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Abstract: Various regularized approaches to linear discriminant analysis suffer from sensitivity to the presence of outly-
ing measurements in the data. This work has the aim to propose new versions of regularized linear discriminant
analysis suitable for high-dimensional data contaminated by outliers. We use principles of robust statistics to
propose classification methods suitable for data with the number of variables exceeding the number of obser-
vations. Particularly, we propose two robust regularized versions of linear discriminant analysis, which have
a high breakdown point. For this purpose, we propose a regularized version of the minimum weighted covari-
ance determinant estimator, which is one of highly robust estimators of multivariate location and scatter. It
assigns implicit weights to individual observations and represents a unique attempt to combine regularization
and high robustness. Algorithms for the efficient computation of the new classification methods are proposed
and the performance of these methods is illustrated on real data sets.

1 LINEAR DISCRIMINANT
ANALYSIS AND ITS
MODIFICATIONS

Classification methods (classifiers) in bioinformatics
commonly have the aim to learn a classification rule
over data with the number of variables p exceeding
the number of observations n. Let us consider the total
number n of p-dimensional observations

X11, . . . ,X1n1 , . . . ,XK1, . . . ,XKnK , (1)

which are observed in K (K ≥ 2) different samples
(groups) with p > K ≥ 2, where n = ∑K

k=1 nk. Sensi-
tivity of various standard classification procedures to
the presence of outlying measurements (outliers) in
such high-dimensional data has been repeatedly re-
ported as a serious problem in data mining as well as
multivariate statistics (Christmann and van Messem,
2008).

Linear discriminant analysis (LDA) as a standard
(supervised) classification method assumes normally
distributed data in each group, while the covariance
matrix Σ is the same across groups. Let us denote the
mean of the observed values in the k-th group (k =
1, . . . ,K) by X̄k. If n < p or even n� p, the pooled
estimator of the covariance matrix denoted by S is sin-
gular. One of the habitually used versions of regular-
ized LDA, which we denote by LDA∗ to avoid con-

fusion, assigns a new observation Z = (Z1, . . . ,Zp)
T

to group k, if l∗k > l∗j for every j 6= k, where the reg-
ularized linear discriminant score for the k-th group
(k = 1, . . . ,K) has the form

l∗k = X̄T
k (S∗)−1Z− 1

2
X̄T

k (S∗)−1X̄k + logπk. (2)

Here, πk is a prior probability of observing an obser-
vation from the k-th group,

S∗ = λS+(1−λ)T (3)

for λ ∈ (0,1) denotes a regularized estimator of the
covariance matrix across groups and T is a given sym-
metric positive definite matrix of size p× p.

In addition, the standard LDA is too sensitive to
the presence of outlying values in the data because of
its construction using the maximum likelihood esti-
mates of the means and covariance matrix (Filzmoser
and Todorov, 2011). As an alternative, robust clas-
sification methods have been proposed which are re-
sistant to the presence of outliers (Croux and Dehon,
2001; Hubert et al., 2008; Todorov and Filzmoser,
2009) in terms of a high breakdown point, which mea-
sures the sensitivity against noise or outliers in the
data. Particularly, the finite-sample definition of the
breakdown point corresponds to the maximal percent-
age of extremely severe outliers present in the data
set, which still does not lead the method to a collapse,
i.e. the estimators of the means and covariance matrix
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are not shifted to infinity (Davies and Gather, 2005;
Huber and Ronchetti, 2009). Nevertheless, available
robust classification procedures require n > p.

Numerous available versions of the regularized
LDA, as described e.g. by (Guo et al., 2007; Tibshi-
rani and Narasimhan, 2003; Krzanowski et al., 1995;
Kindermans et al., 2014) are also vulnerable to out-
liers because of the non-robustness of S as well as
means of each group. We will document this on ex-
amples in Section 3. While LDA∗ is considered to be
robust from the point of view of the so-called robust
data mining (Xanthopoulos et al., 2013), such robust-
ness is defined only as insensitivity to measurement
errors but not to the presence of severe outliers. In
this paper, we perform a unique approach to combine
the Tikhonov regularization for n� p with statistical
robustness.

