A Variable Neighbourhood Search Algorithm with Compound Neighbourhoods for VRPTW

Binhui Chen ${ }^{1}$, Rong Qu^{1}, Ruibin Bai^{2} and Hisao Ishibuchi ${ }^{3}$
${ }^{1}$ School of Computer Science, The University of Nottingham, Nottingham, U.K.
${ }^{2}$ School of Computer Science, University of Nottingham Ningbo, Ningbo, China
${ }^{3}$ Department of Computer Science and Intelligent Systems, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan

Keywords: Variable Neighbourhood Search, Vehicle Routing Problem with Time Windows, Compound Neighbourhood, Metaheuristics.

Abstract: The Vehicle Routing Problem with Time Windows (VRPTW) consists of constructing least cost routes from a depot to a set of geographically scattered service points and back to the depot, satisfying service time interval and capacity constraints. A Variable Neighbourhood Search algorithm with Compound Neighbourhoods is proposed to solve VRPTW in this paper. A number of independent neighbourhood operators are composed into compound neighbourhood operators in a new way, to explore wider search area concerning two objectives (to minimize the number of vehicles and the total travel distance) simultaneously. Promising results are obtained on benchmark datasets.

1 INTRODUCTION

The Vehicle Routing Problem (VRP) (Laporte, 1992) is an important transport scheduling problem which can be used to model various real-life problems, such as postal deliveries, school bus routing, recycling routing and so on.

1.1 Problem Description and Related Work

The Vehicle Routing Problem with Time Windows (VPRTW) can be defined as follows. Let $G=(V, E)$ be a directed graph where $V=\left\{v_{i}, i=0, \ldots, n\right\}$ denotes a depot $\left(v_{0}\right)$ and n customers $\left(v_{i}, i=1, \ldots, n\right)$. A non-negative service demand q_{i} and service time s_{i} are associated with v_{i}, while $q_{0}=0$ and $s_{0}=0 . E$ is a set of arcs with non-negative weights $d_{i j}$ (which often represents distance) between v_{i} and $v_{j}\left(v_{i}, v_{j} \in V\right)$.

All customer demands are served by a fleet of K vehicles. To customer v_{i}, the service start time b_{i} must be in a time window $\left[e_{i}, f_{i}\right]$, where e_{i} and f_{i} are the earliest and latest time to serve q_{i}. If a vehicle arrives at v_{i} at time $a_{i}<e_{i}$, a waiting time $w_{i}=\max \left\{0, e_{i}-a_{i}\right\}$ is required. Consequently, the service start time $b_{i}=\max \left\{e_{i}, a_{i}\right\}$. Each vehicle of a capacity Q travels on a route connecting a subset of
customers starting from v_{0} and ending within schedule horizon $\left[e_{0}, f_{0}\right]$. The decision variable $X_{i j}^{k}=1$ if the arc from v_{i} to v_{j} is assigned in route $k(k \in K)$; Otherwise $X_{i j}^{k}=0$. The objective functions can be defined as follows (Cordeau et al., 2001):

Minimize	K
Minimize	

Subject to:

$$
\begin{align*}
& \sum_{k \in K} \sum_{v_{j} \in V} X_{i j}^{k}=1 \quad \forall v_{i} \in V \backslash\left\{v_{0}\right\} \tag{3}\\
& \sum_{k \in K} \sum_{v_{i} \in V} X_{i j}^{k}=1 \quad \forall v_{j} \in V \backslash\left\{v_{0}\right\} \tag{4}\\
& \sum_{k \in K} \sum_{v_{i} \in V} \sum_{v_{j} \in V \backslash\left\{v_{0}\right\}} X_{i j}^{k}=n \tag{5}\\
& \sum_{v_{j} \in V} X_{0 j}^{k}=1 \quad \forall k \in K \tag{6}\\
& \sum_{v_{i} \in V} X_{i j}^{k}-\sum_{v_{i} \in V} X_{j i}^{k}=0 \forall k \in K, v_{j} \in V \backslash\left\{v_{0}\right\}(7) \\
& \sum_{v_{i} \in V} X_{i 0}^{k}=1 \quad \forall k \in K \tag{8}\\
& e_{i} \leq b_{i} \leq f_{i} \quad \forall v_{i} \in V \tag{9}
\end{align*}
$$

$$
\begin{align*}
& \sum_{v_{i} \in V} \sum_{v_{j} \in V} X_{i j}^{k} \cdot q_{i} \leq Q \quad \forall k \in K \tag{10}\\
& X_{i j}^{k} \in\{0,1\} \quad \forall v_{i}, v_{j} \in V, k \in K \tag{11}
\end{align*}
$$

Objective (1) aims to minimize the requested number of vehicles. Objective (2) minimizes the total travel distance of the fleet. Constraints (3)-(5) limit every customer to be served exactly once and all customers are visited. Constraints (6)-(8) define the route by vehicle k. Constraint (9) and (10) guarantee the feasibility with respect to the time constraints on service demands and capacity constraints (Q) on vehicles, respectively. Constraint (11) defines the domain of the decision variable $X_{i j}^{k}$.

Most researchers consider minimizing the number of vehicles as the primary objective (Bräysy, 2003), while others study it as a multi-objective problem (Ghoseiri and Ghannadpour, 2010). In the former case, a two-phase approach is often used, to minimize the vehicle number firstly and then minimize the distance with a fixed route number in the second phase. Population-based methods are usually used for solving the multi-objective VRPTW. Other objectives in VRPTW include the minimization of the total waiting time and so on, which are less studied (Solomon, 1987; Jozefowiez et al., 2008).

