
Verification of Atomicity Preservation in Model-to-Code
Transformations using Generic Java Code

Dan Zhang1, Dragan Bosnacki1, Mark van den Brand1, Cornelis Huizing1, Ruurd Kuiper1,
Bart Jacobs2 and Anton Wijs1

1Department of Mathematics and Computer Science, Eindhoven University of Technology,
Den Dolech 2, Eindhoven, The Netherlands

2Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium

Keywords: Model Transformation, Code Generation, Concurrency, Atomicity, Formal Verification, Separation logic.

Abstract: A challenging aspect of model-to-code transformations is to ensure that the semantic behavior of the input
model is preserved in the output code. When constructing concurrent systems, this is mainly difficult due
to the non-deterministic potential interaction between threads. In this paper, we consider this issue for a
framework that implements a transformation chain from models expressed in the state machine based domain
specific language SLCO to Java. In particular, we provide a fine-grained generic solution to preserve atomicity
of SLCO statements in the Java implementation. We give its generic specification based on separation logic
and verify it using the verification tool VeriFast. The solution can be regarded as a reusable module to safely
implement atomic operations in concurrent systems.

1 INTRODUCTION

Model transformation is a powerful concept in model-
driven software engineering (Kleppe et al., 2005).
Starting with an initial model written in a domain
specific language (DSL), other artifacts such as ad-
ditional models, source code and test scripts can be
produced via a chain of transformations. The initial
model is typically written at a conveniently high level
of abstraction, allowing the user to reason about com-
plex system behaviour in an intuitive way. The model
transformations are supposed to preserve the correct-
ness of the initial model, thereby realising a frame-
work where the generated artifacts are correct by con-
struction. A question that naturally arises for model-
to-code transformations is how to guarantee that func-
tional properties of the input models are preserved in
the generated code (Rahim and Whittle, 2013). In par-
ticular, this requires semantic conformance between
the model and the generated code. For models in the
area of safety-critical concurrent systems, the main
complication to guarantee this equivalence involves
the potential of threads to non-deterministically inter-
act with each other.

Specifically, when variables are shared among
multiple threads, the absence of race conditions is cru-
cial to guarantee that no undesired updates of those
variables can be performed. This relates to the no-

tion of atomicity of the instructions executed by the
threads. For instance, if two threads both increment
the value of a variable x by one, then only when each
of those increments can be performed atomically is
it ensured that the final value of x equals the initial
value plus two. Achieving atomicity of program in-
structions can be done using various techniques, such
as locks, semaphores, mutexes, or CPU instructions
such as compare-and-swap.

Also in modeling languages, atomicity is an im-
portant concept, to simplify the reasoning about pro-
gram instructions by abstracting away the atomicity
implementation details. Hence, an important require-
ment for model-to-code transformations is that the
atomicity of the statements in the modeling language
is preserved in the code. A conceptual solution would
be to map each statement to an atomic block in the
implementation language. Strictly speaking, a block
of instructions is atomic if during its execution no
instruction of another thread is allowed to be exe-
cuted. However, such a definition is too strong for
practical purposes, since it excludes the possibility
for threads to run truly concurrently in cases when
they access different variables, and therefore do not
interfere with each other. For this reason, it is usually
replaced with weaker notions that still ensure non-
interference. One such version, sometimes called se-

578
Zhang, D., Bosnacki, D., Brand, M., Huizing, C., Kuiper, R., Jacobs, B. and Wijs, A.
Verification of Atomicity Preservation in Model-to-Code Transformations using Generic Java Code.
DOI: 10.5220/0005689405780588
In Proceedings of the 4th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2016), pages 578-588
ISBN: 978-989-758-168-7
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

rializability (Biswas et al., 2014), allows instruction
blocks to be executed concurrently as long as their in-
dividual results are not affected by the other blocks.

In this paper, we demonstrate how one can estab-
lish that a model-to-code transformation transforms
atomic statements in modeling languages to blocks of
program instructions that are serializable. To illus-
trate this, we focus on a DSL called Simple Language
of Communicating Objects (SLCO) (Engelen, 2012),
on the one hand, and the Java programming language
on the other hand. It should be stressed, though,
that our approach is suitable for any combination of a
modern imperative programming language with con-
currency and a modeling language that is, like SLCO,
based on state machines that can be placed in paral-
lel composition, and can change state by firing transi-
tions with atomic statements (for instance, UML state
machines).

SLCO was originally introduced to model com-
plex embedded concurrent systems by means of state
machines in combination with variables. A technique
to verify SLCO-to-SLCO transformations has been
proposed in (Wijs, 2013; Wijs and Engelen, 2013;
Wijs and Engelen, 2014). In this paper we focus on
the correctness of a fully automated model-to-code
transformation in which each SLCO state machine
is transformed to an individual Java thread. In or-
der to define the transformation in a modular way,
and thereby improving its maintainability, we divide it
into two parts, one part transforming SLCO concepts
into generic code, and the other part transforming the
aspects that are specific for the particular input SLCO
model into specific code. The specific code may re-
fer to the generic code to use the model-independent
concepts. An example of a generic SLCO concept is
the communication channel, while a particular state
machine is an example of a concept specific for a
given SLCO model. This way of working provides a
clear maintenance advantage, as the implementations
of generic concepts can be updated without affecting
the overall transformation machinery. Another bene-
fit is that the generic code needs to be verified only
once. Each class of the generic code can be specified
and verified in isolation, allowing for modular verifi-
cation.

In the past, we have outlined the approach de-
scribed above in (Zhang et al., 2014), in which we
have also identified the main challenges. As a first
step towards having completely verified generic code,
we focussed on the SLCO communication channel,
and formally verified, using the VeriFast tool (Jacobs
et al., 2011), that its semantics is captured by the Java
construct to which we transform it (Bošnački et al.,
2015).