Our aim is to propose new classification methods
for high-dimensional data exploiting principles of ro-
bust statistics. Section 2 proposes two new robust reg-
ularized methods for high-dimensional data, exploit-
ing the idea of down-weighting less reliable observa-
tions. They are based on a regularized version of the
minimum weighted covariance determinant estimator,
which possesses a high breakdown point. The follow-
ing Section 3 illustrates various methods on several
real data sets. The results are presented in Section 4
and discussed in Section 5. Finally, Section 6 con-
cludes the paper and discusses also the good compre-
hensibility of the newly proposed approach.

2 CLASSIFICATION ANALYSIS
BASED ON THE
REGULARIZED MWCD
ESTIMATOR

We recall the regularized M-estimator of covariance
matrix (Chen et al., 2011) in Section 2.1. Further,
we propose a regularized version of the highly robust
minimum weighted covariance determinant estimator
in Section 2.2. For the iterative computation of this
covariance matrix estimator, we recommend to use
the Chen’s estimator as an initial estimator of the co-
variance matrix. Finally, we propose two robust ver-
sions of regularized LDA in Sections 2.3 and 2.4.

2.1 Regularized M-estimator of
Covariance Matrix

A regularized M-estimator of the population covari-
ance matrix of multivariate data was proposed by

(Chen et al., 2011). Assuming a single group of in-
dependent identically distributed (i.i.d.) data (K = 1),
Chen’s estimator can be characterized as a regularized
M-estimator of (Tyler, 1987), in other words a regu-
larized Huber-type estimator for multivariate data. As
it depends on a regularization parameter ρ∈ (0,1), we
will denote it as S∗M,ρ.

Although M-estimation is the most common ro-
bust statistical approach (Huber and Ronchetti, 2009),
M-estimators of parameters in the multivariate model
do not possess a high breakdown point (Tyler, 2014).
This is true also for Chen’s estimator. Therefore, we
consider more robust methods in Section 2.2, using
Chen’s estimator as an initial estimator of the covari-
ance matrix.

2.2 Regularized MWCD Estimator

We recall the minimum weighted covariance deter-
minant (MWCD) estimator, which is one of highly
robust estimators of parameters of multivariate data
(Roelant et al., 2009). Its appealing properties de-
serve to be overviewed and we propose its regularized
version suitable for n < p.

Considering a single group of i.i.d. data (K =
1), the MWCD estimates the mean in the form of
a weighted mean and at the same time estimates the
covariance matrix Σ. Prior to the computation, the
user must specify magnitudes of weights, while the
weights themselves are assigned to individual obser-
vations after an optimal permutation. The idea is to
assign small weights to outliers and larger weights to
reliable data points.

The MWCD estimator can be interpreted as a di-
rect generalization of the minimum covariance de-
terminant (MCD) estimator of (Rousseeuw and van
Driessen, 1999), allowing more general weight func-
tions. In addition, the hard rejection rule of the MCD
may increase its local sensitivity, while the MWCD
does not suffer from such local non-robustness due to
the weighting scheme; this is analogous to the least
weighted squares regression reducing the local sensi-
tivity of the least trimmed squares (Vı́šek, 2006).

The MWCD estimator is highly robust in terms
of the breakdown point (Roelant et al., 2009) and
is equal to the maximal breakdown point attainable
for affine-equivariant estimators of Σ (Lopuhaä and
Rousseeuw, 1991); this is true if the outliers ob-
tain weights exactly equal to 0. The MWCD esti-
mator has the largest efficiency for elliptically sym-
metric unimodal distributions. Also the Fisher con-
sistency and influence function are known (Roelant
et al., 2009). An approximative algorithm for comput-
ing the MWCD estimator may be obtained as a gener-
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alization of the MCD algorithm (Rousseeuw and van
Driessen, 1999).

Because the MWCD estimator cannot be com-
puted for n < p, we define its regularized version
computationally feasible for n � p. Let T denote
a given symmetric positive definite matrix of size
p× p.

Algorithm 1: Regularized MWCD estimator.

Step 1. Initialize the value of the loss function as
+∞.

Step 2. Compute S∗M,ρ for a given ρ ∈ (0,1). Com-
pute Huber’s M-estimator of µ and denote it as
X̄M . Denote B = X̄M and C = S∗M,ρ.

