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Abstract: There is a wealth of evidence that contemporary landscape of software development has been resisting the 
disciplined, rigorous, formally managed, architecture-driven, forward-engineering practices. The whole 
field of traditional software engineering needs a re-definition alongside the practices widely used in 
production of modern software systems, in particular service-oriented cloud-based applications. This paper 
argues that contemporary software engineering must re-focus and re-define its theoretical foundations and 
base it on acknowledgment that quality software and systems can (and by and large should) be constructed 
using principles of resultant architectures and roundtrip engineering.  

1 INTRODUCTION 

Software engineering has never matured enough to 
match theory and practice of traditional engineering 
disciplines, such as civil engineering. Based on 
computer science as its foundation, software 
engineering has struggled to ensure software 
production with predictable outcomes. The main 
culprit is the "soft" nature of software and associated 
demands of users for change and evolution. When 
combined with the ever growing complexity of 
application domains that software systems solve, a 
need for new software engineering has been finding 
many vocal supporters (e.g. Jacobson and Seidewitz, 
2014).  

Such a need is additionally propped up by the 
demands placed by the fact that we live in service 
economy (Chesbrough and Spohrer, 2006). Almost 
every modern agricultural or manufacturing product 
is combined with services, and it is the joint product-
service experience that is judged by service 
requestors, thus truly generating real value for 
individuals and profit growth for businesses. 
Interaction and collaboration between actors of a 
service (suppliers, consumers, and intermediaries) 
create value-in-context, employment and economic 
growth. A supplier offers a value proposition that 

can be realized in a separate process involving 
requestors and intermediaries. The benefits to all 
actors define the context of value co-creation. 

Service economy exerts new business and 
pricing models for using information systems 
without owning them. Such systems are delivered to 
users over Internet (the cloud) as Software-as-a-
Service (SaaS). Services (e-services) in SaaS 
systems are running software instances, which can 
be dynamically composed and coordinated to 
provide executable applications.  

The delivery of Service Cloud Applications 
(SCA) to actors is performed (typically) on 
Everything-as-a-Service models (Banerjee, 2011), in 
which software, platform and infrastructure are 
made available as services paid for according to the 
usage. This creates ubiquitous marketplace where 
commercial, social, government, health, education 
and other services are facilitated, negotiated, 
coordinated and paid for through marketplace 
platforms.  

We recognize that e-marketplaces for services 
(such as Airbnb, OpenTable, or BlablaCar) are 
governed by different business and technology 
principles than e-marketplaces for products (such as 
Alibaba, eBay, MarcadoLivre, or Amazon). 
However, we also recognize that e-service systems 
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narrow the differences between services and 
products. The dichotomy between these two 
concepts has been replaced by a service-product 
continuum (Targowski, 2009). On one hand, 
software products are servitized; on the other hand, 
software services are productized (Cusumano, 
2008). On one hand, vendors of traditional “boxed” 
software products use the cloud as a means of 
servitizing the product (and using it without owning 
it); on the other hand, productized services (i.e. 
automation of services, such as movies over 
Internet) enable “people to participate in a growing 
number of service-related activities without having 
to be physically present” (Targowski, 2009, p.57). 

The service-product continuum has posed new 
challenges on the very idea of complexity and 
change management in a modern-age service 
enterprise. The responsibilities for complexity and 
change management have been placed squarely in 
the hands and minds of the producers and 
suppliers/vendors of service systems and 
applications (but much of the risk is still endured by 
the enterprises and consumers receiving/buying the 
services). 

The established disciplines of software 
engineering (e.g. Maciaszek and Liong, 2005) and 
systems analysis and design (e.g. Maciaszek, 2007) 
have advocated architecture-driven forward-
engineering processes. Modern practices challenge 
the merits and economics of the architecture-first 
approach to software engineering (Booch 2007). 
They also challenge the rigid top-down development 
epitomized in three consecutive phases of systems 
analysis, design and implementation. They do not, 
however, challenge the traditional architectural 
design role of managing system complexity 
expressed in terms of dependencies between system 
elements.  

The paper is organized as follows. The next 
Section considers service cloud applications as a 
significant disruptive technology and it explains the 
main confluent factors that shape the future of 
modern software engineering. 

