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Abstract: Predicting the complexity level (i.e. the number of complications and their related hospitalizations) in a T2D 
cohort is a critical step in prevention, resource optimization and overall patient management. Our data set 
was obtained by monitoring a T2D diabetic cohort along up to 10 years through electronic medical records 
of a local healthcare agency data warehouse. In order to conveniently handle temporarily sparse data, we 
designed a model describing the cohort evolution with Continuous Time Bayesian Networks (CTBN). The 
network structure and its parameters are entirely data driven. Compared to traditional Bayesian Networks, 
CTBNs admit cycles. As consequence, CTBNs fit the complexity of chronic metabolic syndromes where 
variables show a reciprocal influence. Network nodes represent metabolic (glycated hemoglobin, lipid 
profile (cholesterol, triglycerides), and biometric (BMI) data. We observed how these variables directly or 
indirectly affect the disease level of complexity, and how the variables influence the cumulative adverse 
events a patient undergoes. 

1 INTRODUCTION 

The development of computational tools to support 
decisions in Medicine is driven by the increasing 
burden of health care costs. Simulation models are 
viable tools to predict health outcomes in target 
populations and thus help optimizing resources 
(Tarride et al., 2010; Marini et al., 2015). Diabetes is 
a disease affecting a growing number of patients, 
387 million individuals in 2014 with up to 592 
million patients estimated by 2035 (International 
Diabetes Federation, 2014; McEwan et al., 2014). 
Providing tools to help clinicians assessing the 
evolution of a diabetic cohort over time can 
therefore help manage the high costs of diabetes. 

The EU funded Mosaic project is dedicated to 
the development of several models able to depict 
meaningful clinical pathways in Type 2 Diabetes 
(T2D) patients, in order to understand which clinical 
and exogenous factors trigger worsened patients' 
profiles. The dataset collected in a first project phase 
is made up of 1020 T2D patients. These retrieved 
information include data from hospital electronic 
medical records (EMR) merged with administrative 
information coming from Local Health Care Agency 
(Dagliati et al 2014a). This means that observations 

about patients are retrieved from follow-ups, which 
usually occur every 6 month near the hospital where 
subjects are in treated, and depict how metabolic 
control and lipid profile evolve during the 5 to 10 
years observation period. Clinicians record the 
arising of complications due to the chronic diseases.  

A complication is tied to its detection through a 
set of prescribed exams and not to its physiological 
onset specifically. This fact shows the importance of 
the jointly analysis of clinical interventions and 
physiological processes. To reach a comprehensive 
understanding of the evolution of the disease we 
leverage on the data coming from Local Health Care 
Agency that include hospitalizations, drug purchases 
and ambulatory encounters. Merging those sources 
of data represents the first step to assess the disease 
progression from both health care and management 
points of view. 

The exploitation of data mining methods allows 
to automatically detect and reconstruct the most 
frequent clinical temporal pathways patients 
underwent (Dagliati et al. 2014b). 

Since patient data streams are scattered along a 
ten-year timeline, we decided to apply Continuous 
Time Bayesian Networks (CTBN) (Nodelman and 
al. 2002a) to design a network modelling TD2 
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trajectories. CTBNs have been successfully 
exploited in Medicine (Gatti et al., 2012, Wang et 
al., 2014) and Bioinformatics (Acerbi and Stella 
2014, Liu et al., 2009). 

2 METHODS 

2.1 Variable Discretization 

Firstly we have selected from the Mosaic data base a 
set of meaningful clinical variables able to 
characterize multiple aspects in the patients’ cohort: 
metabolic control (hba1c), lipid profile (cholesterol 
and triglycerides) and weight changes (BMI). All the 
listed variables are relevant in T2D treatment and 
control (American Diabetes Association, 2013; 
Solano et al., 2006). 

We defined the possible node states through 
physiological parameters discretization. Discrete 
states start from 0, with increasing values indicating 
a progressive worsening of the patient condition. To 
discretize variables, we used fixed threshold defined 
by the Italian clinical guidelines for T2D care 
(http://www.aemmedi.it/). Table 1 shows the states 
and discretization thresholds of clinical variables. 