Due to the problem size and NP-hard property of VRPTW, standard mathematical methods often perform poorly within a reasonable amount of time (Laporte, 1992). Metaheuristics and hybrid algorithms have attracted more attention in VRPTW. They could be grouped into population-based metaheuristics and local search metaheuristics. Population-based methods work on a set of candidate solutions which requires a high computation cost. This is a main drawback for them to achieve high performance in VRP. More details could be found in (Bräysy and Gendreau, 2001).

Many local search approaches have been applied to VRPTW, such as Tabu Search (Potvin et al., 1996), Simulated Annealing (Van Breedam, 1995) and Variable Neighbourhood Search (VNS) (Hansen et al., 2010). This paper focuses on VNS methods. Its first application is on TSP with and without backhaul (Mladenović and Hansen, 1997).

VNS shifts among different neighbourhood structures which define different search spaces. Different variants of VNS have been studied in the literature. In the Basic VNS, a Local Search finds local optimal solutions using different neighbourhood structures, and Shaking is used to perturb the search to enhance diversification. Variable Neighbourhood Descent (VND) algorithm changes the neighbourhoods in a deterministic way (Hansen and Mladenović, 2001). Reduced VNS (Hansen et al., 2001) selects neighbourhood
moves randomly from a neighbourhood set. General VNS (Hansen et al., 2006) is an extension of Basic VNS, whose the local search is a VND as well.

VNS and its extensions have been studied extensively in various VRP problems. Bräysy (2003) proposes a four-phase approach based on VND for VRPTW. Polacek et al. (2004) develop a VNS for Multi-Depot Vehicle Routing Problem with Time Windows where routes start and end at different depots. A VNS algorithm for the Open Vehicle Routing Problem without time constraint is presented in (Fleszar et al., 2009). The study in (Hemmelmayr et al., 2009) concentrates on the Periodic Vehicle Routing Problem, where the schedule horizon is very large without time constraint. An extensive review on VNS can be found in (Hansen et al., 2010).

1.2 Widely Used Neighbourhood Operators in VRP

Neighbourhood operators define the search spaces of different features, thus significantly affect the success of local search. Neighbourhood moves in VRP can be classified into two categories: Inter-Route exchange and Intra-Route exchange (some authors use the term interchange instead of exchange), which exchange nodes or edges among routes or within one route, respectively.

Lin (1965) proposes the λ-optimality mechanism, which is widely applied in routing problems. It removes λ edges from one route, and reconnects it in a feasible way. 2-opt and 3-opt are two typical operators of this mechanism, both may reverse the order of nodes. Or-opt (Or, 1976) is a specific subset of 3-opt operators, and it includes only those moves which do not reverse customer links. Osman (1993) introduces the λ-interchange mechanism which exchanges two groups of nodes from different routes. The number of nodes in each group should not be more than λ, while the nodes are not necessarily consecutive. In CROSS-exchange (Taillard et al., 1997), two strings of consecutive nodes from two routes are exchanged, preserving the order of customers in each string.

The above VNS approaches use independent moves in each single neighbourhood operator. Ergun et al. (2006) combine independent moves such as 2-opts, swaps and insertions in a very large scale neighbourhood search. This method is applied to TSP and VRP with side constraints of capacity and distance. The independent moves in this method are different on the operation position while their operator settings are the same. The study shows that this kind of compounded neighbourhoods are competitive for solving VRP. This kind of compounding method with

(a)

(b)

(c)

Figure 1: Examples of neighbourhoods in VNS-C. (a). Link $(1,2,3)$ exchanged with link $(5,6)$ by the intra-route Or-opt-i compound operator $(i=3)$. (b). Link $(2,3,4)$ exchanged with link $(5,6)$ by the inter-route compound operator CROSS- $i(i=3)$. (c). Link $(4,5)$ is removed by LinkMove- i from its original route and inserted to a random position in the target route, which brings a route reduction.
sequential addition and deletion of edges is also used by Ejection Chain approach (Rego, 1998). In the next section, we propose and study compound neighbourhoods in a different compounding way for VRPTW.

2 VARIABLE NEIGHBOURHOOD SEARCH WITH COMPOUND NEIGHBOURHOODS

We propose compound neighbourhood operators into the General VNS (VNS-C) in this research. In our approach, compared to existing neighbourhood operators, the independent operators not only are different on the operation position, but also have different lengths of exchange segments. A deterministic constraint is given to exchange segments' lengths and a random selection scheme is used to select exchange segments. By using this compounding way in both Intra-Route and Inter-Route neighbourhood structures, two compound neighbourhoods are produced. In addition, a third neighbourhood operator which compounds segment insertion operators with the same length limit is also developed aiming to reduce vehicle number. By adopting these operators, VNS-C optimizes both objectives simultaneously in each run by shifting among broader search regions.

2.1 Compound Operators and Neighbourhoods

Because of the time window constraint in VRPTW, the reverse operation in the standard λ-opt and λ interchange operators tends to bring infeasibility, thus Or-opt and CROSS-exchange are adopted in the Compound Operators in VNS-C.

