range [0,100]. They
were initially generated from a uniform distribution
in the range [0,25000], and then sampled from the
much narrower range [0,100]. These are the harder
instances. The number of nodes in these instances are
100, 150, and 200.
Instances RandAII: These contain easier instances
which are generated from randomly generated permu-
tations. Again, the number of nodes in these instances
are 150, and 200.

For a detailed treatment of the methods that have
been used to solve the Linear Ordering Problem, and a
description of these instances, see (Marti et al., 2009).

4.2 Computational Results

We summarize the computational results in Table 1
and Table 2. Table 1 shows experiments on instances
of RandAI, and Table 2 shows experiments on in-
stances of RandAII. Table 1 shows that for the harder
instances for the sizes 100 and 150, the largest gap
obtained by CPLEX is almost 24% where the largest

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

154

Algorithm 2: MIP Solver to obtain Optimal Solution
in Neighborhood.

Input : An ordering v =< v1,v2, . . . ,vn >, and
a subsequence vi, j

Output: An ordering v̂ =< v̂1, v̂2, . . . , v̂n > of
the nodes in the graph G = (V,A)

1 for all s, t ∈ [1,2, . . . ,n] do
2 if s, t 6∈ [i, . . . , j] and vs � vt then
3 xs,t = 1;
4 xt,s = 0;
5 else if s 6∈ [i, . . . , j] and t ∈ [i, . . . , j] and

vs � vt then
6 xs,t = 1;
7 xt,s = 0;
8 else if s 6∈ [i, . . . , j] and t ∈ [i, . . . , j] and

vs ≺ vt then
9 xs,t = 0;

10 xt,s = 1;
11

12 end
13 Solve LOP with the additional constraints

specified above;
14 Return the ordering obtained v̂;

Algorithm 3: Mixed Integer Program Heuristic.

Input : Cost Matrix [C]n×n
Output: An ordering v̂ =< v1,v2, . . . ,vn > of

the nodes in the graph G = (V,A)
1 Run Algorithm I (LP Based Heuristic) and get

Starting Solution vs;
2 Let |N| denote the size of the neighborhood set;
3 N = t1 (Starting size for threshold is 5);
4 while number of iterations i < I do
5 Pick a subsequence vs

i, j of size N randomly
from v̂;

6 Run Algorithm 2 with the inputs: ordering
v̂, subsequence v̂i, j;

7 Obtain output ordering v̂;
8 Update vs = v̂;
9 if there is no improvement after a number

of iterations then
10 N = N +δ (δ is 5 for earlier iteration

and is 2 for later iterations)
11 end
12

13 end
14

gap obtained by the heuristic is 15%. For the easier
instances, the largest gap obtained by the CPLEX is
2.14% and the largest gap obtained by the heuristic is
0.85%.

Table 1: Computational results for Instances RandAI.
CPLEX MIP Heuristic

Instance Sol Gap % Best Bound Sol Gap%

N-t1d100.01 96637 18.45% 114468 105181 8.82%
N-t1d100.02 97508 16.99% 114077 105438 8.2%
N-t1d100.03 99330 18.64% 117843 108728 8.38%
N-t1d100.04 99457 18.28% 117639 107954 8.97%
N-t1d100.05 99113 18.59% 117538 107582 9.25%
N-t1d100.06 96924 20.77% 117057 107075 9.32%
N-t1d100.07 97703 19.87% 117118 107696 8.74%
N-t1d100.08 97224 19.06% 115756 106051 9.15%

N-t1d150.01 213538 20.97% 258334 228870 12.87%
N-t1d150.02 213433 21.37% 259050 225853 14.6%
N-t1d150.03 211917 23.66% 262076 229910 13.99%
N-t1d150.04 212812 21.99% 259619 225965 14.89%
N-t1d150.05 214151 21.34% 259863 228907 13.52%
N-t1d150.06 212907 22.13% 260035 227477 14.31%
N-t1d150.07 214337 21.73% 260922 230268 13.31%
N-t1d150.08 216617 20.46% 260956 229620 13.64%

Table 2: Computational results for Instances RandAII.
CPLEX MIP Heuristic

Instance Sol Gap% Best Bound Sol GAP%

N-t2d150.01 75296 1.3% 76276 76021 0.33%
N-t2d150.02 72889 1.26% 73811 73617 0.26%
N-t2d150.03 68926 1.4% 69894 69703 0.27%
N-t2d150.04 73189 1.29% 74136 73960 0.23%
N-t2d150.05 78890 1.21% 79847 79723 0.15%
N-t2d150.06 74684 1.28% 75604 75438 0.22%
N-t2d150.07 73143 1.26% 74067 73852 0.29%
N-t2d150.08 66586 1.82 % 67803 67463 0.5%

