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Abstract: We present an efficient finite element formulation for the eigenmode analysis of graphene-based plasmonic 

waveguides with switching functionalities. The formulation is full-vectorial and addresses graphene as a 

surface conductivity, as opposed to bulky material considerations, thus eliminating the need for fine 

discretizations inside thin graphene models. Based on this technique, several graphene-enhanced plasmonic 

waveguides and components with promising characteristics are proposed.  

1 INTRODUCTION 

Graphene is a relatively new innovative material, 

with interesting new physics and several significant 

properties and effects, including the ability to 

support surface plasmon propagating modes and 

switching functionalities (Bludov et al., 2013). 

Optical conductivity of graphene has been shown to 

consist of a Drude intraband term and an interband 

contribution. These properties may result in either 

plasmonic modes in THz (Nikitin et al., 2011) or 

enhanced switching in photonic waveguides for the 

optical communications regime (Sun et al., 2014). In 

particular, for the case of the THz regime, where the 

Drude term is dominant, graphene surface plasmons 

offer the possibility of waveguiding with strong 

confinement, while in the optical communications 

spectrum where the interband contribution is 

substantial, the tunability of graphene’s conductivity 

through electrostatic gating shows great potential for 

the design of switching components.  

As for the analysis and design of graphene-based 

and enhanced waveguides and components, the 

finite element method (FEM) is a perfect candidate, 

due to its ability to deal with problems of 

considerable geometric complexity. However, the 

general trend is often to approach graphene as a 

bulky material, thus requiring very fine 

descritizations inside thin sheets and the surrounding 

space as well. We present here an efficient 

formulation for both the eigenmode and the 3D 

analysis of graphene-based plasmonic waveguides 

and components with switching functionalities 

which is full-vectorial and addresses graphene as a 

thin sheet with a surface conductivity. Based on this 

analysis, we propose a graphene-enhanced 

plasmonic CGS waveguide with an extinction ratio 

of 8.6 dB and a 2.15 dB insertion loss for a 10 um 

length, which can be considered highly satisfactory. 

A particular investigation of a three-dimensional 

microring /microdisk filter revelas the possibility of 

actual designs with extinction ratios exceeding 10 

dB, which is also a firm basis for further study 

towards the development of switched plasmonic 

components in the photonics regime. 

2 FINITE ELEMENT 

FORMULATION 

The proposed finite element eigenmode formulation 

follows the general framework that has been  

proposed in (Selleri et al., 2001), where the electric 

field is used as a working variable. The formulation 

uses mixed finite elements for the discretization of 

the waveguide cross section, with tangentially 

continuous (H-curl) vector finite elements in the 

transverse plane and scalar (nodal) finite elements 

for the axial component. Using the Galerkin 

formulation for the Helmholtz equation, the form 
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expresses the projected problem, reducing its 

solution to a finite-dimensional vector subspace. The 
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electric field can be written in the form 

    z

t zE eE E z , where ( , )t t x yE E  represents 

the transverse component and ( , )z zE E x y  

represents the axial component. The adjoint field 

      z

t zE eE E z  is selected as the test function in 

the Galerkin equation and the final eigenmode 

formulation expressed as a function of the effective 

refractive index 0/ effn j k  is as follows: 
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The domain is terminated by perfectly matched 

layers. Following the discretization of the 2D-space, 

using basis functions and the degrees of freedom 

(nodal or edge-based, according to the field 

component) for the electric field quantities and 

assuming for the moment that the line integral 

vanishes, (2) leads to the quadratic eigenvalue 

problem expanded form of Galerkin formulation, 
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To solve the quadratic eigenvalue problem we 

use first companion linearization to reduce it to 
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which is a sparse form with a positive semidefinite 

matrix at the right hand side, suitable for sparse 

eigensolvers. 