Based on the Or-opt exchange operator, we devise an improved Or-opt intra-route operator Or-opti, where i is the length limit of two randomly selected exchange links. In an Or-opt-i exchange, the length of one exchange link is fixed to i to avoid redundant exchanges while the length of the other exchange link is randomly set to up to i. This exchange link length setting cooperates with random operation position selection, composing the compounding manner of the proposed compound neighbourhoods. For example, Or-opt-3 is a compound neighbourhood which assembles three independent neighbourhood moves (where one exchange link length is fixed to 3 , while the other one's length could be 1,2 or 3). An illustrative example is presented in Fig. 1 (a), where directions of both operated links are kept.

A CROSS- i compound operator is also proposed in VNS-C. It includes all independent CROSSexchanges to exchange a link of length i with another link of length up to i between routes. For instance, the compound neighbourhood of CROSS-3 assembles three independent neighbourhood moves where length of one exchange link is fixed to 3 and the other
one is randomly set to up to 3 (denoted as 3-1, 3-2 and 3-3 independent exchanges, respectively). In one move of CROSS-3, the best solution among all the three independent neighbourhoods is selected. While, in a standard independent neighbourhood search, the best solution based on only one of the 3-1, 3-2 or 3-3 exchanges will be selected. An example of CROSS-3 is presented in Fig. 1 (b), where the selected improvement solution is produced by a 3-2 exchange.

In the proposed VNS-C, an operator named LinkMove-i is developed to reduce both the vehicle number and total travel distance simultaneously (i is the max length of operated links), rather than in two separate phases. In LinkMove-i, a customer link of length α ($\alpha \leq i$) from route h is removed and reinserted into route $t(h \neq t)$. When α is equal to the length of route h, route h would be removed thus leads to a solution with one less route. Fig. l (c) presents an example of LinkMove-i.

The proposed compound neighbourhoods explore larger search areas than standard independent neighbourhoods. Following the rule of invoking small neighbourhood moves first, the upper bound i of link length in compound operators is set to increase from 1 to 5 in VNS-C based on preliminary experiment results. The order to select the intra-route neighbourhood or inter-route neighbourhood first is shown to be an influence factor in VNS-C in our experimental results. This is studied in section 3.3.

2.2 Shaking(S)

Shaking (S) is a phase of random perturbation in VNSC , which randomly generates a neighbourhood solution S^{\prime} of the current solution S using the three simple operators in Table 1, aiming to escape from local optima. ExchangeInRoute-ml and Cross-ml exchanges two segments within one route and between two randomly selected routes, respectively. Move-ml inserts a randomly selected route segment from a route to another route. In all three operators, the maximum length of the segment is $m l$. Different from the abovementioned compound operators, operators in Shaking are more flexible, without the requirement that at least one segment's length must be $m l$.

The first feasible move will be accepted in Shaking (S). To encourage farther moves, the segment of length ml is selected with a higher probability. If no feasible moves are found after a pre-specified number of evaluations, the original input solution S would be returned. We investigate this process in section 3.2.

Table 1: Set of neighbourhood operators in Shaking. z is a random variable for selecting an operator. L is the length of associated routes.

z	Operator	Min length	Max length $(m l)$
$0 \sim 3$	ExchangeInRoute-ml	1	$\operatorname{Min}(z+1, L)$
$4 \sim 8$	Move-ml	1	$\operatorname{Min}(z \bmod 3, L)$
$9 \sim 12$	Cross-ml	1	$\operatorname{Min}(z \bmod 8, L)$

2.3 Local Search

In the local search of VNS-C (see Algorithm 1), $N S_{\text {max }}$ evaluations are undertaken in each run of neighbourhoods. Hansen et al. (2010) recommend that, when the initial solution is constructed by a heuristic, the Best-Improvement acceptance criterion should be used in VNS. The initial solution in VNSC is constructed using the Nearest Neighbourhood heuristic from (Solomon, 1987), and the best neighbourhood solutions are chosen. To avoid being stuck to local optima, Record-to-Record Travel algorithm (Dueck, 1993) is adopted as the acceptance criteria, where Quality() is defined by the total travel distance, and DEVIATION is set to 15 . Here a solution with the lower Quality() value is better. The search stops at a time limit of Time ${ }_{\max }$ or when all three compound neighbourhoods are estimated. In Algorithm $1, N_{r}\left(S^{\prime}, i\right)$ represents the r th neighbourhood operator applied to the incumbent solution S^{\prime} with operated link length limit of i.

```
Algorithm 1: Local Search \(\left(S^{\prime}, S\right)\). \(A T \square \square I N=\)
    Step 1: Input solution \(S^{\prime}\) and \(S\).
    Step 2: Set \(r \leftarrow 1, i \leftarrow 1\), time \(\leftarrow 0\).
        while \(\left(r<4\right.\) And time \(<\) Time \(_{\text {max }}\) ) do
            Step 2.1: Neighbourhood Search
            \(S^{\prime \prime} \leftarrow\) Best Improvement of \(N_{r}\left(S^{\prime}, i\right)\).
            time \(\leftarrow\) time \(+N S_{\text {max }}\).
            Step 2.2: Move or Not
                if Quality \(\left(S^{\prime \prime}\right)<\) Quality \((S)\) then
                    \(S \leftarrow S^{\prime \prime}, S^{\prime} \leftarrow S^{\prime \prime}, i \leftarrow 0, r \leftarrow 1\).
            else if Quality \(\left(S^{\prime \prime}\right)-\) Quality \((S)<\)
            DEVIATION then
                    \(S^{\prime} \leftarrow S^{\prime \prime}, i \leftarrow 0, r \leftarrow 1\).
                end if
            Step 2.3: Shift Neighbourhood Structure
                \(i \leftarrow i+1\).
                if \(i=6\) then \(r \leftarrow r+1, i \leftarrow 1\).
        end while
    Step 3: Output the best found solution \(S\).
```


2.4 The VNS-C Framework

The pseudo-code of VNS-C is presented in Algorithm 2, where the iteration time is set to $C_{\text {max }}$. In Step 1, an initial solution is constructed using a heuristic, which

Table 2: Comparison of VNS-C and VNS of Independent Operator with and without Shaking. Best results are in bold.

