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Abstract: Traditionally, machine learning algorithms build classification models from positive and negative examples. 
Recently, one-class classification (OCC) receives increasing attention in machine learning for problems where 
the negative class cannot be defined unambiguously. This is specifically problematic in bioinformatics since 
for some important biological problems the target class (positive class) is easy to obtain while the negative 
one cannot be measured. Artificially generating the negative class data can be based on unreliable 
assumptions. Several studies have applied two-class machine learning to predict microRNAs (miRNAs) and 
their target. Different approaches for the generation of an artificial negative class have been applied, but may 
lead to a biased performance estimate. Feature selection has been well studied for the two–class classification 
problem, while fewer methods are available for feature selection in respect to OCC. In this study, we present 
a feature selection approach for applying one-class classification to the prediction of miRNA targets. A 
comparison between one-class and two-class approaches is presented to highlight that their performance are 
similar while one-class classification is not based on questionable artificial data for training and performance 
evaluation. We further show that the feature selection method we tried works to a degree, but needs 
improvement in the future. Perhaps it could be combined with other approaches. 

1 INTRODUCTION 

MicroRNAs (miRNAs) are short (~21 nt) nucleotide 
sequences that are either co-transcribed during 
transcription or are organized in intergenic regions 
with their own promoters. One or more mature 
miRNAs are split from ~70-100 nucleotide long pre-
miRNAs (hairpins) which consist of double-stranded 
region (stem) containing one or more loops and 
bulges. Interaction of a miRNA with its target 
messenger RNAs (mRNAs) leads to repressing or 
translation and causes mRNA degradation (Bartel et 
al., 2004). It has been shown that this process depends 
on binding of the miRNA to the 3’UTR of the target, 
which is a region searched by most target programs. 
However, recent findings (Lytle et al., 2007) suggest 
that microRNAs may affect gene expression by also 
binding to 5’ UTRs of mRNA. 
 
 
 

1.1 Target Identification 

Numerous computational approaches have been 
proposed for the prediction of miRNA’s targets 
(Yousef et al., 2009). All of these methods depend on 
the parameterization of the miRNA:mRNA duplex 
and related information. Currently, sequence 
complementarity, thermodynamic calculations, and 
evolutionary conservation between species are used 
to predict the miRNA-target structure (Bartel et al., 
2004; Lai, 2004). MiRanda (John et al., 2004), for 
example, uses dynamic programming to find the 
optimum alignment between mature miRNAs and 
their target genes. Another tool, RNAhybrid (Bartel 
et al., 2004; Lai, 2004), employs the prediction of 
RNA secondary structure (like the Mfold algorithm 
(Zuker, 2003)) to evaluate target propensity. 
TargetScanS (Lewis et al., 2003), scores target sites 
based on their evolutionary conservation using 
multiple genomes (e.g.: human, mouse, rat, dog, and 
chicken). Similarly, PicTar (Krek et al., 2005) is 
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based on a statistical method using genome-wide 
alignments of related species. TargetBoost (Saetrom 
et al., 2005) uses machine learning based on sequence 
information to create weighted sequence motifs that 
extract a profile describing binding characteristics 
between miRNAs and their targets. Likewise, Sung-
Kyu et al. (Kim et al., 2005) and Yan, X., et al (Yan 
et al., 2007), used machine learning algorithms (SVM 
and ensemble learning, respectively) to predict 
miRNA-mRNA duplexes. MicroTar (Thadani and 
Tammi, 2006) is a statistical computational tool, 
which in contrast to many competitors does not use 
sequence homology for the prediction of miRNA’s 
targets. RNA22 (Miranda et al., 2006) is a program 
based on pattern discovery, scanning UTR sequences 
for targets. Yousef et al. also employed machine 
learning, to develop the NBmiRTar program (Yousef 
et al., 2007) which does not require sequence 
conservation, but generates a model from sequence 
and structure information. For more information 
please refer to Table 1 and Xiao et al. (Fan and 
Kurgan, 2014) who conducted a comprehensive 
review and assessment of existing computational 
tools of microRNA targets prediction in animals.  

Recently, we compared one-class and two-class 
approaches (Yousef et al., 2010) and concluded that 
the advantage of one class methods is that they don’t 
require the generation of an arbitrary negative class. 

Table 1: Summary of the computational tools used for the 
prediction of microRNA targets. 