As far as the graphene implementation is 

concerned, its extremely small thickness (one-atom 

thick) dictates its consideration as an ideal two-

dimensional surface with a corresponding surface 

conductivity  g
 (measured in S). Therefore, any 

graphene surfaces in the waveguide eigenmode 

analysis are basically represented by one-

dimensional lines in the 2D cross-section of the 

structures (Figure 1).  

 

 
Figure 1: Representation of graphene as an infinitely thin 

sheet (2D cross section) and its surrounding surface. 
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A first route to incorporate graphene sheets in 

FEM simulations is to start from a bulky material 

approach and consider the limit of its thickness to 

zero. In this case, graphene’s contribution would be 

apparent through its conductivity, thus affecting the 

3rd and 4th term of (2) which include permittivity 

quantities. In these integrals, separating a finite 

surface of thickness   corresponding to the bulky 

graphene area, we derive the additional terms 
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0 , 0 ,       g t r tt t z r zz z

S S
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where we replace the permittivity with the complex 

permittivity of graphene 
*

0/    r r bj , and 

 b  describes an equivalent conductivity of bulk 

graphene (in S/m). Assuming that  b  consists of 

non-zero real and imaginary parts, we can omit  r  

as being included in  b  and have 
*

0/   r bj . 

Therefore (6) becomes 
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Assuming an infinitesimal graphene thickness, 

variations are negligible in this dimension, giving 

 

0 0 , , 0 0   
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where b  equals the surface conductivity  g
 (in 

S). It has to be particularly noted that the electric 

field component 
,t pE  involved in the first integral is 

not the full transverse component but only its 

tangential projection on the one-dimensional 

graphene line.  

An equivalent and more elegant way to arrive at 

the same expression is to consider graphene as a 

zero thickness sheet in the first place. In this case, 

the line integral term in (2) cannot be ignored, as the 

graphene current sheet introduces a discontinuity in 

the magnetic field, thus affecting the line integral 

term. In particular, the interface condition on the 

graphene sheet is written in the form  
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where ˆ
gn  is the unit vector normal to the graphene 

sheet. However, to substitute (9) in the line integral 

term of (2) we need to consider a fictitious surface 

that surrounds the graphene sheet from both sides 

and being infinitely close to it. Therefore, the line 

integral is split into two parts, one for the upper 

surface, where the outward-pointing unit normal 

vector is ˆ ˆ  gn n  and one for the lower one, where 

ˆ ˆ   gn n  and the line integral takes the form    
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which easily results in (9) as well. 

Therefore, graphene’s contribution can be 

implemented by adding two line integral terms in the 

initial formulation, expressed as 

 
, ,g
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t g z
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C C
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and by considering the corresponding matrices, it 

results in the linear eigenvalue problem similar to 

(5), where the term ,

0 0 t gjk T  is added to 

2

0 t tkS T  and z,

0 0
gjk T  is added to , 2

0z m zkS T . 

 The three-dimensional FEM formulation is 

similarly based on a standard Galerkin formulation 

with vector finite elements in three dimensions, 

starting from the 3D version of (2). Since there is no 

split in transverse and axial components, the 

Galerkin formulation will include only 3D forms of 

the first, third and last terms in (2). Following 

similar principles, a graphene-raleted term of the 

form 0 0
gjk T  will be added to the standard FEM 

stiffness-mass matrix 2

0 kS T .  

3 PLASMONIC AND SWITCHING 

COMPONENTS  

The proposed formulations are is able to analyze 

both plasmon graphene ribbon waveguides in the 

THz regime and a switching-capable waveguide 

structure for telecom applications, based on the CGS 

waveguide (Dai and He, 2009), which is properly 

enhanced by graphene. 
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3.1 Graphene waveguide with high-
index dielectric ridge  

The first structure simulated was the graphene 

waveguide proposed in (Sun et al., 2014). Its 

concept takes advantage of a high-index dielectric 

ridge to achieve strong field confinement without 

using a finite width graphene ribbon which is harder 

to fabricate. Placing a wide graphene sheet over a 

dielectric ridge of appropriate size, the geometry of 

the structure facilitates waveguiding. The relation of 

the complex effective refractive index to the 

thickness of gap the graphene sheet and the 

dielectric ridge, as well as to the chemical potential 

are shown in Fig. 3, being in very good agreement 

with (Sun et al., 2014). 