Section 3 reiterates the fact that complexity of 
modern software systems lies in the interactions and 
dependencies between software elements, which – 
by the object-oriented paradigm – are internally 
relatively simple (or at least they should be simple). 
This section classifies dependencies and explains 
how SoaML can be used to model SCA software 
structures. 

Section 4 discusses the idea of resultant 
architecture as a replacement for the architecture-
first paradigm. The section proposes a meta-

architecture for service cloud applications and it 
positions the roundtrip engineering as a modus 
operandi of modern software engineering.  

The final Section contains concluding remarks. It 
emphasizes the necessity of designing for change as 
opposed to just programming for change. It makes 
also a clear distinction between emergent and 
resultant architectures. 

2 CONFLUENT FACTORS 

The contemporary practice of development of 
service-oriented cloud-based web and mobile 
applications changes the pressure points and creates 
new expectations with regard to modern software 
engineering. Figure 1 is a Venn diagram that names 
the main confluent factors that bring about a need 
for redefinition of software engineering as a 
discipline. The overlapping between factors is 
significant. It emphasizes that the factors frequently 
come together in various combinations. 

 
Figure 1: Confluent factors of modern software 
engineering. 

The SCA are delivered over Internet as a kind of 
utility/commodity similar to energy, water, gas, 
telephony, and alike. They are a fact of live and are 
omnipresent - they are available on mobile devices 
at any time and any place and they can adjust to the 
context of use (including the current user needs, the 
geographical position, the temporal information, the 
weather conditions, the signals from the Internet of 
Things (IoT) sensors and actuators, etc.). Utility 
computing is the first confluent factor of modern 
software engineering. 

Service innovation is consumer-focused. 
Consumer market, as the primary driver of CSA 
innovation, challenges the way companies innovate 
and evolve with IT. The innovation ideas need to tap 
into the phenomenon of consumerization and 
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personalization as the tendency for new IT solutions 
to emphasize consumer-focused service provision 
and to emerge first in the personal consumer market 
and then spread into business and government 
organizations. Consumerization and personalization 
open up an opportunity for new business models and 
ways of value creation, and it is the second confluent 
factor of modern software engineering. 

By centering on consumerization, 
personalization, and collaborative context-dependent 
value creation, the modern software engineering 
shifts decisively towards user-centered engineering 
(Richter and Fluckinger, 2014; Ko, et al., 2011) and 
what Brenner et al. (2014) call user, use & utility 
research (or 3U research, to use another parlance). 
Although software engineering has always been 
recognizing significance of user’s acceptance of a 
solution, the development of SCA systems not just 
recognizes, but focusses on users by emphasizing 
the software quality of usability (ISO, 2011) and 
delivery of a great User eXperience (UX) instead of 
delivery of software product. User-centered software 
engineering is the third confluent factor of modern 
software engineering. 

The user-centered software engineering 
synchronizes nicely with the agile software 
development that dominates contemporary software 
engineering practice (Moran, 2015). The agile 
development methods, such as Scrum, are 
responsible for a real shift from the architecture-first 
approach - if not in theory, then certainly in practice. 
The agile software development is the fourth 
confluent factor of modern software engineering. 

Although the agile methods are called 
development methods, in reality a great majority of 
software projects are undertakings in value-added 
software integration and interoperability (Maciaszek, 
2008a). Most new software applications must 
integrate and interoperate with existing applications 
and databases, thus making them value-added 
applications. The whole technology of web service 
orchestration is about integration and 
interoperability of SCA-s. Application integration 
and interoperability is the fifth confluent factor of 
modern software engineering. 

The owner/supplier of a SCA platform sets up 
instances for the SCA users. Customization and 
variability of instances is based on the technology of 
multi-tenancy and uses the emerging principles of 
Service Line Engineering (SLE) (Mohabbati et al., 
2013; Walraven et al., 2014)). Service Line Software 
Engineering is the sixth confluent factor of modern 
software engineering. 

3 COMPLEXITY IN-THE-WIRES 

The times when software complexity could be 
measured in lines of code or function points are long 
gone. Since the object-oriented paradigm has 
replaced the structured programming reminiscent of 
Cobol systems, the monolithic size of a program 
ceased to be an indication of software complexity.  