Tool 
Name URL/ Reference 

TargetScanS http://genes.mit.edu/targetscan  
(Lewis et al., 2005) 

miRanda http://www.microrna.org 
(John et al., 2004) 

PicTar http://pictar.mdc-berlin.de/ 
(Krek et al., 2005) 

RNAhybrid 
http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid 
(Krüger and Rehmsmeier, 2006) 

Diana-
microT 

http://diana.imis.athena-
innovation.gr/DianaTools/index.php 
(Kiriakidou et al., 2004) 

Target 
Boost 

http://www.interagon.com/demo 
(Saetrom et al., 2005) 

Rna22 https://cm.jefferson.edu/rna22/ 
(Miranda et al., 2006) 

MicroTar http://tiger.dbs.nus.edu.sg/microtar/ 
(Thadani and Tammi, 2006) 

NBmiRTar http://wotan.wistar.upenn.edu/NBmiRTar 
(Yousef et al., 2007) 

miRecords http://mirecords.umn.edu/miRecords/ 
(Xiao et al., 2009) 

1.2 One Class Classification and 
Feature Selection 

Supervised learning approaches for miRNA detection 
generally consider both positive and negative 
examples during training, testing, and application of 
the learned models. This binary (two-class) learning 
approach depends on the a priori knowledge of both 
classes in the examples. In contrast to binary learning 
strategies, one-class classification (OCC) uses only 
one class during training of the model. Anything not 
belonging to the class is rejected as an outlier by the 
trained model. For problems where the negative class 
cannot be unambiguously defined (e.g.: miRNA 
detection) one-class classification has received 
increasing attention (Crammer and Chechik, 2004; 
Gupta and Ghosh, 2005; Kowalczyk and Raskutti, 
2002; Spinosa and Carvalho, 2005; Yousef et al., 
2010) and has been successfully applied for example 
in text mining (Manevitz and Yousef, 2002), 
functional Magnetic Resonance Imaging (Thirion and 
Faugeras, 2004), signature verification (Koppel and 
Schler, 2004), and miRNA gene and target discovery 
(Yousef et al., 2008; Yousef et al., 2010). Recently, 
Khan and Madden, 2014 discussed OCC and 
presented a taxonomy based on the availability of 
training data, OCC algorithms, and the application 
domain. 

Parameterization of biological information is of 
prime importance for proper learning, but often an 
abundance of features is derived. Therefore, feature 
selection, to determine the smallest subset of 
meaningful features, has to be performed. Feature 
selection for classification is well studied for two–
class classification. Unfortunately, few methods are 
available for feature selection for OCC. Moreover, 
existing two-class feature selection methods may not 
be applicable to the OCC problem because they use 
two classes during feature ranking. Recently different 
studies suggest new or updated methods (Jeong et al., 
2012; Lian, 2012; Lorena et al., 2014), for OCC 
feature selection such as the SVDD-radius-recursive 
feature elimination (Jeong et al., 2012). 

Here, we present our feature selection approach 
for OCC for miRNA genes and target discovery and 
compare the results with two-class classification. Our 
feature selection approach leads to a good 
improvement of the OCC and for some cases it 
reached the performance of the two-class approach. 
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2 MATERIALS AND METHODS 

2.1 MicroRNA Target Data 

A collection of 326 confirmed MicroRNA targets 
(human, mouse, fruit fly, worm, and virus) were 
downloaded from the TarBase (Sethupathy et al., 
2006) (TarBase_V4, Tarbase flat file data as of 
04/2007) web-site to serve as positive examples and 
1,000 negative examples were chosen at random from 
the negative class pool generated for our previous 
study (Yousef et al., 2007). 

2.2 Structure and Sequence Features 
Target 

Feature extraction was done according to (Yousef et 
al., 2007). The miRNA:mRNA duplex was 
partitioned into two, the seed (5’ 8 nt of the miRNA) 
and out-seed (3’ remainder). 57 structural features 
were extracted for these parts. Here sequence features 
(words) are defined as short sequences having lengths 
equal to or less than 3 which leads to 84 features in 
total. The complete length of the feature vector was 
thus 141 (141 = 57 + 84). Supplementary Table 1 
categorizes the features and Supplementary Table 5 
presents the complete list of features and their ranking 
using 4 different methods (http:// 
bioinformatics.iyte.edu.tr/supplements/binfo2016) 