Instance			C101	C201	R101	R201	RC101	RC201
VNS-C \& Shaking	Best	NV	10	3	19	4	15	4
		TD	828.94	591.56	1643.34	1190.52	1624.97	1310.44
	Average	NV	10	3	19.9	4.83	15.6	4.93
		TD	828.94	591.56	1647.9	1246.91	1652.38	1365.76
		Times	67,247,717	97,011,547	188,429,463	176,349,146	113,982,405	137,842,632
	S.D on NV		0	0	0.31	0.38	0.63	0.25
	S.D on TD		0	0	5.59	45.12	12.88	41.57
Independent Operators \& Shaking	Best	NV	10	3	19	4	16	4
		TD	828.94	591.56	1700.42	1339.84	1753.49	1482.86
	Average	NV	10	3	20.13	4.73	16.3	4.97
		TD	828.94	591.56	1791.73	1538.66	1878.68	1569.51
		Times	9,808,756	9,800,000	159,166,298	128,370,863	79,996,218	146,881,580
	S.D on NV		0	0	0.68	0.45	0.47	0.18
	S.D on TD		4.38	0	89.32	212.51	101.68	59.89
VNS-C without Shaking	Best	NV	10	3	19	4	15	4
		TD	828.94	591.56	1644.55	1294.36	1644.18	1340.79
	Average	NV	10	3	20.43	4.73	16.43	4.93
		TD	828.94	591.56	1823.72	1511.68	1856.99	1489.35
		Times	10,026,352	97,010,797	77,128,988	124,141,441	104,983,387	113,826,219
	S.D on NV		0	0	0.63	0.45	0.68	0.25
	S.D on TD		0	0	178.68	394.21	213.67	270.99
Independent Operators without Shaking	Best	NV	10	3	19	4	15	4
		TD	828.94	591.56	1649.23	1226.43	1624.97	1332.74
	Average	NV	10	3	20.33	4.6	16.17	4.97
		TD	828.94	591.56	1828.49	1671.69	1859.35	1443.03
		Times	10,198,465	97,066,537	24,214,377	101,344,273	60,738,070	128,573,526
	S.D on NV		0	0	0.76	0.5	0.91	0.18
	S.D on TD		0	0	173.87	401.52	211.84	199.56

```
Algorithm 2: The VNS-C framework.
    Step 1: Generate an initial feasible solution \(S\) by the
    Nearest Neighbourhood heuristic.
    Step 2:
        Set \(C \leftarrow 1\).
        while \(C<C_{\text {max }}\) do
            Step 2.1: \(S^{\prime} \leftarrow\) Shaking \((S)\).
            Step 2.2: \(S \leftarrow\) Local Search \(\left(S^{\prime}\right)\).
            Step 2.3:
                if \(S\) is improved then
                    \(C \leftarrow 1\).
            else
                \(C \leftarrow C+1\).
            end if
        end while
```

 Step 3: Output \(S\).
 inserts the "closest" available customer into the incumbent partial route. Here the distance between two customers is defined by their Geographic distance $d_{i j}$, Temporal distance $T_{i j}$ and the degree of Emergency $v_{i j}$ which are used in (Solomon, 1987), shown in (12) as below:

Dis $=\delta_{1} \cdot d_{i j}+\delta_{2} \cdot T_{i j}+\delta_{3} \cdot v_{i j} \quad$ s.t. $\delta_{1}+\delta_{2}+\delta_{3}=1$
The three coefficients δ_{1}, δ_{2} and δ_{3} define the importance of each component in the distance definition.

We set them as $\delta_{1}=0.4, \delta_{2}=0.4$ and $\delta_{3}=0.2$ (empirically calculated by Solomon (1987)).

3 EXPERIMENTS

3.1 Problem Dataset and Parameter Setting

The proposed VNS-C was evaluated on the Solomon benchmark (Solomon, 1987), which consists of six datasets (C1, C2, R1, R2, RC1, RC2), each has eight to 12 instances of 100 customers with their own service demands. In C1 and C2, customers are located in a number of clusters, while the objectives of (1) and (2) are positively related (Ghoseiri and Ghannadpour, 2010). Customers of R1 and R2 are randomly distributed geographically, while RC1 and RC2 are a mix of them. The scheduling horizons in C1, R1 and RC 1 are short, and their vehicle capacities are low (200). C2, R2 and RC2 have higher vehicle capacities (700, 1000 and 1000, respectively), leading to fewer required vehicles to satisfy all demands. Diverse time window widths are distributed with various densities.

Tuning is conducted on only one parameter at a

Table 3: T-test between VNS-C and the other three algorithms.