Contributions. Our contribution in this paper is
three-fold. First of all, we discuss how we have im-
plemented, specified, and verified a protection mech-
anism to access shared variables in such a way that
the code blocks implementing atomic DSL statements
are guaranteed to be serializable. This generic mecha-
nism is used in our framework to automatically trans-
form SLCO models into multi-threaded Java code,
but the solution is general enough to be used in other
model-to-code transformations as well.

The mechanism employs a fine-grained ordered-
locking approach. A coarse-grained approach tends to
negatively impact the performance of multi-threaded
software, while a lock-free approach, in particular us-
ing atomic instructions such as compare-and-swap, is
necessarily restricted to work only for statements that
involve a single shared variable.

Second, we show the feasibility to verify the atom-
icity of generic statements by focussing on the SLCO
assignment statement. We formally prove its imple-
mentation against a specification of non-interference
using the VeriFast tool (Jacobs et al., 2011). Being
based on separation logic (Reynolds, 2002), VeriFast
is suitable to deal with aliasing and concurrency in
Java, as well as with race conditions using the con-
cept of ownership of shared resources between multi-
threaded programs.

Finally, we introduce a wrapper class pattern to
perform modular verification. With the wrapper class,
it is possible to encapsulate data structures that are
used in the code, but are not subjected to verification
(for instance, because they have already been verified
at an earlier stage possibly using a different tool).

The remainder of the paper is structured as fol-
lows. In Section 2 we briefly explain SLCO, the
model transformation from SLCO to Java, and the es-
sentials of separation logic and VeriFast. Section 3
describes the implementation of atomicity of SLCO
statements in Java, as well as the implementation of
the generic wrapper class. In Section 4, we demon-
strate how to specify and verify the Java implemen-
tation. Section 5 discusses related work, and Section
6 contains our conclusions and a discussion about fu-
ture work.

2 PRELIMINARIES

2.1 SLCO

In SLCO, systems consisting of concurrent, commu-
nication components can be described using an in-
tuitive graphical syntax. Objects, as instances of
classes, can communicate via channels, over which

Verification of Atomicity Preservation in Model-to-Code Transformations using Generic Java Code

579

they send and receive signals. Objects are connected
to channels via their ports. Each object consists of a
number of finite state machines and shared variables.
The state machines in an object can use private, lo-
cal variables, and communicate with each other via
the shared variables in the object. Each transition
of a state machine may have an associated SLCO
statement. 1 SLCO offers five types of atomic state-
ments: SendSignal, ReceiveSignal, (Boolean) Ex-
pression, Assignment, and Delay.

State machines, like the ones in Figure 1, are
used to specify object behavior. Each transition has
a source and target state, and the statement associ-
ated with a transition is executed when the transition
is fired. Parallel execution of transitions is formalized
in the form of interleaving semantics. A transition is
enabled if the statement is enabled or there is no state-
ment associated with the transition. For communica-
tion between objects, there are statements for sending
and receiving signals. The statement send T(s) to In-
Out, for instance, sends a signal named T with a single
argument s via port InOut. Its counterpart receive T(s)
from InOut receives a signal named T from port In-
Out and stores the value of the argument in variable s.
Statements such as receive Q(m | m >= 0) from In2
offer a form of conditional signal reception. In this
example, only those signals are accepted whose ar-
gument is at least equal to 0. Boolean expressions,
such as m=6, denote statements that block until the
expression holds. Assignment statements, such as
m := m+ 1, are always enabled, and are used to as-
sign values to variables. Finally, time is incorporated
in SLCO by means of delay statements. For exam-
ple, the statement after 5 ms blocks until 5 ms have
passed since the moment the source state was entered.

As already mentioned, variables can be shared by
multiple state machines. In Figure 1, the three state
machines in the left rectangle are part of the same ob-
ject, and m is shared by them: assigning a value to m
in the second state machine may affect the truth-value
of the expression in the third. Statements of types Ex-
pression, Assignment, ReceiveSignal and SendSignal
can all refer to variables shared by multiple state ma-
chines.

2.2 Model Transformation

Recently, we developed an automated model-to-code
transformation (AuthorsOfThisPaper, 2015) from
SLCO models to multi-threaded Java programs. The

1There is an extended version of SLCO allowing multi-
ple statements per transition. In this paper, we consider the
basic language, since extended SLCO models can be trans-
lated to basic SLCO models (Engelen, 2012).

m == 6

send S(”a”) to InOut

receive T(s | true)
from InOut

Rec2a

 receive Q(m | m >= 0) from In2
m := m + 1

Rec1
receive P(v | v == false)
from In1 Com0

Com1

send P(true)
to Out1

Com2

after 5 ms

send Q(5) to Out2

receive S(s | true)
from InOut

send T(s) to InOut

Rec2b

SendRec0

SendRec1

SendRec2

Com3

Com4

Figure 1: State machines in an SLCO model.

transformation consists of multiple steps. Here we fo-
cus on the last step that transforms SLCO models to
Java code. The preceding steps are transformations
from SLCO models to more refined SLCO models us-
ing Xtend. 2 These steps are used to deal with poten-
tial semantic and platform differences.