Step 3. Compute the regularized M-Mahalanobis
distance

d(i;B,C) =
[
(Xi−B)TC−1(Xi−B)

]1/2
(4)

for each observation Xi. Sort these distances in
ascending order. This determines a permutation
π(1), . . . ,πn of the indexes 1,2, ...,n, which fulfills

d(π(1);B,C)≤ ·· · ≤ d(π(n);B,C). (5)

Assign the weights to invididual observations ac-
cording to the ranks of the Mahalanobis distances.
Thus, e.g. the observation Xπ(1) obtains the weight
w1.

Step 4. Evaluate

Sw =
n

∑
i=1

wi(Xi− X̄w)(Xi− X̄w)
T (6)

with the weights from Step 3. If the loss function
evaluated as the determinant of the matrix

det(λSw +(1−λ)T ) . (7)

is smaller than the previously obtained value, con-
tinue with step 5. Otherwise go to step 6.

Step 5. Store the values of the weights. Compute the
weighted mean and weighted covariance matrix
using these weights. Continue with steps 2, 3,
and 4. This is repeated as long as the value of
the loss decreases.

Step 6. Repeatedly (10 000 times) perform the steps
1 to 5. The optimal weights are those which yield
the minimal value of the loss function over all rep-
etitions of steps 1 to 5.

In step 2, choosing robust rather than standard
initial estimators is a common approach in a variety
of iterative robust estimators (Huber and Ronchetti,
2009).

2.3 MWCD-LDA∗

We propose a novel classification method denoted as
MWCD-LDA∗. The data are assumed to be observed
in K different groups as in (1), while each of the
groups has a Gaussian distribution with covariance
matrix Σ. The method is based on estimating Σ by
the regularized MWCD estimator. However, Σ does
not play the role of the covariance matrix over all data
and we will need to adapt Algorithm 1 for the situa-
tion with K groups.

In order to simplify the notation, let us denote the
p-dimensional measurements (1) as Y1, . . . ,Yn. We
will distinguish between Huber’s M-estimator com-
puted for all observations

ȲM = (ȲM,1, . . . ,ȲM,p)
T (8)

and Huber’s estimator for the k-th group

Ȳ k
M = (Ȳ k

M,1, . . . ,Ȳ
k
M,p)

T . (9)

The formula (6) will be replaced by

S̃MWCD =
(
S̃i j

)p
i, j=1 , (10)

where

S̃i j =
K

∑
k=1

∑
l∈group k

wl(Yli− Ȳ k
M,i)(Yl j− Ȳ k

M, j). (11)

Here, the summation over l runs over all observa-
tions l = 1, . . . ,n, which belong to the k-th group.
The result of Algorithm 1 with such modification
for the K groups are the optimal weights denoted as
w̃1, . . . , w̃n. The regularized MWCD estimator will be
computed as the matrix (11) with weights equal to
w̃1, . . . , w̃n and will be denoted as S∗MWCD.

At the same time, the means of each of the
K groups will be estimated by the MWCD estimator
and we will distinguish between

ȲMWCD =
n

∑
l=1

w̃lYl (12)

and

Ȳ k
MWCD = ∑

l∈group k
w̃lYl , k = 1, . . . ,K. (13)

Within a classification procedure, a suitable value
of λ will be found by a cross-validation in the form
of a grid search over all possible values of λ ∈ (0,1).
Formally, MWCD-LDA∗ will assign a new observa-
tion Z = (Z1, . . . ,Zp)

T to group k, if `∗k > `∗j for every
j 6= k, where

`∗k = (Ȳk,MWCD)
T (S∗MWCD)

−1 Z− (14)

−1
2
(Ȳk,MWCD)

T (S∗MWCD)
−1 Ȳk,MWCD + logπk.
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Equivalently, the classification rule can be also ex-
pressed as follows. An observation Z is assigned to
group k if

(Ȳj,MWCD−Z)T (S∗MWCD)
−1 (Ȳj,MWCD−Z)+ logπk

(15)
over j =,1, . . . ,K is minimal exactly for k.

Nevertheless, both (14) and (15) are rather ob-
scure from the computational point of view. We pro-
pose to avoid computing the inverse matrix by solving
a set of linear equations within the following algo-
rithm based on eigendecomposition of the regularized
covariance matrix.

Algorithm 2: MWCD-LDA∗ for a general T based on
eigendecomposition.
1. For a fixed value of λ ∈ (0,1), compute S∗MWCD

using a given T using Algorithm 1, replacing (6)
by (10) with (11).

