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Abstract: Content Security Policy (CSP) defends against Cross Site Scripting (XSS) by restricting execution of
JavaScript to a set of trusted sources listed in the CSP header. A high percentage (90%) of sites among
the Alexa top 1,000 that deploy CSP use the keyword Unsafe-inline, which permits all inline scripts to run—
including attacker–injected scripts—making CSP ineffective against XSS attacks. We present a system that
constructs a CSP policy for web sites by whitelisting only expected content scripts on a site. When deployed,
this auto-generated CSP policy can effectively protect a site’s visitors from XSS attacks by blocking injected
(non-whitelisted) scripts from being executed. While by no means perfect, our system can provide signifi-
cantly improved resistance to XSS for sites not yet using CSP.

1 MOTIVATION

Modern web pages are complex web applications that
pull scripts from different origins into the same ex-
ecution context (Nikiforakis et al., 2012). While
powerful, this execution scheme also opens the door
for cross-site scripting (XSS) attacks and vulnerabil-
ity studies consistently rank XSS highest in the list
of attacks on web applications (OWASP, 2012; The
MITRE Corporation, 2012; Microsoft, 2012).

As of today, all major web browsers (Chrome,
Firefox, Internet Explorer, Safari) support the
Content-Security-Policy HTTP header. However, a
recent study (Weissbacher et al., 2014) shows that
fewer than one percent of Alexa top 100 sites use CSP.
Challenges in adoption (Weissbacher et al., 2014),
such as lack of framework support, are often barri-
ers to CSP deployment on many Web sites. Addi-
tionally, our own crawl of the Alexa top 1,000 sites
shows that only 20 deploy CSP; and of those, only
two avoid use of the keyword Unsafe-inline. The key-
word Unsafe-inline was originally introduced to sup-
port legacy code while transitioning sites to use CSP.
This keyword whitelists all inline scripts for a site,
but it also allows attacker–injected scripts code to ex-
ecute, making CSP ineffective against most XSS at-
tacks.

We present a system that reduces the burden on
site authors: it does not require manual effort from

site authors to craft, deploy and maintain their own
CSP. Our system shifts the work from the site authors
to the user agents, by having browsers report hashes
of served inline scripts of a web page to a trusted
third-party policy server. This policy server then ac-
cumulates those script hashes from many individual
visitors into a script profile for subject web sites. The
accumulated script profiles are then used to automat-
ically generate a CSP header for each site tracked by
the policy server. Subsequent visitors to tracked sites
can query this policy server for its generated CSP,
and then apply it when assembling and rendering the
site content. While all users of our system will con-
tinue reporting scripts appearing on tracked sites, they
can also enjoy protection from a CSP based on what
other visitors expect to appear. This crowdsourced
approach allows inspection deep into web sites, per-
mitting our system to gather information about inline
scripts beyond the initial landing pages.

In this paper, we first establish the threat model we
aim to defend against (Section 2) and then contribute
the following:

• We measure current CSP deployment (Section 3)
by visiting the Alexa top 1,000 sites in the world,
show that only two percent of pages deploy CSP,
and note how few of those effectively protect
against XSS attacks.

• We present design and implementation details of

Kerschbaumer, C., Stamm, S. and Brunthaler, S.
Injecting CSP for Fun and Security.
DOI: 10.5220/0005650100150025
In Proceedings of the 2nd International Conference on Information Systems Security and Privacy (ICISSP 2016), pages 15-25
ISBN: 978-989-758-167-0
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

15



Table 1: Alexa top 1,000 sites that deploy CSP and are protected against XSS. (AR=Alexa rank, R=report only, IS=Inline
scripts, safe=protected against XSS).