Table 1: Number of states and discretization thresholds of 
clinical variables. 

Node’s state 0 1 2 
HBA1c (mmol/mol) <59 ≥59 - 

BMI <20 [20, 30] >30 
CHOLESTEROL 

(mg/dl) 
<220 

[220, 
280] 

≥280 

TRIGLYCERIDES 
(mg/dl) 

<170 
[170, 
350] 

≥350 

Complications are tracked by worsening patient 
condition and health care services accesses. Most of 
the cost associated with diabetes is related to the 
management of these complications (McEvan et al., 
2014). To assess the patient care complexity over 
time, we defined a set of four complexity stages 
(LOC, Level of Complexity) determined by the 
number of complications and hospitalizations a 
patient undergoes. Higher complexity means a 
higher need for resources and a higher cost to 
manage him/her (increased hospitalization rate, 
more need for specific examinations, etc.). LOC is 
an analytic indication of disease complexity 
allowing to summarize the overall patient condition 
in single number. We have defined complexity 
levels and related status of network nodes as 
follows. 

STATUS 0: Stable patients. This segment belongs to 
pre-diabetic patients and T2D patients not suffering 
any complication yet. 

STATUS 1: 1st level of complexity. Patients who are 
starting to develop the first complication and require 
punctual treatments. This stage and the following 
one are built upon clinicians notes in the hospital 
Electronic Medical Record (EMR). Complications 
include Macro vascular event (i.e. Acute Myocardial 
Infarction, Angina, Chronic ischemic heart disease, 
Occlusion and stenosis of carotid artery, Peripheral 
vascular disease, Stroke), Micro vascular event (i.e. 
Diabetic Foot, Nephropathy, Retinopathy) and Not 
Vascular event (i.e. Neuropathy, Fatty Liver 
Disease). 

STATUS 2: 2nd level of complexity. Patients with 
multiple complications that need to be followed by 
more than one specialist on a frequent basis. 

STATUS 3: 3rd level of complexity. Patients likely 
to suffer hospitalizations either due to the status of 
their diabetes-related complications or because of 
their metabolic instability. This stage triggers when 
a previously developed complication leads to a 
hospitalization that is detected through the 
administrative data stream. Associations between 
complications and hospital accesses have been 
settled thanks to the collaboration with clinicians 
(e.g. a hospitalization where the principal diagnosis 
has been recorded with an IC9 code indicating a 
disease of the genitourinary system after the onset of 
Nephropathy). 

2.2 Data Pre-processing and Data Set 
Building 

A first issue that we considered while analysing data 
coming from a hospital EMR together with 
administrative information is that T2D patients do 
not start to be followed at the hospital immediately 
after diabetes diagnosis. This happens because this 
type of chronic patients are initially in charge of 
their general practitioners who manage their cure 
until it is more suitable for them to be followed in a 
centre specialized in diabetes treatment.  

For this reasons, observations do not show an 
initial common time stamp, and some variables are 
measured more frequently than other. Moreover, 
these timestamps may vary also because of changes 
in the patient conditions. For each time point we 
have a direct observation for one or two variables 
(e.g. cholesterol and triglycerides are often measured 
together), but we lack information about unobserved 
ones. Consequently, temporally sparse data with 
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missing values need to be pre-processed in order to 
create suitable samples to be analysed with CTBNs 
(e.g., the state of a variable was propagated until the 
next known/measured value). 