Compared Algorithms		C101	C201	R101	R201	RC101	RC201
Independent Neighbourhoods with Shaking	P-value(NV)	1	1	0.094698	0.355754	$1.49 \mathrm{E}-06$	0.561629
	P-value(TD)	0.321464	1	$1.1 \mathrm{E}-09$	$2.3 \mathrm{E}-08$	$1.33 \mathrm{E}-05$	$6.62 \mathrm{E}-21$
	Different	N	N	Y	Y	Y	Y
Compound Neighbourhoods without Shaking	P -value(NV)	1	1	0.000138	0.355754	0.004581	1
	P-value(TD)	1	1	$8.66 \mathrm{E}-06$	0.000976	$9.92 \mathrm{E}-06$	0.019461
	Different	N	N	Y	Y	Y	Y
Independent Neighbourhoods	P-value(NV)	1	1	0.006101	0.046114	$5.73 \mathrm{E}-07$	0.561629
	P-value(TD)	1	1	$3.78 \mathrm{E}-06$	$2.74 \mathrm{E}-06$	$4.91 \mathrm{E}-13$	0.04599
	Different	N	N	Y	Y	Y	Y

Table 4: Results of VNS-C with four different operator orders. Best results are in bold.

Instance			C101	C201	R101	R201	RC101	RC201
MCI	Best	NV	10	3	19	4	15	4
		TD	828.94	591.56	1643.34	1190.52	1624.97	1310.44
	Average	NV	10	3	19.9	4.83	15.6	4.93
		TD	828.94	591.56	1647.9	1246.91	1652.38	1365.76
		Times	67,247,717	97,011,54	188,429,463	176,349,146	113,982,405	137,842,632
CMI	Best	NV	10	3	20	5	15	5
		TD	828.94	591.56	1642.88	1189.82	1623.58	1317.97
	Average	NV	10	3	20.3	5	15.87	5
		TD	828.94	591.56	1650.42	1214.66	1654.65	1367.59
		Times	69,224,764	97,011,573	181,014,272	166,688,866	184,803,844	158,724,815
ICM	Best	NV	10	3	20	4	15	5
		TD	828.94	591.56	1642.88	1237.76	1715.49	1354.72
	Average	NV	10	3	20.17	4.9	16.4	5
		TD	828.94	591.56	1648.9	1306.7	1762.34	1425.46
		Times	51,225,270	97,015,461	223,733,841	307,952,033	692,934,814	516,816,576
IMC	Best	NV	10	3	19	4	16	5
		TD	828.94	591.56	1643.18	1234.09	1672.33	1376.17
	Average	NV	10	3	19.9	4.7	16.27	5
		TD	828.94	591.56	1647.52	1334.32	1765	1464.56
		Times	67,357,647	97,015,347	199,078,925	311,452,951	735,044,303	492,990,103

time, while fixing all the others on a small number of instances. Preliminary experiments show that most feasible solutions in Shaking are found in around 200 evaluations, thus 300 evaluations are conducted. For each incumbent solution in the local search, 400 neighbourhoods are evaluated, i.e. $N S_{\max }=400$. Time $_{\text {max }}$ is set to $1,000,000$ evaluations while the max iteration time $C_{\max }$ of VNS-C is 300 . All results are produced in 30 runs to conduct statistical analysis.

3.2 Compound Neighbourhoods and Shaking

Table 2 presents the average results from VNS-C, VNS with independent operators (standard Or-opt and CROSS exchange) and VNS-C without Shaking on six randomly chosen instances. NV denotes the number of vehicles, TD represents the total travel distance, and Times is the total number of evaluations. S.D is the standard deviation. It is shown that VNS-C produces significantly better and more stable results compared to the other variants. Shaking also improves

VNS-C in terms of both quality and stability, thus is an essential and necessary component in VNS-C.

To verify whether the result of VNS-C is significantly different from the other three algorithms', Ttest is executed between results of VNS-C and the other three algorithms. Here confidence level is set as 95%. Table 3 presents the test result, where Y represents two populations are significantly different, and N the opposite. Notably, as the solutions have two dimensions of NV and TD, as long as the p-value (two-tail) is smaller than 5% in one dimension, the two populations would be considered as significantly different. It can be seen that VNS-C produces significantly better solutions than the other three algorithms on complicated instances (R and RC). For the two C instances, there is no significant difference between VNS-C and the other three algorithms. Results against those in the literature (see Table 5) indicate that all these four algorithms obtained the best solution for these two instances, thus no significant difference has been found.

Table 5: VNS-C on Benchmark Solomon's instances. Results that are better than or the same as the best known are in bold.