2.3 Feature Selection for One-Class 
Classification 

Feature selection has been well studied for the two–
class classification problem, while few methods are 
available for feature selection in respect to OCC. 
Unfortunately, existing two-class feature selection 
methods cannot be applied to feature selection for 
OCC because they also use two classes for the 
ranking of the features. Recently different studies 
suggest novel or updated methods for feature 
selection under the premise of OCC (Bailey and 
Elkan, 1994; Goymer, 2006; Hall et al., 2009; Lorena 
et al., 2014; Novak, 2006; Xuan et al., 2011). We 
considered these methods in this study but only 
compare to the Pearson method (Lorena et al., 2014) 
since no significant performance difference was seen 
among the suggested feature selection methods 
(Supplementary File 2 in http:// 
bioinformatics.iyte.edu.tr/supplements/ binfo2016). 
The Pearson correlation measure allows detection of 
linear relation among features. The pair-wise 
distances among all feature were calculated using 

Pearson correlation. Features with lower correlation 
were preferred during feature selection. 

2.4 Zero-Norm Feature Selection 

We define for each feature’s vector a zero-norm to be 
the non-zero values over all positive examples. Our 
approach to performing feature selection based on 
zero-norm is to remove a feature whose vector values 
are all zero. Moreover, we have defined a #(v) as the 
number of values with non-zero value. For example 
if v = (0.4, 0, 0.6, 0, 0, 0.8, 0, 1, 1.4) the value of #(v) 
is 5. Furthermore, we define different levels for 
thresholds of #(v) to determine the relevance of a 
feature in order to remove it from the set of features 
(valid for both, the positive and the negative dataset). 
For example given a threshold of 3 for #(v) the feature 
is not selected if #(v) is less than the threshold. We 
considered the following thresholds: 3, 5, 10, 15, 20, 
25, 30, and 35. Obviously, only positive data was 
used for feature selection. 

2.5 One-Class Classifiers 

Two-class classification depends on properly 
assigned examples from both the positive (miRNA) 
and negative (non-miRNA) classes in order to build a 
classifier that can effectively discriminate between 
them. One-class classification employs only the 
information of one class (target) during training of the 
model which then is able to recognize the examples 
belonging to that class and rejecting others as outliers. 

Many one-class classification algorithms are 
available and we chose three one-class algorithms for 
comparison. In the following the algorithms will be 
briefly described, but more information is available in 
(Schölkopf et al., 2001; Tax, 2001). The LIBSVM 
library (Chang and Lin, 2011) was used for the 
implementation of the SVM-based (two-class) 
classifiers and DDtools (Tax, 2015) were used to 
implement all other selected OCCs. WEKA software 
(Witten et al., 2011) was used as implementation of 
the two-class classifiers enabling comparison with 
existing tools like the popular SVM method 
(Schölkopf et al., 1999; Vapnik, 1995). In the 
following OC-Gaussian (2.5.1), OC-kMeans (2.5.2), 
OC-kNN (2.5.3), and for comparison the two-class 
classifiers NB (2.6.1), SVM (2.6.2), random forest 
(2.6.3), and C4.5 (2.6.4) are briefly described. 

2.5.1 One-Class Gaussian 

This OCC algorithm (OC-Gaussian) uses a density 
estimation model which is under the assumption of a 
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multivariate normal distribution and that the 
probability density function can be calculated for a 
given test sample in n-dimensional space and 
compared to the training sample distribution (Yousef 
et al., 2007). Here we use g to depict the density. 

2.5.2 One-Class kMeans 

Kmeans is a well-known clustering algorithm which 
can partition data into k clusters. Using OC-kMeans 
we divide the data into k clusters. For an unknown 
sample z the distance d(z) is calculated to all k 
clusters. Generally, the class is assigned by returning 
the label of the closest cluster. In this case learned 
clusters are from the target class and thus if the 
unknown example is closer to the clusters than a 
threshold, they are assigned the target class or 
otherwise receive the label ‘unknown’. 

2.5.3 One-Class k-Nearest Neighbour 

As a modification of the two-class nearest neighbour 
classifier the one-class nearest neighbour classifier 
(OC-kNN) learns from positive examples only. OCC-
kNN stores all positive training examples as its 
model. When classifying an unknown example z, the 
distance to its nearest neighbour y (y = NN(z)) is 
calculated as d(z,y). In case the distance to y is smaller 
than to any of y’s nearest neighbours, the example is 
classified as y. Here we consider the average distance 
of the k nearest neighbours in the OC-kNN 
implementation. 

2.6 Two Class Methods 

Two-class classification methods were selected based 
on their popularity in bioinformatics. Currently, we 
see a rise of the use of random forest-based machine 
learning can be seen while a decrease for the use of 
simple decision trees (e.g.: C4.5) is apparent. 