After this problem has been resolved, the last step
from SLCO to Java is applied, which is implemented
in the Epsilon Generation Language (EGL) (Kolovos
et al., 2011) based on Eclipse. The output is defined
by means of templates that are used by the genera-
tor to produce the Java code. The generator applies
transformation rules, defined in the template, to all
the meta model objects which results in generation of
the corresponding Java code. This Java code is con-
structed by combining specific code implementing the
behavior of the input model with generic code imple-
menting model-independent SLCO concepts. Exam-
ples of such concepts are the communication channel,
the various types of statements, and a list datatype
to store the shared variables owned by an object.
The transformation achieves a one-to-one mapping
between the state machines in an SLCO model and
the threads in the derived program. Finally, the spe-
cific code is combined with the generic code to obtain
complete, executable code that should behave as the
SLCO model specifies. In order to guarantee that im-
portant properties of the input model are preserved,
the transformation needs to be verified. In this paper,
we focus on verifying that the atomic nature of SLCO
statements is preserved when they are transformed to
blocks of Java instructions. The main complication
when verifying this lies in the fact that the statements
may access shared variables, and hence can poten-

2www.eclipse.org/xtend

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

580

tially interfere with each other when executed con-
currently. We use separation logic to specify the code
blocks.

2.3 Separation Logic

Separation logic (Reynolds, 2002; O’Hearn et al.,
2001) is an extension of Hoare logic (Owicki and
Gries, 1976) that supports reasoning about shared
memory which can be referenced from more than one
location. Therefore, separation logic is used to de-
scribe the heap – a mapping from object IDs and ob-
ject fields to values, where a value is an object or a
constant. The basic heap expressions are emp, the
empty heap, satisfied by states having a heap with no
entries, and E 7→ F (read as “E points to F”), a sin-
gleton heap, satisfied by a state with a heap consist-
ing of only one entry on address E with content F .
For instance, o. f 7→ v means that field f of object o
has value v. To represent complex heaps (e.g., dy-
namic data structures) the logical operator ‘∗’, called
separation conjunction is used. Expression P*Q as-
serts that the heap contains disjoint parts such that P
holds in one part and Q holds in the other. So, un-
like its counterpart o. f 7→ v∧o. f 7→ v, the expression
o. f 7→ v ∗ o. f 7→ v evaluates to false because the two
heap components are not disjoint. In a concurrent set-
ting, this is used to detect data races, i.e., a simul-
taneous access to the same memory objects by two
different threads.

In addition to the standard rules of the Hoare
framework, separation logic has the frame rule. It al-
lows to extend the specification of a program segment
C with assertion R. The axiom requires that no free
variable in R is modified by C:

{P}C {Q}
{P∗R}C {Q∗R} (frame)

Separation logic uses the principle of a minimal
memory footprint, meaning that a separation asser-
tion describes a unique heap. For example, the as-
sertion o. f 7→ a∗o.g 7→ b describes a heap consisting
of exactly two entries. This property together with
the requirement that the heaps of two separate threads
are disjoint, makes it possible to give a natural own-
ership interpretation of a shared resource. If a separa-
tion logic assertion P holds at some program location
on a thread, then we say that the thread owns the part
of the heap described by P at that location.

The portions of the heap associated with each
thread are always mutually disjoint. When a thread
acquires a shared object, it claims the ownership of
the state associated with the variable; when releasing
the variable, it must return the ownership of the corre-

sponding piece of state. At all stages, our use of sep-
aration logic ensures that each piece of the heap is ac-
cessed by at most one thread. It thus becomes possible
to reason about concurrent programs in which owner-
ship of a shared variable can be perceived to transfer
dynamically between threads. We achieve this dy-
namic transfer by associating invariants to locks of
shared objects. The invariant representing the envi-
ronment of the thread expresses the ownership of the
shared variable.

By acquiring a lock, the verified program compo-
nent also acquires the lock invariant representing the
heap that corresponds to the shared variables. The in-
variant carries a full permission to change the actual
shared variables. By releasing the lock, the compo-
nent releases, together with the invariant, also the ac-
quired ownerships. This is expressed by the following
rules for the lock and unlock operations

{emp} v.lock() {Iv(l)} (L)

{Iv(l)} v.unlock() {emp} (UL)

where Iv(l) is the invariant associated with lock l of
variable v.

To specify read-only sharing of variables frac-
tional ownerships (permissions) are used. A frac-
tional permission with fraction φ is denoted by
[φ]o. f 7→ v, where 0 < φ ≤ 1. When φ = 1, the frac-
tion is omitted and we obtain the usual o. f 7→ v. This
case expresses full ownership, allowing both read and
write access.

2.4 VeriFast

The VeriFast tool is a program verifier for se-
quential and concurrent C and Java programs.
Programs are annotated with assertions writ-
ten as separation logic formulae. The veri-
fier can check for NULLPointerException or
ArrayIndexOutOfBoundsException. For con-
current programs, it checks that the program does
not contain data races (memory safety). When
the verification succeeds and it reports no error,
the assertions and method contracts (preconditions
and postconditions) are respected in every program
execution. In the verification, VeriFast executes
method bodies symbolically. The symbolic execution
of a triple {P} C {Q} starts in the symbolic state
corresponding to the precondition P. If the triple is
correct, each finite execution should eventually reach
a symbolic state implying Q.

Verification of Atomicity Preservation in Model-to-Code Transformations using Generic Java Code

581

3 IMPLEMENTING SLCO
ATOMICITY

In this section, we give the formal definition of atom-
icity of SLCO statements as well as a semantically
comparable form of non-interference called serializ-
ability (Biswas et al., 2014) for the Java blocks im-
plementing those statements. Furthermore, to fa-
cilitate the transformation of SLCO statements to
Java code, specifically to handle accessing shared
variables, we introduce the generic data structure
SharedVariableList.

In our model-to-code transformation, each SLCO
statement s in a state machine M is transformed into
a block of Java instructions σ = s0;s1; . . . ;sn to be
executed by a thread tM . Strictly speaking, preserv-
ing atomicity of s in σ means that no instruction s′ of
some thread t 6= tM is allowed to be executed between
the beginning and end of the execution of σ.