AR Page IS default-src script-src safe
1 2 facebook.com 12 Unsafe-inline
2 12 twitter.com 4 Unsafe-inline
3 25 yandex.ru 15 Unsafe-inline /0
4 30 pinterest.com 9 Unsafe-inline /0
5 36 mail.ru 78 Unsafe-inline
6 65 cnn.com 14 Unsafe-inline
7 107 vimeo.com (R) 8 Unsafe-inline /0
8 126 dropbox.com 17 Unsafe-inline
9 198 github.com 0 X X

10 378 yandex.ua 17 Unsafe-inline /0
12 436 w3.org 1 Unsafe-inline
12 438 fbcdn.net 12 Unsafe-inline
13 440 zendesk.com 18 Unsafe-inline /0
14 519 steamcommunity.com 5 Unsafe-inline
15 558 ya.ru 4 Unsafe-inline /0
16 643 mega.co.nz 0 X X
17 695 yandex.com.tr 9 Unsafe-inline /0
18 787 behance.net (R) 13 /0 /0
19 801 yandex.kz 15 Unsafe-inline /0
20 995 chefkoch.de 50 /0 /0

a system (Section 4) based on Firefox (v39.0) that
allows any web page to be deployed with a CSP
header.

• We evaluate our approach and demonstrate the
ability of our system (Section 5) to protect up to
half of web pages against XSS attacks. Discus-
sion includes the limitations of our approach (Sec-
tion 6).

2 THREAT MODEL

Since attacker–supplied JS executes in the target
page’s context, it can perform many actions as if it
were the user; this could lead to reading a user’s pri-
vate data, stealing their authentication credentials, or
harvesting sensitive user information like keystrokes.
A greedy script may also traverse the Document Ob-
ject Model (DOM) (W3C - World Wide Web Consor-
tium, 2004) and steal any visible data on a compro-
mised web page (Russo et al., 2009). Attackers often
employ these methods of XSS to gain access to con-
fidential user information, or perform actions without
the users consent or knowledge.

In this paper we focus on one goal of web site au-
thors: prevent site visitors from leaking sensitive in-
formation such as cookies or login credentials to an
attacker. Throughout this paper we assume that the

attacker’s capabilities are limited to JavaScript injec-
tion and that attackers can:

1. inject a sequence of bytes into other web pages

2. own and operate their own web sites

3. neither intercept nor control network traffic

4. not exploit any privilege escalation vulnerabilities
in the browser

3 CONTENT SECURITY POLICY

Within a CSP policy, the directive script-src defines
from which URLs and contexts a document may load
scripts (Stamm et al., 2010; W3C - World Wide Web
Consortium, 2014). More critically, when the script-
src directive appears in combination with the keyword
Unsafe-inline, CSP cannot prevent XSS attacks.

script -src * ’unsafe -inline’;

A policy like the one defined above provides no
additional security for a web site, since it permits all
script code whether loaded from an external resource
(indicated by the wildcard *), inlined by the site, or
injected by an attacker (both permitted by Unsafe-
inline). In other words, if an attacker manages to
inject script code into a page using this policy, then
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Figure 1: CSP policy enforcement in the browser.

CSP will not stop the attack code from being executed
within that page.

When used correctly however, CSP can stop script
injection attacks even if an attacker is able to exploit
an XSS vulnerability in the web page. The script-
src directive allows developers to enumerate specific
inline scripts by specifying the scripts’ hashes as an
allowed source:

script -src https://example.com ’sha512 -XVHzN...=’;

A browser enforcing the above policy will per-
mit external scripts loaded from https://example.com
and will additionally allow inline scripts to execute if
the inline script’s hash matches the one sha512-hash
specified in the policy: XVHzN...=.

It is important to note that JS event handlers are
also considered inline scripts and hence also subject
to the script-src directive (W3C - World Wide Web
Consortium, 2014). For example, if a page makes use
of <a href=’javascript:foo();’>link</a> then the hash
of the scripttext, in that case the hash of foo(); would
have to match any of the hashes defined within the
script-src directive so that CSP would allow the JS
event handler to execute.

In contrast to the first policy displayed above, this
second policy does not allow all inline scripts to exe-
cute. By being more restrictive, the second policy can
prevent attempted script injections.

3.1 Browser Enforcement of CSP

A browser handling a CSP policy makes its decision
whether to allow or block any inline script by first
consulting the script-src directive (see Figure 1). If
the script-src directive is not defined within a site’s
CSP, then a browser’s CSP implementation consults

the default-src directive before making its decision
whether to allow or block the load. If neither directive
is present, CSP executes the script.

3.2 The State of CSP Deployment

In order to identify CSP headers deployed on the
Web, we implemented a web crawler that automati-
cally visits the Alexa Top 1,000 web sites using Fire-
fox (v39.0). All the data in our paper reflect snapshots
of frequently changing web pages, taken on January
16th and March 16th, 2015. The results of our crawl
confirm our assumptions and overlap with the find-
ings of Weissbacher et al. (Weissbacher et al., 2014).