2.6.1 Naïve Bayes 

Naïve Bayes is a classification algorithm based on 
posterior probabilities (Mitchell, 1997) and can, 
therefore, provide a probability for the membership 
of an unknown example. Important is the assumption 
that the features are conditionally independent given 
the class which may not hold in this case. 

We used the Rainbow program (McCallum, 
1996) to train the naïve Bayes classifier. To combine 
the numeric features identified in the miRNA-target 
duplex with the sequence features (words) in the 
target candidate sequence, a dictionary of all the 

unique words was generated and the frequency of 
each word in the sequence was used. 

2.6.2 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) have been 
employed in bioinformatics (Donaldson et al., 2003; 
Haussler, 1999; Pavlidis et al., 2001). Linear SVMs 
are usually defined as SVMs with linear kernel. The 
training data for linear SVMs could be linear non-
separable and then soft-margin SVM could be 
applied. Linear SVM separates the two classes in the 
training data by producing the optimal separating 
hyper-plane with a maximal margin between the class 
1 and class 2 samples; given a proper training set. 

2.6.3 Random Forest 

Random forests are an ensemble of tree predictors. 
Each tree depends on the values of a random vector 
sampled independently for all trees in the forest 
assuring same distribution for all trees (Breiman, 
2001). The improvement in the classification 
accuracy is due to the growing or an ensemble of tress 
that vote for the most popular class. Random forests 
are becoming increasingly popular because of their 
ability to deal with small sample size and high-
dimensional space. 

2.6.4 C4.5 

C4.5 is a decision tree algorithm, developed by 
(Quinlan, 1993). A decision tree is a simple structure 
where non-terminal nodes represent tests on one or 
more attributes and terminal nodes (leaves) reflect 
decision outcomes. 

2.7 Classification Performance 
Evaluation 

To evaluate classification performance, we used the 
data generated from the positive class and 1,000 
negative examples. The negative class is not used for 
training of the one-class classifiers, but merely for 
estimating the classification specificity. 

Each one-class algorithm was trained using 90% 
of the positive class and the remaining 10% were used 
for sensitivity evaluation. The randomly selected 
1,000 negative examples were used for the evaluation 
of specificity. The whole process was repeated 100 
times in order to evaluate the stability of the methods. 
The procedure is depicted as a flowchart in Figure 1. 
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Figure 1: Training and testing procedure for the one-class 
classifiers. Competing two-class classifiers also received 
negative data during training. 

3 RESULTS AND DISCUSSION 

3.1 Zero-Norm Feature Selection 

Since the current standard approach in miRNA 
prediction is using two-class classification, the OCCs 
are compared to two-class classifiers. 

Feature selection effectiveness is only presented 
for OCC since feature selection is well established for 
two-class classification. Table 2 shows the 
effectiveness of OC-kMeans, OC-kNN, and OC-
Gaussian for different number of selected features 
using the zero-norm feature selection method. Nine 
different feature set sizes were tested with their 
associated zero-norm thresholds. OC-kMeans and 
OC-kNN achieved similar maximum accuracy (96.65 
and 96.8, respectively) while OC-Gaussian was 
somewhat less accurate (94.4). In general, accuracy 
rises to the maximum and then decreases with the 
number of features although some outliers can be 
seen (Table 2). OC-kNN shows best performance for 
the unfiltered feature set at a k of four (Table 2). The 
number of clusters is generally at four, but for some 
feature sets it increases to six and even ten. The 
related method OC-kMeans interestingly performs 
best in a range from 18-35 for k inversely related with 
the number of features. The lowest accuracy for OC-
kMeans (95.68) and OC-kNN (94.8) was still better 
than the best accuracy for OC-Gaussian. Perhaps, the 
density estimation for OC-Gaussian is not as effective 
as the clustering methods in OC-kMeans and OC-
kNN. This is also seen by the range of accuracies 
achieved by these different methods.  

The  accuracy  spread  for  OC-kMeans  (~1)  and 

OC-kNN (2) is lower than OC-Gaussian (8). Given 
this data and feature selection method, OC-Gaussian 
doesn’t seem to be performing well. On the other 
hand, OC-kMeans and OC-kNN perform well and 
feature selection was most effective for OC-kMeans. 

 
Figure 2: Classifier performance in respect to number of 
selected features using Pearson feature selection. 