However, implementing atomicity in this strict
sense is practically undesirable when constructing
multi-threaded software, since it disallows true par-
allelism. That is why we replace this strong atom-
icity requirement with serializability. Serializabil-
ity guarantees that for any concurrent execution of
(atomic) Java blocks there exists a sequential execu-
tion of those blocks that is indistinguishable from the
concurrent execution, in terms of the final effect on
the global system state. More explicitly, let σ and σ′
be two different instruction blocks to be executed by
different threads tM , t ′M . Let q0 be a global state in the
Java model in which both σ and σ′ can start a concur-
rent execution and let q1 be a state in which the system
ends up after the execution of both σ and σ′. Then,
q1 also is obtained after sequential execution of the
sequence σσ′ or σ′σ (or both). Hence, we may rea-
son about their execution as if σ was first completely
executed before σ′ was started, or vice versa. (Note
that this also covers the case when σ may prevent the
execution of σ′ or vice versa.) The extension of the
concept of serializability to an arbitrary number of in-
struction blocks σi is straightforward.

The state of a system is determined by the val-
ues of its variables. In SLCO, statements may access
variables shared by multiple state machines (see Sec-
tion 2). Therefore, in the corresponding Java code,
multiple threads may access the same shared vari-
ables. In order to realize serializability in such a set-
ting, it must be ensured that an instruction s′ of some
thread t cannot affect the variables accessed by the in-
structions in a block σ of thread tM 6= t running con-
currently.

The way in which shared variables are protected
has a significant impact on the overall performance

of concurrent programs. For example, using one sin-
gle global lock to protect a list frequently accessed
by several threads is likely to scale much worse than
when each element in that list is individually lockable.

SLCO statements may require access to just a sub-
set of the shared variables of an object. Therefore,
each element in the list of shared variables is assigned
its own lock for read and write access. This gives a
better performance than using a single lock for the
complete list. In this way we achieve serializability,
as shown in Section 4.2.

Individual locking may introduce deadlocks. We
use the technique of ordered locking [Havender,
1968] to prevent them. The ordered locking mech-
anism guarantees that when multiple threads compete
over a set of variables, one thread is always able to
acquire access to all of them. Of course, other threads
requiring access to different shared variables are able
to access these concurrently.

Note that the locks can be released in an arbitrary
order. Obviously there is no deadlock during the re-
leasing since at least one method - namely, unlock is
active. After the locks are released we again have the
situation in which multiple threads compete for the
locks in fixed order.

Our synchronization mechanism for
shared variables is shown in Listing 1. The
SharedVariableList, as a wrapper class, is in-
troduced to abstract away how the list of shared
variables is implemented. It can be used to encap-
sulate Java data structures. The methods lock and
unlock are used to acquire and release each lock of
the shared variables in the list.

Listing 1: Class Statement
1 public abstract class Statement {
2 protected SharedVariableList variablesList;
3 ...
4 public void lock()
5 {
6 for (int i = 0; i < variablesList.size(); i++)
7 {
8 variablesList.get(i).lock.lock();
9 }

10 }
11 public void unlock()
12 {
13 for (int i = 0; i < variablesList.size(); i++)
14 {
15 variablesList.get(i).lock.unlock();
16 }
17 }
18 }

The class Assignment as a subclass of class
Statement (Listing 2) contains a method called
lockAndAssign that can be used to safely assign a
new value to a shared variable. The abstract method
assign is implemented in the subclass which is re-
lated to a concrete SLCO assignment. When a thread
attempts to execute the method assign, it will be de-
layed until all locks in the variablesList of vari-

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

582

ables to be accessed by the assign method are not
being used anymore by other threads.

Listing 2: Class Assignment.
1 public abstract class Assignment extends Statement

{
2 ...
3 public abstract void assign();
4 public void lockAndAssign() {
5 lock();
6 assign();
7 unlock();
8 }
9 }

As already mentioned, to store shared variables,
we introduce a wrapper class SharedVariableList.
Listing 3 shows its declaration. The concept of wrap-
per classes is quite common in object-oriented pro-
gramming and it is a pattern in object-oriented de-
velopment. The wrapper class is used to hide in-
formation of concrete Java data structures, which al-
lows modular verification. Parts of the code that
use SharedVariableList can be verified without in-
volving the data structure; in fact, it may not even
have been implemented yet. This helps to scale ver-
ification to larger programs, since the wrapper class
needs to be analyzed only once, instead of once per
call. Finally, modifying the implementation of the
data structure encapsulated by the wrapper class never
breaks correctness of its callers. This allows for si-
multaneous development and verification of code.

Listing 3: Declaration of class SharedVariableList.
1 final class SharedVariableList{
2 public SharedVariableList();
3 public int size();
4 public SharedVariable get(int index);
5 boolean add(SharedVariable e);
6 }

4 SPECIFYING AND VERIFYING
SLCO ATOMICITY

In the previous section, we explained how the atom-
icity of SLCO statements can be implemented using
serializability. We can use separation logic in Veri-
Fast to verify the serializability, i.e., the fact that there
is non-interference between different threads.