Instance	Best Known			VNS-C			
	NV	TD	Ref.	Best		Average	
				NV	TD	NV	TD
C101	10	828.94	(SINTEF, 2015)	10	828.94	10	828.94
C102	10	828.94	(SINTEF, 2015)	10	828.94	10	876.79
C103	10	828.06	(SINTEF, 2015)	10	828.94	10	832.65
C104	10	824.78	(SINTEF, 2015)	10	825.65	10	831.79
C105	10	828.94	(SINTEF, 2015)	10	828.94	10	852.33
C106	10	828.94	(SINTEF, 2015)	10	828.94	10.07	836.25
C107	10	828.94	(SINTEF, 2015)	10	828.94	10	853.9
C108	10	828.94	(SINTEF, 2015)	10	828.94	10	840.48
C109	10	828.94	(SINTEF, 2015)	10	828.94	10	823.94
C201	3	591.56	(SINTEF, 2015)	3	591.56	3	591.56
C202	3	591.56	(SINTEF, 2015)	3	591.56	3.53	613.94
C203	3	591.17	(SINTEF, 2015)	3	591.17	3.07	599.16
C204	3	590.6	(SINTEF, 2015)	3	590.6	3.23	609.81
C205	3	588.88	(SINTEF, 2015)	3	588.88	3	588.88
C206	3	588.49	(SINTEF, 2015)	3	588.49	3	588.49
C207	3	588.29	(SINTEF, 2015)	3	588.29	3	588.29
C208	3	588.32	(SINTEF, 2015)	3	588.32	3	588.32
R101	19	1650.80	(SINTEF, 2015)	19	1652.47	19.9	1647.90
	20	1642.87	(Alvarenga et al., 2007)	20	1643.34		
R102	17	1486.12	(SINTEF, 2015)	18	1476.06	18.9	1493.30
R103	13	1292.67	(SINTEF, 2015)	14	1219.89	14.17	1230.92
R104	9	1007.31	(SINTEF, 2015)(Tan et al., 2006)(Küu̧ ükoğ lu and Öztürk, 2014)			11.1	1009.9
	10	974.24		10	1007.27		
	11	971.5		11	994.85		
R105	14	1377.11	(SINTEF, 2015)	14	1381.88	15.07	1377.24
	15	1346.12	(Kallehauge et al., 2006)	15	1360.78		
R106	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	1252.03	(SINTEF, 2015)			13.57	1264.04
		1234.6	(Cook and Rich, 1999)	13	1243.72		
R107	10	1104.66	(SINTEF, 2015)			11.73	1097.07
	11	1051.84	(Kallehauge et al., 2006)	11	1077.24		
R108	9	960.88	(SINTEF, 2015)			10.23	974.46
	10	932.1	(Ombuki et al., 2006)	10	956.22		
R109	11	1194.73	(SINTEF, 2015)			12.93	1181.99
	12	1013.2	(Chiang and Russell, 1997)	12	1168.18		
	13	1151.84	(Alvarenga et al., 2007)	13	1157.61		
R110	10	1118.84	(SINTEF, 2015)			12.1	1106.02
	11	1112.21	(Ombuki et al., 2006)				
	12	1068	(Cook and Rich, 1999)	12	1081.88		
R111	10	1096.72	(SINTEF, 2015)	11	1087.5	11.9	1080.1
	12	1048.7	(Cook and Rich, 1999)	12	1062.58		
R112	9	982.14	(SINTEF, 2015)			10.9	979.52
	10	953.63	(Rochat and Taillard, 1995)	10	958.7		
R201	4	1252.37	(SINTEF, 2015)	4	1282.75	4.83	1246.91
	5	1206.42	(Tan et al., 2006)	5	1190.52		
R202	3	1191.7	(SINTEF, 2015)			4	1146.34
	4	1091.21	(Tan et al., 2006)	4	1098.06		
R203	3	939.503	(SINTEF, 2015)	3	968.67	3.5	969.05
	4	935.04	(Tan et al., 2006)	4	905.72		
R204	2	825.52	(SINTEF, 2015)			3	809.88
	3	789.72	(Tan et al., 2006)	3	766.91		

Table 5: VNS-C on Benchmark Solomon's instances. Results that are better than or the same as the best known are in bold (cont.).

Instance	Best Known			VNS-C			
	NV	TD	Ref.	Best		Average	
				NV	TD	NV	TD
R205	3	994.42	(SINTEF, 2015)	3	1059.91	3.83	1029.55
	5	954.16	(de Oliveira et al., 2007)	4	964.02		
R206	3	906.142	(SINTEF, 2015)	3	931.762	3	994.92
R207	2	890.61	(SINTEF, 2015)			3	896.72
	3	814.78	(Rochat and Taillard, 1995)	3	855.37		
R208	2	726.82	(SINTEF, 2015)	3	708.9	3	740.94
	4	698.88	(Ursani et al., 2011)				
R209	3	909.16	(SINTEF, 2015)	3	983.75	3.93	920.18
	5	860.11	(Alvarenga et al., 2007)	4	871.63		
R210	3	939.37	(SINTEF, 2015)	3	978.11	3.63	992.18
				4	935.01		
R211	2	885.71	(SINTEF, 2015)			3	828.81
	4	761.1	(Ombuki et al., 2006)	3	794.04		
RC101	14	1696.94	(SINTEF, 2015)			15.6	1652.38
	15	1619.8	(Kohl et al., 1999)	15	1624.97		
RC102	12	1554.75	(SINTEF, 2015)			13.97	1497.056
	13	1470.26	(Tan et al., 2006)	13	1497.43		
	14	1466.84	(Alvarenga et al., 2007)	14	1467.25		
RC103	11	1261.67	(SINTEF, 2015)	11	1265.86	11.8	1284.24
RC104	10	1135.48	(SINTEF, 2015)	10	1136.49	10.7	1171.61
RC105	13	1629.44	(SINTEF, 2015)			15.6	1570.33
	14	1589.91	(Tan et al., 2006)	14	1642.81		
	15	1513.7	(Alvarenga et al., 2007)	15	1524.14		
RC106	11	1424.73	(SINTEF, 2015)	12	1396.59	13.07	1408.7
	13	1371.69	(Tan et al., 2006)	13	1376.99		
RC107	11	1230.48	(SINTEF, 2015)	11	1254.68	11.93	1258.32
	12	1212.83	(Alvarenga et al., 2007)	12	1233.58		
RC108	10	1139.82	(SINTEF, 2015)			11	1149.38
	11	1117.53	(Alvarenga et al., 2007)	11	1131.23		
RC201	4	1406.94	(SINTEF, 2015)	4	1457.87	4.93	1365.76
	6	1134.91	(Tan et al., 2006)	5	1310.44		
RC202	3	1365.64	(SINTEF, 2015)			4	1278.96
	4	1181.99	(Ombuki et al., 2006)	4	1219.49		
RC203	3	1049.62	(SINTEF, 2015)			4	1020.716
	4	1026.61	(Tan et al., 2006)	4	957.1		
RC204	3	798.46	(SINTEF, 2015)	3	829.13	3	867.85
RC205	4	1297.65	(SINTEF, 2015)			5	1273.03
	5	1295.46	(Tan et al., 2006)	5	1233.46		
RC206	3	1146.32	(SINTEF, 2015)			4	1152.29
	4	1139.55	(Tan et al., 2006)	4	1107.4		
RC207	3	1061.14	(SINTEF, 2015)			4	1084.44
	4	1079.07	(Rochat and Taillard, 1995)	4	1032.78		
RC208	3	828.14	(SINTEF, 2015)	3	830.06	3	922.47