2. Denote the weights determined by the computa-
tion of S∗MWCD by w̃1, . . . , w̃n and use them to com-
pute Ȳ k

MWCD using (13).
3. For a given δ ∈ (0,1), compute the matrix

A = [Ȳ1,MWCD−Z, . . . ,ȲK,MWCD−Z] (16)
of size p×K.

4. Compute and store the eigenvalues of S∗MWCD in
the diagonal matrix D̃, and compute and store the
corresponding eigenvectors of S∗MWCD in the or-
thogonal matrix Q.

5. Compute the matrix

B = D−1/2QT A (17)
and assign Z to group k, if

k = argmax
j=1,...,K

{
||B j||2 + logπk

}
, (18)

where ||B j||2 is the Euclidean norm of the j-th
column of B.

6. Repeat steps 1 to 4 with different values of λ and
find the classification rule with the best classifica-
tion performance.
The expensive and numerically unstable compu-

tation of the Mahalanobis distance is avoided by re-
placing the inversion of S∗MWCD by an efficient group
assignment in (15) based on

(Ȳk,MWCD−Z)T (S∗MWCD)
−1(Ȳk,MWCD−Z)

= (Ȳk,MWCD−Z)T QD−1QT (Ȳk,MWCD−Z)

= ‖D−1/2QT (Ȳ k,MWCD
k −Z)‖2. (19)

Alternatively, the method can be computed using
Cholesky decomposition. Besides, if a specific choice
T = Ip is considered, the computation of MWCD-
LDA∗ can be performed by means of more efficient
algorithms, which exceed the scope of this paper.

2.4 MWCD-LDA∗∗

The second novel regularized robust version of LDA
denoted as MWCD-LDA∗∗ combines robust covari-
ance matrix estimation of Section 2.3 with shrinking
the means towards the pooled mean (across groups).

The regularized estimator of the joint covariance
matrix (across groups) is obtained as in Algorithm 2.
Further, let us use the notation X̄MWCD for the over-
all MWCD-mean across groups. The MWCD-means
of individual groups is be shrunken towards X̄MWCD

replacing the classical mean of the k-th group by

Ȳ ∗∗k,MWCD = δȲk,MWCD +(1−δ)ȲMWCD (20)

for k = 1, . . . ,K and a fixed δ ∈ (0,1).
The new method MWCD-LDA∗∗ is defined as fol-

lows. An observation Z = (Z1, . . . ,Zp)
T will be as-

signed to group k, if `∗∗k > `∗∗j for every j 6= k, where

`∗∗k = (Ȳ ∗∗k,MWCD)
T (S∗MWCD)

−1Z− (21)

− 1
2
(Ȳ ∗∗k,MWCD)

T (S∗MWCD)
−1Ȳ ∗∗k,MWCD + logπk.

The shrinkage in (20) can be interpreted as shrink-
age in the L2-norm as in ridge regression. Although
this does not perform variable selection, which is
obtained by the L1-regularization, it is more suit-
able for such data that do not contain a small num-
ber of variables dominant for the classification task.
Such shrinking the means towards the pooled mean
is known to bring benefits e.g. in Bayesian hierarchi-
cal models (Mallick et al., 2009). Thus, MWCD-
LDA∗∗ can be interpreted as a method based on an
L2-regularized Mahalanobis distance.

Suitable values of parameters λ and δ can be found
by cross validation within algorithms analogous to
those given above. The method is preferable if the
data contain a large number of variables with a small
effect on the classification, but without any clearly
dominant small subset of variables.

3 EXAMPLES

To illustrate the performance of the robust regularized
versions of LDA, we analyze four different real data
sets. Each data set fulfils n < p and three of them
can be described as omics data with n� p. The aim
of each example is to distinguish between two groups
of observations. Table 1 overviews the classification
performance of 5-fold cross validation in the form of
the Youden’s index I, which is defined as

I = sensitivity+ specificity−1 (22)

and fulfils I ∈ [−1,1].
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Table 1: Youden’s index (22) as a classification performance measure computed for a 5-fold cross validation study on various
data sets of Sections 3.1 to 3.4. Data from Section 3.2 are considered as raw as well as after a contamination by normally
distributed outliers N(0,σ2) for different values of σ.