The interpretation of correctness depends cru-
cially on rules L and UL for the lock and unlock
operations from Section 2.3. In our case in rules L
and UL invariant Iv(l) is of the form v 7→ , i.e., ex-
presses ownership of the variable v. By rule L, Iv(l)
is guaranteed to hold after lock, i.e., in the begin-
ning of the protected code block. This means that
the corresponding thread acquires the ownership of
v. Similarly, at the end of the block, after unlock,
the ownership of v is released together with invariant

Iv(l). Let V be the list of shared variables associated
with the statement implemented in the block. By ex-
ecuting lock for each variable in V , using a combi-
nation of the L and UL rules and the frame rule from
Section 2.3, an assertion IV is established which is the
conjunction of the invariants Iv(l), for all v∈V . IV can
be seen as an invariant of the list V which expresses
ownership of all variables in V by the thread. The con-
crete setting of our model transformation ensures that
no shared variable in V is acquired or released within
the protected code block. This is achieved by sim-
ply not using lock and unlock within the protected
block, since these are the only statements with which
one can acquire or release ownership. Together with
the fact that invariant IV holds at the beginning and
at the end of the block, this implies non-interference
since all variables are held exclusively by the thread
during the execution of the block.

VeriFast supports modular verification in the sense
that each method is verified separately. In this, each
method relies on its environment to comply with the
invariant. This is checked during the verification
when several threads are combined. In the follow-
ing sections, we specify and verify the atomicity of
Java constructs corresponding with SLCO statements
using separation logic via VeriFast.

In VeriFast, for each verified Java source file
(.java) there is a corresponding specification file
(.javaspec). The .java file contains implementations,
specifications, annotations, and predicates, while the
.javaspec file contains only declarations of predicates
and specifications of methods with a semicolon in-
stead of a method body. A .javaspec file can be used
to verify client programs even without having the cor-
responding .java file that contains the definitions and
the implementations mentioned in the .javaspec file.
Thus, the client programs are users of the .javaspec
files. For example, we only need to provide a pure
(i.e., containing no implementations) specification file
SharedVariableList.javaspec to VeriFast in order to
verify the Statement class.

4.1 Class SharedVariableList
Specification

Class SharedVariableList is specified in sepa-
ration logic in a way that is in fact independent of
the Java programming language. In Listing 4, the
class SharedVariableList provides methods for
modifying and querying its instances, such as size,
add and get.

Verification of Atomicity Preservation in Model-to-Code Transformations using Generic Java Code

583

Listing 4: Specification of class SharedVariableList.
1 final class SharedVariableList{
2 /*@ predicate List(list <SharedVariable > elements);

@*/
3 public SharedVariableList();
4 //@ requires true;
5 //@ ensures List(nil);
6 public int size();
7 //@ requires [?f]List(?es);
8 //@ ensures [f]List(es) &*& result == length(es);
9 public SharedVariable get(int index);

10 //@ requires [?f]List(?es) &*& 0 <= index &*& index
< length(es);

11 //@ ensures [f]List(es) &*& result == nth(index , es
);

12 boolean add(SharedVariable e);
13 //@ requires List(?es);
14 //@ ensures List(append(es, cons(e, nil))) &*&

result;
15 }

The VeriFast specific text, e.g., specifications and
declarations of auxiliary variables introduced only for
verification purposes, is located inside special com-
ments delimited by @.

We express the state of the sharedVariableList
instances using a mathematical list predefined in Ver-
iFast as follows: The empty list is denoted by nil and
a nonempty list starting by an element h and a tail t is
denoted by cons(h,t). In particular, predicate List
is an abstract predicate that provides an abstract repre-
sentation of the contents of the list of shared variables.
More concretely, parameter elements is a mathemat-
ical list containing the actual program variables that
are stored in the list. The actual implementation can
be, for instance, a dynamic list or an array. Using the
abstract predicate we can hide such implementation
details during the verification. Note that List remains
undefined in this specification stage. Its definition can
be provided later together with the implementation of
SharedVariableList.

The pre- and postconditions form the contracts
of the methods and are denoted by the keywords
requires and ensures, respectively, like in lines 4-
5 in Listing 4. This contract of the constructor guar-
antees that an object is created corresponding to an
empty list, regardless of the precondition.

The specification of size in lines 7 and 8 states
that the method returns the length of the list. Com-
ponent assertions of pre- and postconditions are sepa-
rated by the spatial conjunction denoted by &*&. Both
[?f] and [f] are fractional ownerships. The ques-
tion mark ? in front of a variable means that the
matched value is bound to the variable and all later
occurrences of that variable in the contract refer to
this matched value. In our case the value of the frac-
tional permission f in the precondition in line 7 must
be the same as the one in the postcondition in line 8.
Hence, the precondition in line 7 [?f]List(?es) ex-
presses both that a fractional ownership with fraction
f is required for the shared variable list correspond-
ing with the mathematical list es, and records f and

es. The postcondition specifies that the method re-
turns the ownership of es to the caller with the same
fraction f and the result that is returned by size is
the length of es. result is a reserved variable name
representing the return value of the method.

The precondition of get (line 10) requires that a
valid element index is provided as an input parame-
ter. The postcondition expresses that the element at
position index in list es is returned using the mathe-
matical function nth.

Unlike for other methods, the precondition of add
(line 13) requires full ownership of the list es. As a
result, the caller who owns es is allowed to insert an
element into the list. Finally the method add returns
the ownership of a new list that combines the list es
with the newly inserted element e using the function
append.

4.2 Class Statement Specification

The specification of class Statement is shown in
Listing 5. The predicate constructor lock inv in
line 2 is essential for the preservation of serializabil-
ity. It defines the lock invariant Iv(l) associated with
the lock of a variable v passed as a parameter. The
assertion v.value |-> asserts the full ownership
of v.value. The underscore ’ ’ denotes an arbitrary
value.