N-t2d200.01 146132 1.48% 148295 147704 0.4%
N-t2d200.02 142566 1.63% 144904 144100 0.55
N-t2d200.03 139632 1.77% 142105 141260 0.5%
N-t2d200.04 149170 1.54% 151471 149520 1.3%
N-t2d200.05 148694 1.45% 150854 150176 0.45%
N-t2d200.06 139592 1.73% 142009 141100 0.64%
N-t2d200.07 148132 1.51% 150379 149126 0.84%
N-t2d200.08 148042 1.6% 150415 149650 0.51%
N-t2d200.09 140190 1.82% 142747 141896 0.5%
N-t2d200.10 147990 1.51% 150232 149612 0.41%
N-t2d200.11 145990 1.55% 148262 147398 0.58%
N-t2d200.12 150794 1.5% 153064 152394 0.43%
N-t2d200.13 135922 1.90% 138514 137572 0.68%
N-t2d200.14 142542 1.78% 145083 144108 0.67%
N-t2d200.16 145680 1.67% 148114 147356 0.51%
N-t2d200.17 129950 2.13% 132728 131850 0.66%
N-t2d200.18 149908 1.17% 151663 150948 0.47%
N-t2d200.19 35572 1.925% 138182 137272 0.66%
N-t2d200.20 145180 1.28% 147051 146448 0.41%
N-t2d200.21 141700 1.77% 144221 143428 0.55%
N-t2d200.22 145238 1.57% 147524 146828 0.47%
N-t2d200.23 143480 1.56% 145731 144932 0.55%
N-t2d200.24 149658 1.41% 151769 151208 0.37%
N-t2d200.25 147476 1.52% 149723 149078 0.43%

5 CONCLUSION

The Linear Ordering Problem is a classic optimization
problem with wide applications. Solving the problem
optimally for the larger hard instances has proved dif-
ficult. In this paper, we report our experience with
using a MIP heuristic for the problem. Our heuris-
tic generates a starting feasible solution based on the
LP relaxation of the IP formulation for the Linear Or-
dering Problem. For each starting solution, a neigh-
borhood is defined, again based on the LP solution
to the problem. A MIP solver is then used to obtain
the optimal solution among all the solutions in the
neighborhood. Preliminary results indicate that this
approach is promising. The solutions obtained using
this heuristic are substantially closer to the optimal

Mixed Integer Program Heuristic for Linear Ordering Problem

155

than the solutions obtained using the MIP solver to
solve the entire problem.

REFERENCES

Ahuja, R. K., Ergun, O., Orlin, J. B., and Punnen, A. P.
(2002). A survey of very large-scale neighborhood
search techniques. Discrete Applied Mathematics,
123(1-3):75 – 102.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W.
(1999). Finding tours in the traveling salesman prob-
lem. Technical report, Forschungsinstitut fur Diskrete
Mathematik, University of Bonn, Germany.

Burke, E. K., Cowling, P. I., and Keuthen, R. (2000). Em-
beded local search and variable neighborhood search
heuristics applied to the travelling salesman problem.
Technical report, University of Nottingham.

Burke, E. K., Cowling, P. I., and Keuthen, R. (2001). Effec-
tive local and guided variable neighbourhood search
methods for the asymmetric travelling salesman prob-
lem. In Proceedings of the EvoWorkshops on Appli-
cations of Evolutionary Computing, pages 203–212,
London, UK, UK. Springer-Verlag.

Dumitrescu, I. and Stutzle, T. (2003). Combinations of lo-
cal search and exact algorithms. In Applications of
Evolutionary Computation, pages 211–223. Springer.

Fischetti, M. and Lodi, A. (2003). Local branching. Math.
Program., 98(1-3):23–47.

Garey, M. R. and Johnson, D. S. (1979). Computers
and Intractability: A guide to the Theory of NP-
Completeness. W. H. Freeman and Company.

Lin, S. (1965). Computer solutions of the traveling sales-
man problem. 44(10):2245–2269.

Loureno, H. R. (1995). Job-shop scheduling: Computa-
tional study of local search and large-step optimiza-
tion methods. European Journal of Operational Re-
search, 83(2):347 – 364. EURO Summer Institute
Combinatorial Optimization.

Maniezzo, V. (1999). Exact and approximate nondeter-
ministic tree-search procedures for the quadratic as-
signment problem. INFORMS Journal on Computing,
11(4):358–369.

Marti, R. and Reinelt, G. (2011). The Linear Ordering
Problem: Exact and Heuristic Methods in Combina-
torial Optimization. Applied Mathematical Sciences
Volume 175. Springer.

Marti, R., Reinelt, G., and Duarte, A. (2009). Optisicom
project. http: www.optsicom.es/lolib.

ICORES 2016 - 5th International Conference on Operations Research and Enterprise Systems

156