As illustrated in Table 1, only 20 out of the
top 1,000 sites in the world use CSP. The two sites
github.com and mega.co.nz employ a fine-grained, se-
cure CSP; neither of these two sites use inline scripts.
Both sites define a script-src directive, and omit the
keyword Unsafe-inline to prevent execution of inline
scripts. Such a tight and security–enhancing policy
leverages the full potential of CSP: to prevent unau-
thorized script execution.

Unfortunately, the other 18 sites with CSP do not
use its full potential. Those sites use the Unsafe-
inline keyword either in the script-src directive itself,
or they do not specify a script-src directive at all and
instead include Unsafe-inline in the fallback directive,
default-src. For example, the CSP of yandex.ru does
not specify a script-src directive. Hence, before load-
ing any of this site’s 15 inline scripts, a browser’s
CSP implementation consults the default-src direc-
tive, where for the example case of yandex.ru it finds
the keyword Unsafe-inline and allows all inlined con-
tent scripts—including injected attack scripts—to ex-
ecute.

Two sites, behance.net and chefkoch.de, use nei-
ther the script-src nor the default-src directive, which
means that CSP will not protect them against any kind
of script injection attacks. Note that behance.net de-
ploys its CSP in report-only mode, meaning browsers
will not actively block any resource loads or script
executions, but will transmit reports for any detected
CSP violations to a URI identified in the CSPs report-
uri directive.

4 DESIGN AND
IMPLEMENTATION

We implemented a prototype of our proposed client-
server architecture for equipping every web site with
a CSP using Firefox (v39.0). First, we patched Gecko
(the rendering engine in Firefox) to record hashes of
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CSP Databasehttps://www.example.com

A B C ...

sha512-YW...=
sha512-XV...=

sha512-SK...=
sha512-NA...=

sha512-BE...=
sha512-CK...=

...

...

A ∩ B ∩ C ∩ ...

Figure 2: System overview: Various users (A, B, C) visit https://www.example.com and report hashes of executed inline scripts
to a third party policy server which creates an intersection of all the reports and generates a CSP header. Future visitors to
https://www.example.com benefit from the additional layer of security provided by a CSP header delivered to them from the
third party.

inline scripts found on each visited site. Our approach
allows users to record inline scripts as they browse
deeply into complex sites. The advantage of a crowd-
sourced approach like this lies in recording real-world
interactions—including for parts of the site behind
authentication—which a web crawler can not inspect.

4.1 Collecting Hashes

Figure 2 shows various users, each requesting a web
site and viewing it in their browser (illustrated as A,
B, C). Each user’s browser records a sha512-hash of
each inline script found on the page. Once a page
is fully loaded (our prototype implementation listens
to the onload() event handler), our modified browser
asynchronously reports those hashes to a trusted third
party policy server, which collects and evaluates all
reported hashes. For example, user A navigates to
https://www.example.com and encounters the follow-
ing inline script:

<script >alert(’Hello , world.’);</script >

In such a case user A would record the hash of that
script. Once the page is fully loaded, user A sends the
gathered hashes of all the encountered inline scripts
to a third party policy server (named CSP Database
in Figure 2).

Later, user B also browses to
https://www.example.com but views a different
subpage and hence loads a different inline script.
Eventually user C and various other users also visit
https://www.example.com. All users record encoun-
tered inline scripts and send the collected hashes of
loaded inline scripts to the third party policy server
that processes all the reported hashes and assembles
a CSP header for the entire web site.

4.2 Assembling a CSP Policy

Lets assume user A and various other users encounter
the same script and report the same hash (sha512-
YWIzO...=) to the policy server. Lets further assume
that user B and various other users report the same
hash (sha512-XVHzN...=) to the policy server. The
CSP policy our system assembles and employs for
that page resembles the following:

Content -Security -Policy: script -src * ’sha512 -

YWIzO...=’ ’sha512 -XVHzN...=’

Please note that our injected CSP always contains
the wildcard (*) within the script-src directive to allow
all external scripts to load (Stamm et al., 2010; W3C
- World Wide Web Consortium, 2014). For a detailed
explanation of how our injection algorithm works, we
defer the reader to Section 4.3.