The recursive predicates locks and invariants
in lines 3-7 and 8-12, respectively, are used to specify
data structures without static bound on their size. The
body of each predicate is a conditional assertion. If
vs is null (the base case of the induction) then the
value of predicate locks is true (line 5); otherwise,
the inductive step asserts that the lock of the first ele-
ment of the list vs, head(vs) is partially owned. This
is given by return []head(vs).lock |-> ?lock
in line 7, where [] denotes an unspecified fraction.
Besides that, invariant lock inv(head(vs)) is asso-
ciated with the lock of the first element, via the pred-
icate ReentrantLock. Predicate ReentrantLock
is defined by VeriFast as a specification of the
ReentrantLock class. In a similar fashion, the re-
cursive predicate invariants states that a conjunc-
tion of invariants corresponding to the (locks of the)
variables in list vs is recursively built. As mentioned
above, for each variable the corresponding invariant
is given by the specification lock inv(head(vs)).

Predicate Statement lock() is actually defined
in Listing 6 and denotes that the Statement ob-
ject is in a valid state corresponding to an abstract
value given by the mathematical object list of shared
variable objects vs. The body of method lock
needs to establish the above mentioned invariant IV

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

584

of each variable in list vs which is expressed by the
postcondition invariants(vs). The postcondition
invariants(vs) is also one part of the precondi-
tion in the method unlock. By calling the method
unlock, invariant Iv of each variable in list vs is not
guaranteed to hold anymore. After that, other threads
can acquire the ownership of those variables through
the method lock.

Listing 5: Abstract Specifications of Class Statement.
1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = v.

value |-> _;
3 predicate locks(list <SharedVariable > vs;) =
4 vs == nil ?
5 true
6 :
7 [_]head(vs).lock |-> ?lock &*& [_]lock.ReentrantLock(

lock_inv(head(vs))) &*& locks(tail(vs));
8 predicate invariants(list <SharedVariable > vs;) =
9 vs == nil ?

10 true
11 :
12 lock_inv(head(vs))() &*& invariants(tail(vs));
13 @*/
14 class Statement {
15 //@ predicate Statement_lock(list <SharedVariable > vs)

;
16 void lock();
17 //@ requires [_]Statement_lock(?vs);
18 //@ ensures invariants(vs);
19
20 void unlock();
21 //@ requires [_]Statement_lock(?vs) &*& invariants(vs

);
22 //@ ensures true;
23 }

4.3 Class Statement Verification

Above we gave the formal specification of the class
Statement in an abstract, mathematically precise and
implementation-independent way. Providing specifi-
cation of SharedVariableList is a critical factor to
verify the implementation of class Statement. Ad-
ditional predicates and annotations are also needed
to verify the implementation of class Statement, as
shown in Listing 6.

Listing 6: Verification annotations for class Statement.
1 /*@
2 predicate_ctor lock_inv(SharedVariable v)(;) = ...
3 predicate locks(list <SharedVariable > vs;) = ...
4 predicate invariants(list <SharedVariable > vs;) = ...
5 @*/
6 class Statement {
7 SharedVariableList variablesList;
8 //@ predicate Statement_lock(list <SharedVariable > vs)

= this.variablesList |-> ?a &*& a.List(vs) &*&
locks(vs);

9 void lock()
10 //@ requires [_]Statement_lock(?vs);
11 //@ ensures invariants(vs);
12 {
13 for (int i = 0; i < variablesList.size(); i++)
14 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs

) &*& [_]locks(drop(i,vs)) &*& i >= 0 &*& i <=
length(vs);

15 //@ ensures invariants(drop(old_i , vs));
16 {
17 //@ drop_n_plus_one(i,vs);
18 variablesList.get(i).lock.lock();
19 }

20 }
21 void unlock()
22 //@ requires [_]Statement_lock(?vs) &*& invariants(vs

);
23 //@ ensures true;
24 {
25 for (int i = 0; i < variablesList.size(); i++)
26 //@ requires [_]variablesList |-> ?b &*& [_]b.List(vs

) &*& [_]locks(drop(i,vs)) &*& invariants(drop(
i,vs)) &*& i >= 0 &*& i <= length(vs);

27 //@ ensures true;
28 {
29 //@ drop_n_plus_one(i,vs);
30 variablesList.get(i).lock.unlock();
31 }
32 }
33 }

The part in lines 1-5 in Listing 6 is identical
to lines 1-13 in the specification Listing 5. Line
8 in Listing 6 contains the definition of predi-
cate Statement lock which in Listing 5 was only
specified. The part this.variablesList |-> ?a
states that field variableList is defined. The last
two conjuncts a.List(vs) &*& locks(vs) relate
variableList with the mathematical variable vs of
type list and moreover the variables in vs are con-
nected to their corresponding locks. The contract of
method lock in lines 10-11 is the same as the one in
Listing 5.

In line 13 we use a for loop to obtain the lock
of each element in the SharedVariableList. Be-
sides loop invariants, VeriFast supports also loop ver-
ification by specifying a loop contract consisting of
a precondition and a postcondition (Tuerk, 2009).
Then the loop is verified as if it were written us-
ing a local recursive function. The contract spec-
ifies the permissions used only by a specific recur-
sive call (i.e., corresponding to a specific value of the
loop counter i). The precondition in line 14 matches
variablesList with variable b ([]variablesList
|-> ?b), relates b to vs ([]b.List(vs)), associates
the variables from the i-th to the vs.length-1-th
in list vs ([]locks(drop(i,vs))) to their locks,
and finally limits the range of the counter i (i >= 0
&*& i <= length(vs)). The segment vs from i to
vs.length-1 is obtained using the built-in function
on lists drop. In a similar way in the postcondition
in line 15, the list tail starting with old i is obtained
as an argument of the predicate invariants. Vari-
able old i refers to the value of the variable i at the
start of the virtual function call (loop body). After
the top virtual recursive call backtracks, i.e., after the
loop termination, old i equals 0. This implies the
validity of the conjunction of all lock invariants and
consequently the ownership of all variables in vs.