3.2 Graphene microribbon waveguide 

To fully test the functionality of our formulation, we 
analyzed a plasmon graphene microribbon 
waveguide in the THz regime (Nikitin et al., 2011). 
This is a waveguiding structure for frequencies 
between 1 and 12 THz (as opposed to the 
telecommunications wavelength regime) taking 
advantage of the surface conductivity of a graphene 
microribbon. The analysis was conducted for a 
ribbon width of 5 um and the electric field intensity 
plots for the two transverse components are shown 
in Figure 2.  

 

 

 
Figure 2: Effective refractive index (real part) and mode 

profiles for the first mode of a 5um graphere ribbon 

waveguide (vertical and horizontal E-field component, 

respectively). 

3.3  Graphene waveguide with high-
index dielectric ridge 

The next structure simulated was the graphene 

waveguide proposed in (Sun et al., 2014). Its 

concept takes advantage of a high-index dielectric 

ridge to achieve strong field confinement without 

using a finite width graphene ribbon which is harder 

to fabricate. Placing a wide graphene sheet over a 

dielectric ridge of appropriate size, the geometry of 

the structure facilitates waveguiding. The relation of 

the complex effective refractive index to the 

thickness of gap of the graphene sheet and the 

dielectric ridge, as well as to the chemical potential 

are shown in Figure 3, being in very good agreement 

with (Sun et al., 2014). 

 

 
 

 
 

Figure 3: Real part of the effective refractive index with 

respect to gap thickness and chemical potential 

3.4 Graphene switching component 

Based on the analysis, we propose a switching 
capability for the classic plasmonic CGS waveguide 
(Dai and He, 2009), (Wu et al., 2010) by adding 
graphene layers on all interfaces between waveguide 
materials, including both sides of the oxide layer, 
and also the two vertical ridges of the waveguide. 
The ON and OFF states of the waveguide 
correspond to chemical potential values 1 eV and 0.1 
eV. Selecting a structure length of 10 um, the 
insertion loss can be as low as 2.15 dB, almost 
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entirely due to metal (not graphene) losses and the 
achieved extinction ratio is 8.6 dB, which is highly 
promising for further study. 

3.5 Switched plasmonic components 
with frequency selective 
finctionalities 

Following the proposed waveguide components we 
further proceed to the design of three dimensional 
components with frequency tuning functionalities, 
like the waveguide-coupled microring structure of 
Figure 4. For more enhanced performance, the 
microring concept is extended to cover the cases of a 
micordisk or a donut-shaped ring. The component's 
performance, in terms of the power transmission 
coefficient is shown in Figure 5, for both the 
microdosk and donut shapes, for the ON state, while 
the achieved extinction ratio between ON and OFF 
states for the graphene enhanced component exceeds 
11.5 dB, which is a figure suitable for practical 
considerations.     
 
 

 
 

Figure 4: Microring resonator filter based on the CGS 

waveguide 

 

 

 
 

Figure 5: Frequency response of the microdisk and donut 

structures, in terms of the power transmission coefficient. 

Outer ring radius is 0.85 um, inner ring radius for the 

donut structure is 0.45 um and the gap is set to 150 nm.     

 

 

 

4 CONCLUSIONS 

We have presented a full-vectorial finite element 

formulation for the eigenmode analysis of graphene-

based plasmonic waveguides and components with 

switching functionalities. The formulation addresses 

graphene as a surface conductivity thus eliminating 

the need for fine discretizations inside thin graphene 

sheets. Finally, several plasmonic or switched 

components with promising characteristics have 

been proposed. 
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