Section 3.2
Contam. for σ =

Section 3.1 Raw 0.1 0.2 0.3 Section 3.3 Section 3.4

n 48 168 42 32
p 38 614 4005 518 15

Regularized versions of LDA
PAM 0.85 0.88 0.81 0.75 0.68 0.86 0.51
LDA∗ 1.00 1.00 0.95 0.94 0.92 0.89 0.71

SCRDA 1.00 1.00 1.00 1.00 0.99 0.91 0.80
MWCD-LDA∗ 1.00 1.00 1.00 1.00 1.00 0.91 0.79
MWCD-LDA∗∗ 1.00 1.00 1.00 1.00 1.00 0.92 0.80

Other classification methods
SVM 1.00 1.00 0.99 0.98 0.96 0.92 0.85

Classification tree 0.94 0.96 0.95 0.91 0.92 0.84 0.11
Lasso-LR 0.97 0.99 1.00 0.97 0.94 0.87 0.82

Number of principal components 10 10 10 20 4
PCA =⇒ LDA 0.15 1.00 0.94 0.93 0.88 0.70 0.59
PCA =⇒ LDA∗ 0.51 1.00 0.95 0.94 0.89 0.62 0.59

PCA =⇒ SCRDA 0.62 1.00 0.95 0.94 0.89 0.72 0.59
Number of selected genes 10 10 10 20 4

MRMR =⇒ LDA 0.90 1.00 0.94 0.93 0.89 0.88 0.72
MRMR =⇒ LDA∗ 0.96 1.00 0.96 0.93 0.89 0.88 0.76

MRMR =⇒ SCRDA 1.00 1.00 0.96 0.93 0.89 0.90 0.76

We computed various classifiers in R software. All
regularized versions of LDA use the unit matrix as the
target matrix T and the MWCD-LDA∗ uses linearly
decreasing weights in the form

wi =
w̃i

∑n
j=1 w̃ j

, i = 1, . . . ,n, (23)

where
w̃i = 1− i−1

n
, i = 1, . . . ,n. (24)

With such simple choice of decreasing weights, the
outliers will obtain very small weights and their effect
will be reduced considerably.

Besides the methods already described in this pa-
per, we used also several standard machine learning
methods, e.g. support vector machines (SVM) with
a radial basis function kernel or logistic regression
using the lasso regularization (lasso-LR) (Friedman
et al., 2015).

To compare the results with the effect of dimen-
sionality reduction, we also use the principal compo-
nent analysis (PCA) and the Minimum Redundancy
Maximum Relevance (MRMR), where the latter is
a supervised variable selection with Pearson’s corre-
lation coefficient as measure of relevance and redun-
dancy (Peng et al., 2005). The number of principal

components and the number of selected variables by
the MRMR procedure for the four particular data sets
is given in Table 1 together with the results, which
will be discussed later in Section 4.

3.1 Cardiovascular Genetic Study

We participated on a cardiovascular genetic study
with the to identify a small set of genes associated
with excess genetic risk for the incidence of a cardio-
vascular disease among p = 38590 gene transcripts
(the link must stay hidden according to submission
guidelines). The gene expressions are measured on
n = 48 individuals, namely on 24 patients having
a cerebrovascular stroke and 24 control persons.

3.2 Brain Activity Data

Further, we analyze a real data set from neuroscience
research investigating the spontaneous activity of var-
ious parts of the brain by means of neuroimaging
methods. Specific functions of individual parts of the
brain have been already described (Duffau, 2011), but
spontaneous brain activity and especially connection
between pairs of brain parts in the resting state (i.e.
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resting-state brain networks) has been a hot topic in
current neuroscience (Hlinka et al., 2011).

We participated on a study of the brain activity of
n = 24 probands, which was measured by means of
fMRI under 7 different situations. One of them can
be characterized as a resting state, i.e. rest without any
stimulus. Besides, the probands were observing each
of 6 different movies while measuring the brain ac-
tivity in the same way. The fMRI divides the brain to
90 regions and we are interested only in values of cor-
relation coefficients between a pair of brain regions.
In this context, the correlation coefficient evaluates
a (functional) connectivity between the two regions.
Thus, we consider only p = 90 ∗ 89/2 = 4005 vari-
ables containing values of correlation coefficients for
each of the 24 probands. The basic task is to clas-
sify the resting state from (any) movie, i.e. all movies
together are considered to be one class. In general,
fMRI measurements are known to be contaminated
by noise as well as outliers (Wager et al., 2005). It is
also true with out data and therefore robust methods
are highly desirable for their analysis.