Lemma functions are used to help VeriFast to
transform one assertion to another. The contract
of a lemma function corresponds to a theorem, its
body to the proof, and a lemma call to an applica-
tion of the theorem. In our case lemma function

Verification of Atomicity Preservation in Model-to-Code Transformations using Generic Java Code

585

drop n plus one(i,vs) in line 17 tells the verifier
that drop(n,vs) is equivalent to the concatenation of
the element nth(vs) with the list drop(n+1,vs).

The detailed annotation of unlock (lines 21-32)
uses the same concepts as the annotation of lock,
therefore we do not discuss the former explicitly.
It expresses that in each iteration the loop invariant
shrinks instead of growing with the addition of a new
conjunct, i.e., invariant associated to a lock.

The specification and annotation in the cur-
rent section is sufficient to prove that predicate
invariants, which corresponds to IV , holds in the
beginning and the end of the block implementing the
statements. In Listing 2 this means that invariants
holds immediately after lock in line 5 and immedi-
ately before the unlock in line 7. The validity of
invariants ensures ownership of the variables in
sharedVariables. As discussed above, by construc-
tion of our transformation (i.e., by not using lock and
unlock within the protected block of the statement
translation) we ensure that the block does not release
this ownership. For example, in Listing 2 methods
assign in line 6, as well as the implementations of all
other types of SLCO statements, satisfies this prop-
erty. VeriFast is able to verify that all relevant vari-
ables are held by the thread executing the method cor-
responding to the implementation of the SLCO state-
ment. This implies serializability of the programs as
it an be seen from the following arguments.

Consider two instruction blocks σ and σ′ which
both implement an SLCO statement. Hence, they
both contain a lock protected code block. We show
that they are serializable. Let V and V ′ be the set of
variables accessed by σ and σ′, respectively. Con-
sider first the case when V ∩V ′ 6= /0. Suppose that
σ first acquires the ownership of all variables in V .
Then σ′ must wait until those variables are released.
If there is some prefix σ′′ of σ′ which has been ex-
ecuted before σ acquired the variables in V , then σ′
could have modified only variables which are not in
V . So, this prefix could have been executed after σ
terminated and therefore the sequence σσ′ will pro-
duce the same variable changes, i.e., the same state as
the concurrent execution of σ and σ′.

A similar argument can be used for the case V ∩
V ′ = /0. In this case the individual statements in σ
and σ′ are independent of one another and can be per-
muted in an arbitrary order. The set of possible se-
quences includes both σσ′ and σ′σ and they conflu-
ently lead to the same end state.

5 RELATED WORK

The detection of race condition violations in concur-
rent code using the lock mechanism has been ad-
dressed by a number of type-based (Farzan and Mad-
husudan, 2006), static (Engler and Ashcraft, 2003;
Abadi et al., 2006) and dynamic analysis (Choi et al.,
2002) tools. However, as shown in (Flanagan and
Qadeer, 2003), a code block free of race conditions
may still contain errors caused by simultaneous ac-
cess to shared objects. Therefore, stronger concepts
of non-interference are needed. In (Flanagan and
Qadeer, 2003), a relaxed definition of atomicity was
used and an atomic type system was implemented
to check it. The tool DoubleChecker (Biswas et al.,
2014) checks for serializability of concurrent pro-
grams based on run-time information about the de-
pendences between threads. The above mentioned
works check the correctness of programs a posteri-
ori, i.e., after they have been fully implemented. In
contrast, our approach statically verifies generic code
to be used in the construction of complete programs.

There exists a substantial amount of work that
deals with model-to-code transformations. For an
overview, see (Rahim and Whittle, 2013). Here we
focus on relevant work that deals with model-to-code
transformations and uses verification based on deduc-
tive methods, like theorem proving.

In (Blech et al., 2005), a formal verification using
Isabelle/HOL theorem prover is presented of a con-
crete algorithm that generates Java code from UML
Statecharts. It is shown that the source UML model
and the generated Java code are bisimilar. This is a
one stage model transformation. In (Stenzel et al.,
2011), a Java code generation framework is presented.
The framework is based on the transformation lan-
guage QVT. The theorem prover KIV is used to prove
security properties and syntactic correctness. In both
these works, one of the major concerns is the scala-
bility when the transformations are applied on com-
plex models. By splitting the transformation into pro-
ducing generic and specific code, and verifying the
generic concepts in isolation, we aim to have a more
scalable approach.

Finally, software model checking techniques,
e.g., (Chaki et al., 2003; Jhala and Majumdar, 2009),
offer a supporting approach to verify code result-
ing from model-to-code transformations. These tech-
niques could in particular be useful to verify the
generic code. Tools like Java PathFinder (Visser et al.,
2003) are natural candidates for this task. It remains
to be investigated how feasible it is to apply these
techniques in a modular approach like ours, in which
each transformed concept is verified separately.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

586

6 CONCLUSIONS

We have presented an approach for the verification of
atomicity preservation in model-to-code transforma-
tions based on separation logic using the tool Veri-
Fast. We applied this approach in the transformation
from the domain specific language SLCO to Java.

To obtain high efficiency, we replaced the origi-
nal strong atomicity requirement of SLCO with the
semantically relaxed notion of serializability. The
serializability was implemented by a fine-grained
deadlock-free ordered locking allowing true paral-
lelism with fine-grained granularity. We stated the
serializability in terms of ownership of shared vari-
ables expressed by means of lock invariants. Using
VeriFast we verified the non-interference in the Java
code.