Start

entry in
CSP-DB?

script-src * 'unsafe-inline'script-src * 'sha512-XVHzN...=' ...

yes no

Continue

Figure 3: Conservative CSP header generation.

When generating CSP headers our system needs
to be conservative: an incorrect header that replaces
Unsafe-inline in the script-src directive that contains
incorrect hashes will impact user experience. As a
result, we implement a conservative CSP header gen-
eration strategy, illustrated in Figure 3.
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Our system only generates and deploys a CSP
header for a given site when we have collected a
sufficiently large number of reports. Algorithm 1
shows our implementation of reporting inline scripts
for each URL. The threshold function T () controls
how many reports we collect until we generate the
CSP header, and is empirically determined (line 5).
A scalar threshold value does not capture real-world
Internet use, since the distribution of users usually
is multimodal: there are pages with many users and
pages with few users. For example, if our system were
to uniformly use a high threshold value, pages with a
recurrent user population of less than the threshold
would never benefit from our system.

We compute our threshold T as follows. First, we
collect user statistics on a per page basis to estimate
its recurrent user population. Then we determine the
sample size such that we have small confidence inter-
vals. Finally, we set T to the high end of the confi-
dence interval.

Our reporting procedure relies on two databases,
the CSP Database and the CSP-Candidate-Database.
The CSP Database holds hashes for URLs that have
crossed the site-specific threshold value, whereas
the CSP-Candidate-Database only holds reported
hashes. Using two separate databases means that re-
ports for sites that serve dynamic inline scripts will
never cross their site-specific threshold T , because the

Algorithm 1: Report inline script to CSP Database.

Data: source url, hash h of an inline script or
indicator of no scripts (ε), the reporting
IP-Address, and threshold function T()
to determine large enough sample size.

1 S← query(CSP-Database, url);
2 if h /∈ S then
3 R← query(CSP-Candidate-Database, url,

h);
4 S← ω(distinct(R, "IP") − IP-Address);
5 if T(url) < |S|+1 then
6 delete(CSP-Candidate-Database, url,

h);
7 update(CSP-Database, url, h);
8 else
9 update(CSP-Candidate-Database, url,

h, IP-Address);
10 end
11 else
12 if h = ε then
13 update(CSP-Database, url, ε);
14 end
15 end

reported hashes constantly change. As a result, there
will be many reported entries in the CSP-Candidate-
Database with different hash values.

We count reports for each IP-address only once,
which prevents “spamming” the system with spuri-
ous reports from a single IP-address (see distinct on
line 4). Furthermore, Algorithm 1 also shows how to
weigh reported hashes to prevent tampering with our
system (function ω on line 4). For example, a serious
attacker might attempt to use a botnet to report hashes
of an injected script. In general, there are two strate-
gies to counter tampering attempts. First, ω could use
statistical techniques to measure reports. One could,
for instance, take a random sample of all incoming re-
ports and see whether the sample exceeds our thresh-
old T (). Another statistical procedure would be to
measure all reports to identify and exclude outliers.
Second, we could use third party information sources
to discard spurious reports from the CSP-Candidate-
Database. For example, both Google and Microsoft
maintain databases indicating whether certain sites
are suspicious or not. Our system could take entries
blacklisted by either initiative and sanitize candidate
records.

Algorithm 1 shows on lines 12-14 how our system
handles pages that contain no inline scripts.

Algorithm 2: Generate CSP header.
Data: source url and threshold function T()
Result: a script-src directive for the specified

url

1 S← /0 ;

2 R← query(CSP-Database, url);
3 R′← query(CSP-Candidate-Database, url);
4 for r ∈ R do
5 S← S⊕ r;
6 end
7 if S 6= /0∧|ω(R′)|< T(url) then
8 return "script-src: * "⊕S;
9 else

10 return "script-src: * ’unsafe-inline’";
11 end

Algorithm 2 shows how we generate a CSP header
for a page. We generate a functional CSP script-
src directive for each reported hash of an inline
script when there are no pending reports in the CSP-
Candidate-Database. This conservative strategy en-
sures that we only generate a CSP header when
the system reaches a stable state, where the CSP-
Candidate-Database contains no significant reported
hashes anymore. This stable state indicates that a
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page only serves static inline scripts, all of which
have been reported sufficiently often and successfully
passed the statistical safeguards implemented in our
weighing function ω.