It is always possible that several features that 
individually have not much discriminative power 
together are very potent at discriminating among 
classes. This problem cannot be captured with the 
feature selection method employed here. 
Unfortunately, feature selection is NP-hard (Amaldi 
and Kann, 1998) and it is not possible to test all 
combination of features at all k or g. This may explain 
the outliers that can be seen in Table 2. 

3.2 Pearson-based Feature Selection 

For comparison with our zero-norm method, we 
performed feature selection results using the Pearson 
approach (Figure 2). OC-kNN achieves highest 
accuracy (96.82) followed by OC-kMeans (95.8) and 
OC-Gaussian (92.39). The accuracy spread for the 
selected features between 60 and 141 is 6 for OC-
kMeans, ~13 for OC-kNN, and ~19 for OC-Gaussian 
(details in Supplementary Table 2 in 
http://bioinformatics. 
iyte.edu.tr/supplements/binfo2016. Most 
interestingly, the Pearson method shows best 
performance for OC-kNN and OC-Gaussian with all 
features (141) selected. This indicates that for our 
data the Pearson-base feature selection method was 
not successful. For OC-kMeans some feature 
selection was achieved, however, which shows that in 
principle the Pearson-based method was correctly 
applied. Whether this is a problem of the features, the 
data,    or   a   weakness    of   the   feature   selection 
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Table 2: The accuracy performance of one-class classifiers in respect to selected features at different zero-norm thresholds. 
Number of clusters (k) was tested between 1 and 150 and density (g) between 0.01 and 1. Highest accuracy is highlighted in 
grey. ACC: accuracy, SE: sensitivity, SP: specificity. 

Features 

Zero-
norm 
Thres
-hold 

OC-kMeans OC-kNN OC-Gaussian 

k ACC SE SP k ACC SE SP g ACC SE SP 

141 0 18 96.2 82.8 96.6 4 96.8 90.3 97.0 0.6 92.5 82.5 92.8 

119 3 19 96.1 80.7 96.6 4 96.7 90.6 96.9 0.4 94.4 80.0 94.8 

113 5 20 96.12
5

80.5 96.62 6 96.0 90.1 96.2 0.5 92.7 83.1 93.0 

101 10 25 96.65 80.93 97.15 4 96.3 89.6 96.5 0.5 90.5 83.6 90.7 

90 15 20 95.1 78.15 96.9 4 95.8 90.8 96.0 0.3 92.6 81.4 93.0 

81 20 25 96.08 79.18 96.62 4 95.7 89.7 95.9 0.3 91.5 81.8 91.8 

75 25 25 95.95 79.72 96.46 4 95.4 90.8 95.6 0.2 91.9 80.3 92.2 

66 30 25 95.75 79.93 96.25 6 94.8 90.7 95.0 0.2 89.4 83 89.6 

58 35 25 95.68 79.38 96.2 10 95.2 91.1 95.3 0.2 86.4 84.1 86.4 
 
methodology cannot be deduced from our study, but 
in the future we will investigate this issue further. For 
OC-kMeans the accuracy doesn’t seem to have a 
correlation with the number of features while for OC-
kNN and OC-Gaussian there is a minimum between 
the two maxima with steady decrease and increase 
correlated with the number of features.  

While the results that this method achieves are 
somewhat comparable to our zero-norm feature 
selection method, OC-kMeans achieves about 1% 
less accuracy for Pearson feature selection when 
compared to zero-norm feature selection. The 
performance of OC-kNN is the same for both feature 
selection algorithms and OC-Gaussian performs 
about 2% worse when using Pearson-based feature 
selection.  

In summary, feature selection methods can be 
effective but work differently. A combination of 
methods may, therefore, be more successful than the 
methods that were compared here. Compared to the 
Pearson method, the zero-norm approach appeared to 
be more stable.  

The separation of positive versus ‘unknown’ class 
is better when fewer features are used in training 
(Figure 3). The linear projection in Figure 3 visually 
confirms that the classes are better separated in fewer 
dimensions, however, the separation could be better 
and selection of proper features may improve the 
situation. 

 
Figure 3: Linear projection of high dimensional data into 
two dimensions with red representing the positive and blue 
representing the ‘unknown’ class. Top pane shows all 
features (141), middle pane shows projection when features 
are selected using a zero-norm threshold of 3 (119 features), 
and the last pane shows the distribution after filtering using 
a threshold of 5 (113 features). 

