Computer Science and its Applications (Vol. 279, pp. 
799–804). Berlin, Heidelberg: Springer Berlin 
Heidelberg. http://doi.org/10.1007/978-3-642-41674-
3_114. 
Little, E. E., and Finger, S. E. (1990). Swimming behaviour 
as an indicator of sublethal toxicity in fish. 
Environmental Toxicology and Chemistry, 9(1), 13–19. 
http://doi.org/10.1002/etc.5620090103. 
Mancera, J. M., Vargas-Chacoff, L., García-López, A., 
Kleszczyńska, A., Kalamarz, H., Martínez-Rodríguez, 
G., and Kulczykowska, E. (2008). High density and 
food deprivation affect arginine vasotocin, isotocin and 
melatonin in gilthead sea bream (Sparus auratus). 
Comparative Biochemistry and Physiology Part a: 
Molecular and Integrative Physiology, 149(1), 92–97. 
http://doi.org/10.1016/j.cbpa.2007.10.016. 
Masud, S., Singh, I. J., and Ram, R. N. (2005). Behavioural 
and hematological responses of Cyprinus carpio 
exposed to mercurial chloride. Journal of 
Environmental Biology / Academy of Environmental 
Biology, India, 26(2 Suppl), 393–397. 
Matsumoto, J., Urakawa, S., Takamura, Y., Malcher-Lopes, 
R., Hori, E., Tomaz, C., et al. (2013). A 3D-Video-
Based Computerized Analysis of Social and Sexual 
Interactions in Rats. PLoS ONE, 8(10), e78460. 
http://doi.org/10.1371/journal.pone.0078460. 
Mirat, O., Sternberg, J. R., Severi, K. E., & Wyart, C. 
(2013). ZebraZoom: an automated program for high-
throughput behavioral analysis and categorization. 
Frontiers in Neural Circuits, 7, 1–12. 
http://doi.org/10.3389/fncir.2013.00107. 
Moreira, P. S. A., and Volpato, G. L. (2004). Conditioning 
of stress in Nile tilapia. Journal of Fish Biology, 64(4), 
961–969. http://doi.org/10.1111/j.1095-8649.2004. 
00362.x. 
Oppedal, F., Dempster, T., and Stien, L. H. (2011). 
Environmental drivers of Atlantic salmon behaviour in 
sea-cages: A review. Aquaculture, 311(1-4), 1–18. 
http://doi.org/10.1016/j.aquaculture.2010.11.020. 
Papadakis, V. M., Papadakis, I. E., Lamprianidou, F., 
Glaropoulos, A., and Kentouri, M. (2012). A computer-
vision system and methodology for the analysis of fish 
behaviour. Aquacultural Engineering, 46, 53–59. 
http://doi.org/10.1016/j.aquaeng.2011.11.002. 
Parsonage, K. D., and Petrell, R. J. (2003). Accuracy of a 
machine-vision pellet detection system. Aquacultural 
Engineering, 29(3-4), 109–123. http://doi.org/10.1016/ 
S0144-8609(03)00049-9. 
Pawar, S., Dell, A. I., and Savage, V. M. (2012). 
Dimensionality of consumer search space drives 
trophic interaction strengths. Nature, 486(7404), 485–
489. http://doi.org/10.1038/nature11131. 
Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, 
S., and de Polavieja, G. G. (2014). idTracker: tracking 
individuals in a group by automatic identification of 
unmarked animals. Nature Methods, 11(7), 743–748. 
http://doi.org/10.1038/nmeth.2994. 
Pinkiewicz, T. H., Purser, G. J., and Williams, R. N. (2011). 
A computer vision system to analyse the swimming 
behaviour of farmed fish in commercial aquaculture 
facilities: A case study using cage-held Atlantic 
salmon. Aquacultural Engineering, 45(1), 20–27. 
http://doi.org/10.1016/j.aquaeng.2011.05.002. 
Salierno, J. D., Gipson, G. T., and Kane, A. S. (2007). 
Quantitative movement analysis of social behaviour in 
mummichog, Fundulus heteroclitus. Journal of 
Ethology, 26(1), 35–42. http://doi.org/10.1007/s10164-
006-0027-7. 
Schramm, M., (2010) Kinect: the company behind the tech 
explain how it works. http://www.engadget.com/2010/ 
06/19/kinect-how-it-works-from-the-company-behind-
the-tech/. Retrieved 11 April 2015.  
Smisek, J., Jancosek, M., and Pajdla, T. (2011). 3D with 
Kinect (pp. 1154–1160). Presented at the IEEE 
International Conference on Computer Vision 
Workshops (ICCV Workshops), IEEE. 
http://doi.org/10.1109/ICCVW.2011.6130380. 
Spitzen, J., Spoor, C. W., Grieco, F., Braak, ter, C., 
Beeuwkes, J., van Brugge, S. P., et al. (2013). A 3D 
Analysis of Flight Behaviour of Anopheles gambiae 
sensu stricto Malaria Mosquitoes in Response to 
Human Odor and Heat. PLoS ONE, 8(5), e62995. 
http://doi.org/10.1371/journal.pone.0062995. 
Stewart, A. M., Gaikwad, S., Kyzar, E., and Kalueff, A. V. 
(2012). Understanding spatio-temporal strategies of 
adult zebrafish exploration in the open field test. Brain 
Research, 1451, 44–52. http://doi.org/10.1016/ 
j.brainres.2012.02.064. 
Suzuki, K., Takagi, T., and Hiraishi, T. (2003). Video 
analysis of fish schooling behaviour in finite space 
using a mathematical model. Fisheries Research, 60(1), 
3–10. http://doi.org/10.1016/S0165-7836(02)00081-4. 
Tang, L., Tian, L., and Steward, B. L. (2003). Classification 
of broadleaf and grass weeds using gabor wavelets and 
an artificial neural network. Transactions of the ASAE, 
46(4), 1247–1254. http://doi.org/10.13031/ 
2013.13944. 
Torisawa, S., Kadota, M., Komeyama, K., Suzuki, K., and 
Takagi, T. (2011). A digital stereo-video camera system 
for three-dimensional monitoring of free-swimming 
Pacific bluefin tuna, Thunnus orientalis, cultured in a 
net cage. Aquatic Living Resources, 24(2), 107–112. 
http://doi.org/10.1051/alr/2011133. 
Veeraraghavan, A., Srinivasan, M., Chellappa, R., Baird, 
E., and Lamont, R. (2006). Motion Based 
Correspondence for 3D Tracking of Multiple Dim 
Objects (Vol. 2, pp. II–669–II–672). Presented at the 
2006 IEEE International Conference on Acoustics 
Speed and Signal Processing, IEEE. 
http://doi.org/10.1109/ICASSP.2006.1660431. 
Viscido, S. V., Parrish, J. K., and Grünbaum, D. (2004). 
Individual behaviour and emergent properties of fish 
schools: a comparison of observation and theory. 
Marine Ecology Progress Series, 273, 239–249. 
http://doi.org/10.3354/meps273239. 
Wu, H. S., Zhao, Q., Zou, D., and Chen, Y. Q. (2011). 
Automated 3D trajectory measuring of large numbers 
of moving particles. Optics Express, 19(8), 7646–7663. 
http://doi.org/10.1364/OE.19.007646.