Generating a CSP header using our system is also
compatible with updates to a page. Whenever a devel-
oper changes his page to serve a new inline script, our
system will trigger new reports to the CSP-Candidate-
Database. While the weighing function ω indicates
that we have seen fewer reports than the threshold
function T () requires, we will continue to generate
the old CSP header (see line 7). Once we cross
the threshold, however, there are two possible cases.
First, Algorithm 1 will add the new hash h to the CSP
Database and delete pending records from the CSP-
Candidate-Database. Second, the new script is dy-
namic and the hashes collected in the CSP-Candidate-
Database will exceed the threshold, causing Algo-
rithm 2 to render the permissive Unsafe-inline key-
word instead. The condition also means that when-
ever an author changes a page, our system requires at
least an amount of threshold function T () reports until
it can make a decision.

4.3 Injecting CSPs

Whenever a user browses to a web site using our mod-
ified CSP enhancing web browser, our system per-
forms one of the following three actions which al-
lows our system to provide the most fine-grained CSP
header possible for that site:

(1) Webpage Does Not Deploy CSP: In case the
web site does not deploy a CSP header, then our
modified browser simply queries the corresponding
CSP for that webpage from the CSP Database. The
browser applies the CSP as if a CSP header was re-
ceived from the web page itself.

(2) Webpage Deploys CSP with Unsafe-inline: If
the web page deploys a CSP but uses the keyword
Unsafe-inline within the script-src or the default-
src directive, then our system removes the keyword
Unsafe-inline and replaces Unsafe-inline with the
script hashes obtained from the CSP Database. Ad-
ditionally specified directives within the CSP of the
webpage, such as img-src, style-src, or connect-
src (Stamm et al., 2010; W3C - World Wide Web
Consortium, 2014) remain untouched by our injection
algorithm since such directives provide additional se-
curity for the webpage. We consider crafting a tight
CSP policy as good practice and hence our prototype
always injects the script-hashes within the script-src
directive, even if the original CSP does not contain

a script-src directive and Unsafe-inline was defined
within the fallback directive: default-src.

(3) Webpage Deploys CSP without Unsafe-inline:
If a webpage deploys a CSP, and that policy does
not include Unsafe-inline within the script-src or the
default-src directive, then our system does nothing to
change the user’s interaction with the site. In this rare
case where a webpage crafts its own tight CSP policy,
our modified browser does not perform any additional
actions other than enforcing the CSP policy like any
other browser that supports CSP. As discussed in Sec-
tion 3.2, we encountered such a tight policy only on
github.com and mega.co.nz.

Intermittently Blocking Valid Content Scripts:
As discussed in Section 4.2, our system is able to
respond site changes (specifically changes to inline
scripts) very quickly since hashes for inline scripts are
reported by our system’s users at a constant pace. In
turn the CSP generated for tracked sites is regularly
updated with new information. However, there is a
short window of time while the system updates poli-
cies after site changes, and it is possible our system
may block a legitimate (non-attack) inline script. In
this case, the user has the option to manually override
the injected CSP.

5 EVALUATION

We examine the capabilities and limitations of our
system by monitoring the Alexa top 1,000 sites over
a period of two months (January 16th to March 16th,
2015) and record the number of inline scripts per site.

In this section we discuss the feasability of our
approach by inspecting the overall usage of inline
scripts on the Alexa top web sites (Section 5.1) and
discuss tradeoffs of our approach for pages using fre-
quent updates of their inline scripts over pages that
rarely update their inline scripts (Section 5.2). Finally,
we compare the spectrum of effectiveness of our ap-
proach by providing recommendations for web sites
on the lower end and highlight the practicallity of our
approach for web sites on the upper end of that spec-
trum.