The task is to learn a classification rule allow-
ing to discriminate between two groups (resting state,
movie). This is a classification to 2 groups with p =
4005 variables over n = 168 individuals, while the
resting state group contains 24 observations and the
group corresponding to any movie contains 6 ∗ 24 =
144 observations.

In addition, we investigate the performance of
various classification methods on data contaminated
by noise. For this purpose, we generated proband-
independent noise generated from normal distribution
N(0,σ2) for various values of σ. The noise was added
to all measurements for each proband and classifica-
tion rules are learned over this contaminated data set.
Such contamination was repeated 100-times and the
classification performance for the 5-fold cross valia-
tion was evaluated for each case for various methods.
We consider the noise with σ = 0.1 to be slight and
with σ = 0.3 to be moderate, revealing already the
advantage of robust methods compared to non-robust
ones.

3.3 Metabolomic Profiles Data

We analyze a publicly available data set of prostate
cancer metabolomic data (Sreekumar et al., 2009)
of p = 518 metabolites measured over two groups
of n = 42 patients, who are either those with a be-
nign prostate cancer (16 patients) or with other can-
cer types (26 patients). The task in both examples is
to learn a classification rule allowing to discriminate
between the two classes of individuals.

3.4 Keystroke Dynamics Data

The last data set contains data from biometric authen-
tication by means of keystroke dynamics. We partic-
ipate on a study aiming at proposing and implement-
ing a biometric authentication system for medical re-
ports within a hospital based on keystroke dynamics
measurements. Our detailed analysis goes beyond the
results of (Kalina and Schlenker, 2015).

The training data set contains keystroke durations
and keystroke latencies measured in milliseconds on
n = 32 probands, who typed 10-times in their habitual
speed a short sequence of 8 characters. This sequence
(password) was the same for each proband. In spite
of a small value of p = 15 variables, p exceeds the
number of measurements for each individual.

In the practical application, one of the 32 individ-
uals identifies himself/herself (say as XY) and types
the password. The aim of the analysis is to verify
if the individual typing on the keyboard is or is not
the person XY. Thus, the authentication task is a clas-
sification problem to assign the individual to one of
K = 2 groups.

4 RESULTS

4.1 Cardiovascular Genetic Study

This data set contains the largest number of variables
among the data sets analyzed in the whole paper.
Some methods reach the classification performance
correct in 100 % of cases, including SVM and also
some of the regularized versions of LDA. This is true
also for MWCD-LDA∗ and MWCD-LDA∗∗.

While dimensionality reduction by PCA has dras-
tic consequences, it turns out that there is a small
number of variables responsible for the separation be-
tween the two groups. The bad performance of PCA
can be explained by its unsupervised nature, ignor-
ing the grouping structure of the data. A supervised
variable selection by MRMR yields much improved
results and there are 10 genes selected which allow to
separate both groups again with a 100 % correctness
if SCRDA is used.

4.2 Brain Activity Data

Averaged values of the classification accuracy com-
puted over the 100 cases are given in Table 1. Several
classification methods including the MWCD-LDA∗

and MWCD-LDA∗∗ yield results correct in 100 %
of cases. Because these raw data are not contami-
nated by severe outliers, there seems no advantage
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of the robust regularized LDA over non-robust ver-
sions. Still, PAM turns out to be heavily influenced
by them, although it was actually proposed as a de-
noised version of diagonalized LDA (Tibshirani and
Narasimhan, 2003).

The results on the contaminated data reveal an ev-
idence of robustness of the new approach. The clas-
sification performance of standard methods including
SVM or the (non-robust) SCRDA is decreased com-
pared to raw data, while MWCD-LDA∗ and MWCD-
LDA∗∗ are able to outperform them. The MRMR
variable selection allows to find a small set of vari-
ables with an ability to diagnose schizophrenic pa-
tients based only on the fMRI measurements of the
brain in the resting state, which is an interesting re-
sult from the point of view of neuroscience research.