3.3 Neighbourhoods Order

Table 4 compares different orders of neighbourhoods in VNS-C (M, C and I represent LinkMove-i, CROSSi and $O r$-opt- i, respectively). It can be seen that, the Inter-Route move first group (MCI and CMI) achieves better results than the Intra-Route move first ones
(ICM and IMC). In the former case, MCI performs better than CMI. It seems that optimizing the route number first, and then assigning customers to a route and optimizing the customer order in each route can bring better results. On R101 and R201, MCI obtains better NV while CMI has better TD. As objective (1) is usually considered as primary, the order of MCI
will be used in VNS-C.

3.4 Experiment Results and Analysis

Table 5 presents the results on all the 56 Benchmark Solomons instances. It illustrates that VNS-C is effective in improving both objectives simultaneously. In problems whose objectives are positively correlated, VNS-C can produce the current best known solutions in a reasonable time. In other instances, some better solutions with less TD are found comparing to the best known solutions with the same NV in the literature.

Figure 2: Two best found solutions with 2 and 3 vehicles on R204.

It is also shown that VNS-C is effective in minimizing TD by the results on the complicated datasets ($\mathrm{R} 2, \mathrm{RC} 2$) which use fewer vehicles to satisfy 100 demands. Thus it requires a powerful neighbourhood operator to reduce NV. Figure 2 shows that the disparity between our best found solution ($\mathrm{NV}=3$ and TD $=766.91$) and the best known solution with a lower $\mathrm{NV}(\mathrm{NV}=2$ and TD $=825.52)$ on R204 is large, which may mean that the distance between them is large in the search space. It is difficult for VNS-C to find a lower NV in this case, as the link length limit in LinkMove-i (5) is too small compared to the route length (33).

To investigate the performance of LinkMove-i on reducing NV, six different upper bound values of i (Max_i) are set to this operator. Figures 3 and 4 demonstrate the performance of the LinkMove-i operator with diverse Max_i on minimizing NV. In Figure 3 it can be seen that, the higher Max_i can produce a lower average NV on four complicated instances (R101, R201, RC101 and R201) while the best found NV is unchanged. Too small Max_i would insert only short routes to other routes, and the capability of reducing NV would become weaker consequently. This hypothesis is consistent to the observation on RC201 in Figure 4 that, when Max_i is small (1,2 and 3) the best found NV (5) is greater than the one (4) found with larger Max_i values (5, 7 and 9). In addition,

Figure 3: Comparison on average NV with six different Max_i values of LinkMove-i.

Figure 4: Comparison on the best found NV with six different Max_i values of LinkMove-i.
experiment results also show that some of the lowest TD can be found with small Max_i, while their average NVs are the largest. e.g. the lowest TDs are found on R101, RC101 and RC201 with Max_i = 1, as well as on R201 with Max_i=2. This observation indicates the conflicting relation of both objectives on these instances.

4 CONCLUSIONS

For problems with multiple objectives, local search tends to be less effective. This paper explores a variable neighbourhood search (VNS) algorithm with compound neighbourhood operators (VNS-C) to optimize both objectives simultaneously in VRPTW. In the proposed VNS-C, two compound neighbourhoods are developed based on the Or-opt and CROSS exchange operators by considering specific features in VRPTW. In addition, another neighbourhood operator LinkMove-i, which can reduce the number of vehicles simultaneously, is also proposed.

A new compounding way concerning both opera-
tion position and exchange link length is proposed in the compound neighbourhoods. Experiment results on benchmark datasets show that VNS-C produces promising results comparing with the best known solutions in the current literature. VNS-C shows stronger performance in minimizing the total travel distance compared to reducing the number of vehicles. Two-phase methods may obtain lower number of required vehicles in long-route instances. Hybrid approaches, invoking two-phase algorithm and other effective operators based on VNS, remain a promising direction in our future work.

ACKNOWLEDGEMENT

This research was supported by Royal Society International Exchanges Scheme, National Natural Science Foundation of China (NSFC 71471092, NSFC-RS 71311130142), Ningbo Sci\&Tech Bureau (2014A35006) and Department of Education Fujian Province (JB14223). We would like to thank the reviewers for their valuable comments.

REFERENCES

Alvarenga, G. B., Mateus, G. R., and De Tomi, G. (2007). A genetic and set partitioning two-phase approach for the vehicle routing problem with time windows. Computers \& Operations Research, 34(6):1561-1584.
Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle-routing problem with time windows. INFORMS Journal on Computing, 15(4):347-368.
Bräysy, O. and Gendreau, M. (2001). Metaheuristics for the vehicle routing problem with time windows. Report STF42 A, 1025.
Chiang, W.-C. and Russell, R. A. (1997). A reactive tabu search metaheuristic for the vehicle routing problem with time windows. INFORMS Journal on computing, 9(4):417-430.