A Word About Our Web Crawler: Unfortunately
distribution of our prototype to gather statistical data
for a real world study is not feasible. Hence we set up
a web crawler that visits the front page of the Alexa
Top 1,000 sites and records all inline scripts for those
sites. Even though a web crawler can not inspect the
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Figure 4: Number of sites with a given number of scripts
and the CDF (Cumulative distribution function): percent of
all sites with at most a given number of scripts.

deep web hidden behind logins we argue that a web
crawler returns sufficient data to evaluate inline script
usage, record the code change of inline scripts and
therefore allows us to reason about the feasibility of
our approach. Note that a toplevel CSP does not apply
to content in subelement iframes (Stamm et al., 2010;
W3C - World Wide Web Consortium, 2014). Our
crawler supresses the loading of each page’s iframes
to avoid polluting our statistics with incorrectly ac-
counted inline scripts.

5.1 Inline Script Usage

In sum, our web crawler detected 26,743 inline scripts
when visiting the top 1,000 sites on January 16th,
2015. This indicates that every site hosts on average
27 inline scripts, as illustrated in Figure 4.

Unique Scripts: Although our crawler detected
26,743 instances of inline scripts, we found only
16,519 unique scripts. We attribute this phenomenon
to web developers frequently including third-party
functionality such as analytics and/or social media
code to enrich a user’s browsing experience. Quite
commonly such small scripts are copied and pasted,
and inlined directly within a page. For example, we
found the same user agent detection script on 393 out
of the Alexa top 1,000 sites. Once copied and pasted
on a page, these inline scripts do not get updated by
the web site author. This complements our approach
and causes fewer intermittent script blockages as ex-
plained in Section 4.3.

Pages Hosting Many Inline Scripts: We found
two sites that are using more than 200 inline

scripts. The pages repubblica.it and buzzfeed.com
use 278 and 217 inline scripts, respectively. Those
two pages are statistical outliers, but we observed
415 sites that use between 20 and 199 inline scripts.

As a general recommendation for sites with more
than 20 inline scripts: we suggest refactoring such
pages to load most of the scripts from external re-
sources. We understand the performance cost of load-
ing JS from an external resource rather than inlin-
ing the script (Grigorik, 2013), but we argue that us-
ing more than 20 inline scripts will be performance–
hampering for a web page.

Pages Hosting Few Inline Scripts: In contrast to
sites using many inline scripts, we identified 583 sites
that employ fewer than 20 inline scripts. 43 of those
sites do not use any inline scripts at all. The architec-
ture of such web pages is ideal for our approach, be-
cause our system uses a CSP header of ’script-src *’
for all of those 43 pages, allowing all external scripts
to execute but preventing all inline scripts and thus
most XSS attempts.

5.2 Static vs Dynamic Scripts

In this section we examine inline scripts on web sites
during our monitoring phase and highlight the frac-
tion of inline scripts that we consider static vs. the
fraction of inline scripts we consider dynamic.

Definition of Static and Dynamic Scripts: We de-
fine an inline script to be static if the script does
not change its contents across time points in our in-
vestigation. We further consider a script to be dy-
namic if the script contents gets updated iteratively
and changes across differently-timed accesses.

Figure 5 illustrates the ratio of static to dynamic
scripts on the Alexa top 1,000 sites. On January 16th,
we detected 26,743 inline scripts. On March 16th,
we detected 27,268 scripts. When doing our second
crawl we compared the hashes of the scripts of the two
runs and noticed that 10,893 scripts did not change
within those two months. In other words, each site in
the Alexa top 1,000 sites hosts on average 27 scripts,
from which we consider 11 to be static and 16 to be
dynamic, or iteratively updated.

Pages with Most Dynamic Scripts: Figure 6 (left)
shows the ten pages with the most dynamic scripts
encountered on the top 1,000 pages (changed between
the two visits by our web crawler). Our recordings
do not show any static scripts on bloomberg.com as
well as vitaminl.tv and both pages make use of 60
and 90 inline scripts respectively. Our system may
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Figure 5: CDF for the number of sites with at most a given
number of scripts for January to March 2015.

intermittently block legitimate scripts that are updated
frequently on such pages. Since all of these ten web
pages make extensive use of dynamic scripts, the CSP
Database might not have generated an updated CSP
header for such a site before a subsequent user visits
the page and hence queries and outdated CSP from the
CSP Database. As discussed in Section 4.1, a user of
our modified web browser can manually override the
injected CSP and allows all inline scripts to run.