4.3 Metabolomic Profiles Data

There seem to be no severe outliers in the data.
MWCD-LDA∗ and MWCD-LDA∗∗ are still able to
slighly outperform other regularized versions of LDA.
Their result are only slightly different and comparable
to the SVM. Other classifiers yield inferior results.
The MRMR variable selection performs better com-
pared to the unsupervised dimensionality reduction
by means of PCA, while there is to be no remarkable
small group of variables responsible for a large por-
tion of variability of the data and the first few princi-
pal components seem rather arbitrary for the classifi-
cation task.

4.4 Keystroke Dynamics Data

The last column of Table 1 gives classification accu-
racy of various methods obtained on the keystroke dy-
namics data. This data set is used for comparison to
reveal the behavior of regularized methods on a small
number of variables (p = 15). The best results are
obtained with SVM, which is again based on a large
number of support vectors (≥ 90 % of observations),
while MWCD-LDA∗ or SCRDA are slightly inferior.
Dimensionality reduction leads to a loss of informa-
tion compared to methods using all variables. The
data contain approximately 10 % of rather severe out-
liers. MWCD-LDA∗ and MWCD-LDA∗∗ retain their
performance if the outliers are ignored, while SVM
and non-robust versions of LDA seem to be slightly
affected by their presence.

5 DISCUSSION

Regularized LDA has been advocated for both com-
putational and statistical benefits (Pourahmadi, 2013),

which is true not only for n< p but also for n> p with
a relatively small n (Hastie et al., 2008). The regular-
ized covariance matrix can be theoretically justified
as a Stein’s estimator (Pourahmadi, 2013), in analogy
to Stein’s shrinkage estimator of the mean of multi-
variate normal data (Hastie et al., 2008; Hausser and
Strimmer, 2009). Some authors claim that regular-
ization of the covariance matrix ensures a robustness,
although there is no theoretical justification for this
belief. Actually, regularized LDA may be interpreted
from the point of view of robust optimization (Xan-
thopoulos et al., 2013), which deals with small (local)
changes of the measured data. Nevertheless, regular-
ized LDA is not robust to more severe noise or out-
liers, as revealed in our examples.

SVM yields the best classification performance in
some of the examples, especially those with a rela-
tively smaller p. Nevertheless, we perceive its fol-
lowing drawbacks.

• It depends on too many support vectors. In the ex-
amples, more than 90 % of the observations play
the role of support vectors.

• The necessity to optimize its parameters over
a sufficiently large number of observations (Cai
and Shen, 2010).

• A tendency to overfitting for n < p (Han and
Jiang, 2014).

• It works as a black box.

• Non-robustness to outliers.

Appealing properties of regularized LDA have
lead us to the idea of joining principles of statisti-
cal robustness with a suitable regularization. Advan-
tages of the two newly proposed methods denoted as
MWCD-LDA∗ and MWCD-LDA∗∗ include:

• High robustness to outliers thanks to a high break-
down point of MWCD, which is ensured by the
implicit weights, similarly to linear regression
(Vı́šek, 2006; Kalina, 2012);

• No assumption on the distribution of the outliers;

• An efficient algorithm based on numerical linear
algebra;

• No need for a prior dimensionality reduction;

• Comprehensibility.

5.1 Comprehensibility

Comprehensibility of the newly proposed methods,
which represents an important requirement in a wide
variety of classification tasks in bioinformatics, de-
serves to be discussed as a separate section.
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The classical LDA itself is considered to be com-
prehensible, because it is based on the Mahalanobis
distance of a new measurement from each of the
groups of data. The contribution of an individual ob-
servation to the final classification rule is only through
the sufficient statistics, i.e. mean of the corresponding
groups and covariance matrix. The classification rules
of MWCD-LDA∗ and MWCD-LDA∗∗ can be inter-
preted as based on a deformed Mahalanobis distance.
To explain this, let us consider the singular value de-
composition (SVD) of S∗MWCD in the form

S∗MWCD = QΛQT . (25)
We claim that the deformed Mahalanobis distance

of MWCD-LDA∗ can be interpreted as the Euclidean
distance applied on Λ−1/2QT Z. To explain this, let us
consider the aim to assign a new observation Z, which
is not outlying, to one of the groups. In a straightfor-
ward way, we obtain

varΛ−1/2QT Z = Λ−1/2QT ·varZ ·QΛ−1/2 ≈ (26)
≈ Λ−1/2QT ·QΛQT QΛ−1/2 = I .