3.3 Comparison to Two-Class 
Classification 

Since two-class classification is the de facto standard 
for miRNA target prediction, there is a need to 
compare the accuracy achieved using OCC to the one 
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that can be reached using two-class classification. We 
chose a few representative two-class classification 
algorithms which are also popular in bioinformatics.  

Unfortunately, any comparison between one-
class and two class classification’s effectiveness must 
remain biased unless perfectly known examples are 
available for both classes. For miRNA target 
prediction, this is not possible since only when a 
miRNA is co-expressed with its target can the effect 
be measured on the protein level. This in turn means 
that any genomic sequence can be a target until it was 
shown that it is not via co-expression with all known 
miRNAs. This is extremely difficult for any organism 
and futile for any higher organisms.  

Table 3: Accuracy performance of two-class classification 
algorithms in respect to selected features using the zero-
norm feature selection approach. ACC: accuracy, #: 
number (Further details in Supplementary Table 4, 
http://bioinformatics.iyte.edu.tr/supplements/binfo2016/). 

Feat
-

ures 

Zero- 
Norm 
Thres- 
hold 

Random 
Forest 

LIB-
SVM kNN C4.5 

#  ACC ACC ACC ACC 

119 3 98.53 99.30 93.33 96.38 

113 5 98.51 99.27 93.19 96.4 

101 10 98.63 99.36 93.38 96.31 

90 15 98.61 99.46 93.96 96.49 

81 20 98.78 99.45 93.98 96.44 

75 25 98.71 99.48 93.99 96.13 

66 30 98.71 99.48 94.83 96.83 

58 35 98.79 99.52 94.77 96.4 

Since truly negative data cannot be determined, it 
is necessary to create an artificial negative dataset for 
training and testing of the two-class classifiers. This 
would pose no problem if targeting would be 
understood in detail which would make machine 
learning unnecessary. Thus, for all artificial negative 
datasets the content of false negative data is unknown. 
This causes a bias when comparing to one class 
classification where the positive class is comparably 
well defined.  

Nonetheless, a comparison may be informative 
and, therefore, we performed two-class classification 
on the same data, using the same features, as we 
employed for OCC. Additionally, we employ the 
same zero-norm feature selection method (Table 3). 
Table 3 shows the performance of the two-class 
classification algorithms when feature selection is 
only based on the information from the positive class 

(exactly as done for OCC, above). There doesn’t 
seem to be a clear influence of the feature selection 
on the performance of the two-class classification 
results and down to 58 features they keep their 
accuracy more or less constant within a range of less 
than 1% accuracy. 

The best accuracy for the two-class classification 
methods are achieved with fewer features, something 
we would have expected to see in the OCC analysis 
as well. Overall, the performance of the two-class 
classification seems to be better than the OCC results. 
C4.5 and kNN perform worse than OC-kNN and 
equal to OC-kMEans. Random forest and SVM are up 
to ~2.5% more accurate than the OCC models. This 
view is likely biased since the OCC accuracy 
measures were established using artificial negative 
data. This will overestimate the accuracy of the two-
class classification and underestimate the accuracy of 
the one-class models. 

4 CONCLUSIONS 

We intended to show that one-class classification can 
be used for miRNA target prediction. For this we first 
attempted feature selection and were partially 
successful. From our data it seems clear that proper 
selection of features is important and has a positive 
influence on classification accuracy (Tables 2 and 3). 
A number of problems complicate feature selection, 
however:  

1) not all features are known 
2) negative data is artificial and of unknown 

quality 
3) feature selection is NP-hard and many 

features have already been proposed. 
Since feature selection methods perform differently 
(Table 2 and Figure 2), we are optimistic that a 
combination of feature selection methods may in the 
future propose a minimal feature set with maximum 
accuracy. We believe that problems 1) and 2) can be 
solved, but have no hope for the third issue. 

It was our aim to point out that relying on artificial 
negative data may be dangerous and that OCC can 
perform at a similar accuracy as two-class 
classification despite biased accuracy estimates. The 
performance difference among methods is only up to 
~2.5% (Tables 2 and 3).  

The current results show that it is possible to train 
a classifier based only on positive examples yielding 
a competitive performance. Moreover, using zero-
norm feature selection with the one-class approaches 
is able to improve the performance and approach to 
two-class performance levels. Clearly OCC is more 
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sensitive to non-relevant features than two-class 
classification. However, since the process of 
obtaining reliable biological data that defines the 
negative class is a time consuming, if not an 
impossible, endeavour a successful application of 
OCC can reduce this cost and provide important tools 
for classification of biological data and prediction of 
unknown data. 
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