To overcome the problem of intermittently
blocked scripts, we recommend that pages hosting
more than 20 inline scripts refactor their pages and
load most (if not all) of their inline scripts from an
external resource. Loading scripts from an exter-
nal resource has the advantage that web site authors
only have to whitelist the URL where scripts are
loaded from once (using the script-src directive) in-
stead of constantly updating script hashes within the
CSP header whenever a script gets updated.

Pages with Most Static Scripts: Figure 6 (right)
shows the ten web pages relying on static inline
scripts and few dynamic inline scripts. For exam-
ple, the page chase.com uses 27 static inline scripts
and the page caixa.gov.br uses 29 static inline scripts.
Both pages use only one dynamic inline script that
changed its hash value between our two visits by
our crawler. Pages like the ten highlighted in Fig-
ure 6 (right) as well as pages that do not include any
inline scripts at all (discussed in Section 5.1) exhibit
ideal conditions where our approach of injecting a
CSP header substantially increases protection against
script injection attacks.

Customized Inline Scripts per Visitor: To evalu-
ate our approach we must also account for webpages

that dynamically generate content on the server and
serve that content in form of inline scripts to the vis-
itor. We performed yet another crawl of the Alexa
top 1,000 on March 16th, 2015, to evaluate how fre-
quently this occurs. We use the same setup as for
the first crawl but use a different IP-address to eval-
uate server side inline script customizations on pages.
Overall, we encountered 4,194 scripts generating a
different hash for every visitor. We manually in-
spected scripts that differ and found that such scripts’
functionality is mostly identical but such scripts serve
data in addition to functionality.

For example, the page picmonkey.com serves nine
inline scripts, where eight of them are identical for
two visitors. One script is different for every visitor
because it includes the following code line: ’server-
time: new Date(123456789)’, where 123456789 is
the time specified by the server before it is shipped
to a client. Inline scripts in this fashion will differ for
every user and so every visitor reports a different hash
for such a script to the policy server. Unfortunately,
pages that serve inline scripts that not only contain
functionality but also data are not very well suited for
our approach. As explained in Section 4.2 our ap-
proach will not generate a CSP header for such pages
because reported hashes will never make its transi-
tion from the CSP-Candidate-Database into the CSP
Database.

Feasibility of CSP Header Injection: We found
that 483 pages serve the same inline scripts for dif-
ferent visitors which makes those 483 pages perfectly
suitable for our approach. Those 483 pages serve only
functionality within their scripts and such scripts’
hash value only changes if indeed an iterative update
of the code within the inline script happens—which
our system recognizes and explicitly supports. Based
on these promising results, we are confident that our
system scales beyond the Alexa top 1,000 and will
bring about an important improvement in web secu-
rity without requiring extensive manual intervention
from page authors. Given that currently only two per-
cent of pages deploy CSP, any increase enabled by
our system—ideally to the reported 50%—will be a
big win.

6 DISCUSSION

Though the research community has not explored ar-
eas of configuration and software package manage-
ment with CSP, they are vitally important to deploy-
ment. A stable toolchain (compiler, linker, package
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Figure 6: (left) Sites with the most dynamic scripts. (right) Sites with the most static scripts on the Alexa top 1,000.

installer) is key in creating systems that are easy to
deploy.

Today, end users miss out on the increased se-
curity guarantees provided by CSP. As discussed, in
Section 3 we find that only two of the Alexa top 1,000
sites deploy CSP that has any XSS prevention benefit.
In this paper we present a system that allows web sites
to be deployed with CSP not relying on web site au-
thors to provide, update and maintain their own CSP
policy.

Approach Limitations: Our system helps prevent
the most common type of XSS, namely non-persistent
(or reflected) XSS (Hope and Walther, 2008). Ex-
ploiting a reflected XSS vulnerability allows an at-
tacker to inject JS code, most commonly in HTTP
query parameters or in HTML form submissions,
which the web page immediately renders as regular
page content, granting the script access to user sensi-
tive information on that page. As explained in Sec-
tion 4.2, our system only whitelists and adds script
hashes to the CSP Database if hashes are reported by
various users and only once a pre-defined number of
reports for a given script is reached.