2.3 CTBN Machinery 

Temporal dynamics are represented explicitly in 
CTBNs. The system state space evolution is 
described through conditional intensity matrices 
(CIM) (Nodelman et al., 2002a). The number of 
CIMs for each node is equivalent to the possible 
state combinations of its parent nodes. For example, 
if a child node C1 has a parent node P1, and P1 has 
two states, then node C1 is described by two CIMs. 
If a child node C2 has two parent nodes P2 and P3, 
with two and three states respectively, then C2 is 
described by six CIMs. CIMs are utilized to simulate 
the evolution of the network state. Each CIM is a 
square matrix, with a row for each state of the 
described node, according the following schema: 

CIM(C|p) 
q1(p) q12(p) … q1m(p) 

q21(p) -q2(p) … q2m(p) 

…  … … … 

qm1(p) qm2(p) … -qm(p) 

The schema represents a CIM for the node C, 
where p is the parent node status and m is the 
number of states of C. In the example above, it could 
be for instance P1=0 and P2=2. The elements qi on 
the principal diagonal are related to the transition 
time. In particular, when a node switches to the i-th 
state, we utilize -qi to compute the time the node will 
take before switching again. The time a node 
remains in its state is randomly draw from an 
exponential distribution with parameter qi, ݍ௜ ∗

݁ቀ
భ
ష೜೔

∗௧ቁ
, t ≥ 0. 

Elements qij not belonging to the principal 
diagonal are always > 0 and they are utilized to 
compute the next node state. Once a transition 
happens (i.e. the time sampled by the distribution 
above is expired), the node switches to another state 

with probability 
௤೔ೕ
௤೔

.  

Note that for each row with m elements, ∑ ݅ ൌ௠
௜ୀ଴

0. 
For example, if the first row a 3×3 CIM is [20 15 

5], then the modeled node has three states, and the 
first row models the behavior of the node in the first 
state; the node remains in the first state for a time 
sampled by a distribution with parameter െݍ௜ ൌ

െ20. Once the node switches, it randomly ends in 
the second state with probability 15/20 = 0.75, and 
to the third state with probability 5/20 = 0.25. 

To implement or CTBN, we utilized R Package 
for Continuous Time Bayesian Networks (Shelton et 
al., 2010). 

2.4 Network Learning 

The problem of learning the structure of a CTBN 
from a data set D can be tackled as the problem of 
finding a structure G maximizing a Bayesian score 
(Nodelman et al., 2002b): 

score	ሺG ∶ Dሻ ൌ lnܲሺܩ|ܦሻ ൅	 ln ܲሺܩሻ	 

While this problem is NP-hard in traditional 
Bayesian Networks, it has been shown (Nodelman et 
al., 2002b) that in CTBN it is possible to optimize 
the parent set for each variable of the CTBN 
independently. In other words, we can explore the 
parent space of each variable with a local search to 
find the best score. Once the maximum number of 
parents local search is fixed, the search is 
polynomial with respect to the number of variables 
and the size of the data set (Nodelman et al., 2002b). 
The aforementioned Bayesian score can be 
decomposed in a sum of local contribution (i.e. 
family scores). Each local score assess the quality of 
a given putative parent set of a single variable. In 
this way, we can optimize the parent set of each 
variable taken singularly. For a more detailed 
explanation of this process, we address the reader to 
works of Nodelman (Nodelman et al., 2002a; 
Nodelman et al., 2002b). 

Note that no parameters had to be tuned for the 
learning phase. 

3 RESULTS 

3.1 Network Structure 

The resulting CTBN is shown in Figure 1. While the 
only node directly affecting LOC is hbA1c, it is also 
important to note that all the other nodes, with the 
exception of cholesterol, are indirectly connected to 
LOC through BMI and HbA1c. This means that the 
model accounts for a wide variety of variables to 
simulate the evolution of LOC. In other words, the 
CTBN successfully learn meaningful variables 
interconnections. HbA1c is a marker of long term 
blood glucose concentration control, thus having a 
pivotal role in diabetes monitoring. 

Our network mimics how short-term changing 
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variables (BMI influencing cholesterol and 
triglycerides, and being influenced by triglycerides) 
on the long run may raise the HbA1c level, which is 
the key factor in determining the LOC and thus the 
patient general health. In our learned network, 
cholesterol does not influence LOC or any other 
node. This does not mean cholesterol do not play a 
role in the diabetes machinery, but rather than its 
role does not emerge from our data. 