Also the implicit weights assigned to individual
observations allow a clear interpretation. Less reliable
observations (potential outliers) obtain small or neg-
ligible weights. Such permutation of the weights is
used which minimizes the determinant of a weighted
covariance matrix. The weights are used to compute
the weighted mean and weighted covariance matrix.
In the examples, we have verified that outlying mea-
surements obtain small weights, which ensures the ro-
bustness of the method.

Particularly for the MWCD-LDA∗∗, the means are
replaced by shrunken means, while we use an orig-
inal idea to shrink towards the pooled mean across
groups. This is a difference from all available algo-
rithms shrinking towards zero (Guo et al., 2007).

5.2 Limitations

Let us mention also the limitations of MWCD-LDA∗

and MWCD-LDA∗∗.
• Suitability for data following a contaminated mul-

tivariate normal distribution.
• Intensive computations are required.
• The weights are assigned to individual observa-

tions rather than to individual variables.
• An implicit assumption that the variability is not

substantially different across variables. This is
the same as for SCRDA or other regularized LDA
methods and the novel methods seem to yield re-
liable results although this implicit assumption of
homogeneous variances of all variables is violated
in all the data sets of Section 3.

Finally, we need to recall the regularization itself
to be a rather drastic intervention to the original prob-
lem of rank n, which is replaced by a problem of
a much larger rank p. Such increase of the dimen-
sionality of the covariance matrix may cause the new
problem to be very distant from the original problem
even if an extremely small λ is used and if the new
problem is solved with a perfect numerical precision
(Kůrková and Sanguineti, 2005; Davies, 2014).

6 CONCLUSIONS AND FUTURE
WORK

Numerous available algorithms for the regularized
LDA are popular for the analysis of high-dimensional
data (Kalina, 2014). However, regularized LDA turns
out to be vulnerable to the presence of outliers, be-
cause it is based on the same maximum likelihood es-
timation principle as the standard LDA. It is the maxi-
mum likelihood estimation which causes the high sen-
sitivity of the standard as well as of various regular-
ized versions of LDA to outliers.

This paper proposes new robust classification
methods for high-dimensional observations, i.e. as-
suming the number of variables n to exceed (perhaps
largely) the number of variables p. We combine ro-
bustness to the presence of outliers with regularized
estimation of the covariance matrix of the multivariate
data in a unique way. Two robust classification meth-
ods denoted as MWCD-LDA∗ and MWCD-LDA∗∗

are proposed in Section 2, which are based on implicit
weighting of individual observations and on a regu-
larized version of a highly robust covariance matrix.
MWCD-LDA∗ considers only a regularization of the
covariance matrix, while MWCD-LDA∗∗ additionally
replaces the mean of each group by a regularized ro-
bust estimator.

We analyzed four data sets fulfilling n < p in Sec-
tion 3, while three of them coming from bioinformat-
ics research are high-dimensional in sense of n� p.
On the whole, we can say that MWCD-LDA∗ per-
forms very well for raw high-dimensional data as well
as after contamination by noise. It is an artificial con-
tamination of the data which reveals the robustness of
MWCD-LDA∗ and MWCD-LDA∗∗ as a strong point
of these methods. In the examples, various classifi-
cation methods show distinct differences between the
groups of observations.

In comparison to MWCD-LDA∗, MWCD-LDA∗∗

allows to replace standard sample means of each
group by shrinkage counterparts. This is possible
only at a cost of a much higher increase of com-
putational complexity. Nevertheless, the results of
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MWCD-LDA∗∗ are only slightly improved compared
to MWCD-LDA∗.

Open problems concerning the newly proposed
methods as well as more general ideas for a fu-
ture research in the area of robust analysis of high-
dimensional data contain the following tasks.

• Finding more efficient algorithms for specific
choices of the target matrix T .

• Comparing various approaches to regularizing the
means, mainly comparing the effect of L2 and
L1 norm. In addition, comparing the effect of
shrinking the means towards the common mean
vs. towards zero.

• Comparing the performance and robustness of the
new methods with approaches based on robust
PCA.

• Investigating the non-robustness of other standard
regularized classification methods.

• Applying the regularized robust Mahalanobis dis-
tance to modify other methods based on the Ma-
halanobis distance, such as classification trees, en-
tropy estimators, k-means clustering, or dimen-
sionality reduction.

• Combining regularization and robustness to other
methods, including neural networks or SVM or
even linear regression (Jurczyk, 2012).
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