Our system further relies on web sites perform-
ing standard user input sanitization(Jovanovic et al.,
2006; Balzarotti et al., 2008; Bisht and Venkatakr-
ishnan, 2008) before storing any user data within the
sites internal database. Once malicious user input by-
passes server side sanitization filters, our system can
not distinguish between legitimate content scripts and
injected scripts. Such a persistent XSS vulnerabil-
ity can not be detected or stopped by our approach
and the hash for the malicious inline script will be
whitelisted and added to the CSP Database once re-
ported by enough users.

Prototype Limitations: A full–scale deployment
of our system should use standard anonymization

techniques so as not to reveal the content and source
of reports sent to the third party policy server. For
example, a production implementation could use a
traffic anonymization system such as TOR (The Tor
Project, 2012), or rely on RAPPOR (Erlingsson et al.,
2014), a technology that allows anonymous crowd-
sourcing statistics from end-user client software.

At the moment our approach focuses on XSS
prevention and to eliminate Unsafe-inline from CSP
headers and does not cover other protections offered
by CSP. Future work would cover more of the CSP
directives not aimed at preventing XSS. For example,
the auto-generated CSP could cover the img-src direc-
tive so that images can only be loaded from expected
resources. Covering more CSP directives and hence
allowing resource loads only from expected origins
could additionally increase security by not allowing
attackers to perform requests to their own servers.

7 RELATED WORK

CSP Analysis: As discussed in Section 3, our
findings align with the presented results of Weiss-
bacher et al. (Weissbacher et al., 2014). In their paper
they analyze the top one million Alexa sites’ CSP de-
ployment. Their work shows that one percent of web
pages in the Alexa top 100 deploy CSP in enforce-
ment mode and conclude that CSP will not be easily
deployed without substantial framework support.

Security Tools Relying on CSP: In 2013, Doupé et
al. (Doupé et al., 2013) present a system called deDa-
cota. Using static analysis their system automatically
separates code and data of web applications and relies
on CSP to enforce that separation in the browser.

In 2015, Schwenk et al. (Schwenk et al., 2015)
present JSAgents. Even though their approach is
not relying on CSP per se, they use their presented

Injecting CSP for Fun and Security

23



JSAgents to implement large portions of CSP with the
intent to fine grain CSP so that every element in the
DOM relies on a JSAgent instead of having the full
document rely on one CSP. Similar to our intention,
both of these approaches aim to secure legacy web
applications.

The framework “Confinement with Origin Web
Labels” (COWL (Stefan et al., 2014)) uses CSP as the
foundation and provides a labeling mechanism on top
of CSP and other security features within a browser.

Distributed Analysis: In 2011,
Greathouse et al. (Greathouse and Austin, 2011)
show that a large population, in aggregate, can ana-
lyze larger portions of a program than any single user
individually running the full analysis of a program.

In 2013, Kerschbaumer et al. (Kerschbaumer
et al., 2013) present a crowd sourced based approach
where individuals report security violations to a third
party system which allows to identify malicious web
pages and feed the results to URL blacklisting ser-
vices such as Microsoft’s smartscreen filter (Mi-
crosoft, 2012) or Google’s safebrowsing (Provos,
2012) initiative.

Third-party Security Systems: In 2011, Thomas
et al. present a system called Monarch (Thomas
et al., 2011) and Canali et al. present a system called
Prophiler (Canali et al., 2011). Both approaches aim
to detect malware on the Web relying on machine
learning techniques. Even though our system does not
try to classify malicious webpages, it fits well within
this theme of letting trusted third party systems pro-
vide security features for the web.

8 CONCLUSION AND OUTLOOK

Today, web sites and their users do not benefit fully
from XSS protection offered by CSP. Even though
most major browsers acknowledge the CSP header,
only 20 out of the Alexa top 1,000 sites deploy CSP,
and only two pages effectively use CSP to protect
their users against code injection attacks and XSS. It
is clear from our findings that industry requires better
framework support for easy and efficient deployment
of CSP with a web page.

Our proposed system allows deployment of CSP
for web sites without requiring web site authors
to manually update and maintain their CSP header
whenever they perform any kind of update on their
page.

We discussed the limitations of our approach to
account for pages that not only ship functionality but

also data within their inline scripts. Our preliminary
results show that our approach is feasible to deploy a
CSP header for up to half of web sites on the Internet
and thus help protect them from XSS attacks.
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