3.2 Available Data Amount Influences 
the Learned Network Structure 

We assessed how the amount of available data 
affects the network learning. We iteratively removed 
an increasing number of random patient samples and 
compared the learned network structure to the one 
obtained from the full data set. In particular, we 
gradually reduced our dataset by randomly removing 
5% of the patients, and eventually reaching 50% of 
the original data after 10 steps. We repeated 100 
times this 10 step procedure, and we measured at 
each step (a) if the network structure matches the 
one learned on the full data set; and (b) the number 
of the network edges of the newly learned network. 
Results are shown in Figures 2 and 3. 

Considering Figure 2, the amount of data seems 
to be critical for this network design only when the 
number of patients is less than 85% (~800 patients). 

This means the very same network structure 
emerges from data even if we remove 15% of the 
available patients from our study (more than 95% of 
the newly learned networks overlap the original). 
This suggests the learned structure describes T2D 
diabetes trajectories in a general and robust way. 
However, this overlapping structure percentage 
quickly drops once we utilize 75% or less of the 
available patients. Similarly, as shown in Figure 3, 
the edge number is reduced when fewer patients are 
utilized for learning, leading to less rich and 
interconnected networks. 

3.3 Simulating LOC 

We run a ten years long simulation with our 
network. In particular, for each real patient, ten 
artificial patients were simulated. Keeping a one-day 
pace, the percentage of real (Rp) and simulated 
patients (Sp) in a given LOC state were measured. It 
was thus possible to calculate a daily LOC per-state 
error as |ܴݏ െ  is the absolute value of |ݔ| where ,|݌ܵ
 The errors are depicted in Figure 4 with the blue .ݔ
line. In general, we observed that the error grows 
over time, but it is mostly below 15%. In fact, it is 

always <10% for LOC 0, and it grows over 20% 
only for LOC 1 after about three thousand days (thus 
more than eight years after the beginning of the 
simulation). Note that the granularity of the 
simulation depends on the available data. In fact, in 
CTBN we can simulate a step as short as the shortest 
time unit utilized to measure our data. This means 
that, since our EMR reported the date the patients 
were visited and their data were recorded, we could 
run simulations with a one day pace. 

In order to validate our analysis, we proceeded 
by randomly splitting our data into a training (85%) 
and a test set (15%). We then re-learned the network 
as from the training set only (the structure was 
unaltered) and simulated the evolution of the learned 
network for 10 years. The errors are measured as 
explained above and depicted in Figure 4 with the 
grey line. As expected, the errors on the test set were 
higher, but still in a reasonable range, and below 
25%. 

4 CONCLUSIONS 

In this work we designed a CTBN to describe a T2D 
cohort. CTBN learning produced a meaningful 
network fitting medical literature. Simulations 
confirm that even for a ten year long timespan, error 
in LOC is kept reasonably low (below 25%). 
Moreover, the network is stable and it emerges from 
data even if we remove 15% of the patient samples.  

Although we obtained clinically meaningful 
results, we are aware of some possible weakness in 
this current approach. These weak aspects are 
mainly related to the pre-processing of variable, like 
Age or Time from Diagnosis, which naturally 
increase during time. We are currently enhancing the 
algorithm in order to make it able to process these 
kinds of variables, taking into account that their 
probability to change over time does not depend on 
exogenous factors but it is intrinsic. 

Furthermore, in future works, we aim to expand 
our approach by including more network variables. 
In particular, we will integrate EMR data with 
administrative data about drug purchases to study 
how different type of drugs (like Diabetes Therapies, 
Antihypertensive and Statins) might cast an 
influence on LOC. 
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APPENDIX 

 

Figure 1: The learned CTBN network. 
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Figure 2: Percentage of newly learned network overlapping with the original one depends on the number of patients 
sampled from the original data set. 

 

Figure 3: Average edges per learned network depends on the fraction of patients sampled from the original data set. 
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Figure 4: Error for each state of LOC node. Error is measured as the absolute difference between the amount of real and 
simulated patients in a given state, at a given time (one day pace). The error utilizing all data is represented in blue, while 
the error on a test set (not utilized for training) is in grey. 

HEALTHINF 2016 - 9th International Conference on Health Informatics

344