Cook, W. and Rich, J. L. (1999). A parallel cutting-plane algorithm for the vehicle routing problem with time windows. Computational and Applied Mathematics Department, Rice University, Houston, TX, Technical Report.
Cordeau, J.-F., Desaulniers, G., Desrosiers, J., Solomon, M., and Soumis, F. (2001). Vrp with time windows. In The vehicle routing problem, pages 157-193. Society for Industrial and Applied Mathematics.
de Oliveira, H., Vasconcelos, G., Alvarenga, G., Mesquita, R., and de Souza, M. (2007). A robust method for the vrptw with multi-start simulated annealing and statistical analysis. In Computational Intelligence in Scheduling, 2007. SCIS'07. IEEE Symposium on, pages 198-205. IEEE.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the record-to-record travel Journal of Computational Physics, 104(1):86-92.
Ergun, Ö., Orlin, J. B., and Steele-Feldman, A. (2006). Creating very large scale neighborhoods out of smaller ones by compounding moves. Journal of Heuristics, 12(1-2):115-140.
Fleszar, K., Osman, I. H., and Hindi, K. S. (2009). A variable neighbourhood search algorithm for the open vehicle routing problem. European Journal of Operational Research, 195(3):803-809.
Ghoseiri, K. and Ghannadpour, S. F. (2010). Multiobjective vehicle routing problem with time windows using goal programming and genetic algorithm. Applied Soft Computing, 10(4):1096-1107.
Hansen, P. and Mladenović, N. (2001). J-means: a new local search heuristic for minimum sum of squares clustering. Pattern recognition, 34(2):405-413.
Hansen, P., Mladenović, N., and Pérez, J. A. M. (2010). Variable neighbourhood search: methods and applications. Annals of Operations Research, 175(1):367407
Hansen, P., Mladenović, N., and Perez-Britos, D. (2001). Variable neighborhood decomposition search. Journal of Heuristics, 7(4):335-350.
Hansen, P., Mladenović, N., and Urośević, D. (2006). Variable neighborhood search and local branching. Computers \& Operations Research, 33(10):3034-3045.
Hemmelmayr, V. C., Doerner, K. F., and Hartl, R. F. (2009) A variable neighborhood search heuristic for periodic routing problems. European Journal of Operational Research, 195(3):791-802.
Jozefowiez, N., Semet, F., and Talbi, E.-G. (2008). Multiobjective vehicle routing problems. European journal of operational research, 189(2):293-309.
Kallehauge, B., Larsen, J., and Madsen, O. B. (2006). Lagrangian duality applied to the vehicle routing problem with time windows. Computers \& Operations Research, 33(5):1464-1487.
Kohl, N., Desrosiers, J., Madsen, O. B., Solomon, M. M., and Soumis, F. (1999). 2-path cuts for the vehicle routing problem with time windows. Transportation Science, 33(1):101-116.
Küç ükoğ lu, İ. and Öztürk, N. (2014). An advanced hybrid meta-heuristic algorithm for the vehicle routing problem with backhauls and time windows. Computers \& Industrial Engineering.

Laporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3):345358.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell System Technical Journal, The, 44(10):2245-2269.
Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers \& Operations Research, 24(11):1097-1100.
Ombuki, B., Ross, B. J., and Hanshar, F. (2006). Multiobjective genetic algorithms for vehicle routing prob-
lem with time windows. Applied Intelligence, 24(1):17-30.
Or, I. (1976). Traveling salesman-type combinatorial problems and their relation to the logistics of regional blood banking. Xerox University Microfilms.
Osman, I. H. (1993). Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Annals of operations Research, 41(4):421-451.
Polacek, M., Hartl, R. F., Doerner, K., and Reimann, M. (2004). A variable neighborhood search for the multi depot vehicle routing problem with time windows. Journal of heuristics, 10(6):613-627.
Potvin, J.-Y., Kervahut, T., Garcia, B.-L., and Rousseau, J.-M. (1996). The vehicle routing problem with time windows part i: tabu search. INFORMS Journal on Computing, 8(2):158-164.
Rego, C. (1998). A subpath ejection method for the vehicle routing problem. Management Science, 44(10):14471459.

Rochat, Y. and Taillard, É. D. (1995). Probabilistic diversification and intensification in local search for vehicle routing. Journal of heuristics, 1(1):147-167.
SINTEF (2015). Best known solution values for solomon benchmark. http:// www.sintef.no/Projectweb/TOP/VRPTW/Solomon-benchmark/100-customers/
Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations research, 35(2):254-265.
Taillard, . A., Badeau, P., Gendreau, M., Guertin, F. A., and Potvin, J.-Y. (1997). A tabu search heuristic for the vehicle routing problem with soft time windows. Transportation science, 31(2):170-186.
Tan, K., Chew, Y., and Lee, L. (2006). A hybrid multiobjective evolutionary algorithm for solving vehicle routing problem with time windows. Computational Optimization and Applications, 34(1):115-151.
Ursani, Z., Essam, D., Cornforth, D., and Stocker, R. (2011). Localized genetic algorithm for vehicle routing problem with time windows. Applied Soft Computing, 11(8):5375-5390.
Van Breedam, A. (1995). Improvement heuristics for the vehicle routing problem based on simulated annealing. European Journal of Operational Research, 86(3):480-490.