ACKNOWLEDGEMENTS

This work was done with financial support from the
China Scholarship Council (CSC) and ARTEMIS
Joint Undertaking project EMC2 (grant agreement
621429).

REFERENCES

Abadi, M., Flanagan, C., and Freund, S. N. (2006). Types
for Safe Locking: Static Race Detection for Java.
ACM Transactions on Programming Languages and
Systems (TOPLAS), 28(2):207–255.

Authors of This Paper (2015). SLCOtoJava Model Trans-
formation and Verification. https://drive.google .com/-
drive/u/0/folders/0B2U1DbWZemiVRVlhbElPd0Z1
NVE.

Biswas, S., Huang, J., Sengupta, A., and Bond, M. D.
(2014). DoubleChecker: Efficient Sound and Precise
Atomicity Checking. In ACM SIGPLAN Notices, vol-
ume 49, pages 28–39. ACM.

Blech, J., Glesner, S., and Leitner, J. (2005). Formal Veri-
fication of Java Code Generation from UML Models.
In Fujaba Days, pages 49–56.

Bošnački, D., van den Brand, M., Huizing, C., Jacobs, B.,
Kuiper, R., Wijs, A., and Zhang, D. (2015). Verifi-
cation of Atomicity Preservation in Model-To-Code
Transformations. In FACS, LNCS. Springer (accepted
for publication).

Chaki, S., Clarke, E., Groce, A., Jha, S., and Veith, H.
(2003). Modular Verification of Software Compo-
nents in C. In ICSE, pages 385–395. IEEE.

Choi, J.-D., Lee, K., Loginov, A., O’Callahan, R., Sarkar,
V., and Sridharan, M. (2002). Efficient and Pre-
cise Datarace Detection for Multithreaded Object-
Oriented Programs. In ACM SIGPLAN Notices, vol-
ume 37, pages 258–269. ACM.

Engelen, L. (2012). From Napkin Sketches To Reliable Soft-
ware. PhD thesis, Eindhoven University of Technol-
ogy.

Engler, D. and Ashcraft, K. (2003). RacerX: Effective,
Static Detection of Race Conditions and Deadlocks.
In ACM SIGOPS Operating Systems Review, vol-
ume 37, pages 237–252. ACM.

Farzan, A. and Madhusudan, P. (2006). Causal Atomic-
ity. In CAV, volume 4144 of LNCS, pages 315–328.
Springer.

Flanagan, C. and Qadeer, S. (2003). A Type and Effect Sys-
tem for Atomicity. In ACM SIGPLAN Notices, vol-
ume 38, pages 338–349. ACM.

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Pen-
ninckx, W., and Piessens, F. (2011). VeriFast: A
Powerful, Sound, Predictable, Fast Verifier for C and
Java. In NFM, volume 6617 of LNCS, pages 41–55.
Springer.

Jhala, R. and Majumdar, R. (2009). Software Model Check-
ing. ACM Computing Surveys, 41(4):21:1–21:54.

Kleppe, A., Warmer, J., and Bast, W. (2005). MDA Ex-
plained: The Model Driven Architecture(TM): Prac-
tice and Promise. Addison-Wesley Professional.

Kolovos, D., Rose, L., Garca-Dominguez, A., and Paige, R.
(2011). The Epsilon Book. Eclipse.

O’Hearn, P., Reynolds, J., and Yang, H. (2001). Local
Reasoning about Programs that Alter Data Structures.
In Computer Science Logic, 15th International Work-
shop, CSL 2001., volume 2142 of Lecture Notes in
Computer Science, pages 1–19.

Owicki, S. and Gries, D. (1976). Verifying Properties of
Parallel Programs: An Axiomatic Approach. Com-
mun. ACM, 19(5):279–285.

Rahim, L. and Whittle, J. (2013). A Survey of Approaches
for Verifying Model Transformations. Software &
Systems Modeling (available online).

Reynolds, J. C. (2002). Separation Logic: A Logic for
Shared Mutable Data Structures. In Logic in Com-
puter Science, 2002. Proceedings. 17th Annual IEEE
Symposium on, pages 55–74. IEEE.

Stenzel, K., Moebius, M., and Reif, W. (2011). Formal
Verification of QVT Transformations for Code Gen-
eration. In MODELS, volume 6981 of LNCS, pages
533–547. Springer.

Tuerk, T. (2009). A Formalisation of Smallfoot in HOL.
In TPHOLs, volume 5674 of LNCS, pages 469–484.
Springer.

Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F.
(2003). Model Checking Programs. Automated Soft-
ware Engineering, 10(2):203–232.

Wijs, A. J. (2013). Define, Verify, Refine: Correct Compo-
sition and Transformation of Concurrent System Se-
mantics. In FACS, volume 8348 of LNCS, pages 348–
368. Springer.

Wijs, A. J. and Engelen, L. J. P. (2013). Efficient Prop-
erty Preservation Checking of Model Refinements.
In TACAS, volume 7795 of LNCS, pages 565–579.
Springer.

Verification of Atomicity Preservation in Model-to-Code Transformations using Generic Java Code

587

Wijs, A. J. and Engelen, L. J. P. (2014). REFINER:
Towards Formal Verification of Model Transforma-
tions. In NFM, volume 8430 of LNCS, pages 258–263.
Springer.

Zhang, D., Bošnački, D., van den Brand, M., Engelen, L.,
Huizing, C., Kuiper, R., and Wijs, A. (2014). Towards
Verified Java Code Generation from Concurrent State
Machines. In AMT, volume 1277 of CEUR Workshop
Proc., pages 64–69. CEUR-WS.org.

MODELSWARD 2016 - 4th International Conference on Model-Driven Engineering and Software Development

588