Complexity of modern modularized systems 
comes from the relations between the modules (be 
them objects, classes, components, packages, 
services). Complexity is in-the-wires between the 
modules, not in the modules themselves. 

In our past research, we have extensively 
discussed the complexity in-the-wires principles for 
large on-premise enterprise information systems 
(e.g. Maciaszek and Liong, 2005; Maciaszek, 2007). 
We have demonstrated that complexity minimization 
is synonymous with the minimization of the inter-
module dependencies, where dependency is “a 
relationship that signifies that a single or a set of 
model elements requires other model elements for 
their specification or implementation. This means 
that the complete semantics of the depending 
elements is either semantically or structurally 
dependent on the definition of the supplier 
element(s).”(OMG, 2009) 

It is important that complexity management 
revolves around software metrics that monitor and 
measure dependencies in the engineered code. The 
Design/Dependency Structure Matrix (DSM) (e.g. 
Eppinger and Browning, 2012) is an excellent 
method for visualizing, measuring and analyzing 
dependency relationships in software. Today many 
tools exist that support the DSM method, e.g. 
Structure101 (Structure, 2015).  

In Maciaszek (2008b) and elsewhere we have 
discussed the ways of using DSM for the analysis 
and comparison of software complexity in large 
systems. We have applied the DSM analysis to the 
PCBMER meta-architecture consisting of six 
hierarchical-ordered software layers: Presentation, 
Controller, Bean, Mediator, Entity, Resource (e.g. 
Maciaszek, 2007).   

When using DSM or other software metrics to 
calculate dependencies, it is important to consider 
various categories of dependencies and their relative 
importance (weight) in measuring complexity and 
adaptability. At a relatively high level of abstraction 
pertaining to complexity analysis of traditional 
enterprise applications, four categories need to be 
considered: message dependencies, event 
dependencies, inheritance dependencies and 
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interface dependencies (Maciaszek and Liong, 
2005).  

Complexity of modern service-oriented cloud-
based applications can also be discussed based on 
these four categories of dependencies, but better 
classifications seem to be those that put services at 
the forefront of the discourse. One possibility is to 
consider just three categories of dependencies: 
services, references, and properties (only services 
are discussed in any depth in this paper). 

Since “a service is value delivered to another 
through a well-defined interface” (SoaML, 2015, 
p.7), we need to concentrate on interface 
dependencies when engineering SCA-s. To this aim, 
we can adopt the SoaML (Service oriented 
architecture Modeling Language) standard (SoaML, 
2015). The standard distinguishes three ways of 
service interaction: a simple interface, a service 
interface, and a service contract.  

A simple interface is a UML-style interface as 
supported by popular object-oriented languages, 
such as Java, and web services called via RPC 
(Remote Procedure Call). Simple interfaces are uni-
directional – the consumer calls a provider’s service 
and the provider does not callback the consumer and 
may not even know it. 

A service interface involves bi-directional 
communication between provider and consumer. 
“The service interface may also specify the 
choreography of the service - what data, assets and 
obligations are sent between the provider and 
consumer and in what order. ... The consumer must 
adhere to the provider’s service interface, but there 
may not be any prior agreement between the 
provider and consumer of a service.” (SoaML, 2015, 
pp.8-9). 

A service contract defines how participants 
(providers, consumers, and other roles) work 
together to exchange value. To this aim, service 
specifications are defined in a service contract. The 
contract determines the participants, the interfaces, 
choreography, and any other terms and conditions 
for the enactment of the service. Service contracts 
are therefore encapsulation (implementation 
handling) mechanisms. 

Service interactions via interfaces and contracts 
are principle communication means between 
software architectural layers. The layers can be 
represented as UML collaborations. They can 
contain the SoaML service capabilities, which 
“identify or specify a cohesive set of functions or 
resources that a service provided by one or more 
participants might offer.” (SoaML, 2015, p.29). 

Capabilities may be related to show intra-layer 
dependencies. They can aslo be used to visualize and 
define intra-layer dependencies, in particular they 
can specify the behavior and structure of interfaces 
(realized by the capability, which in turn is realized 
by a service participant). Capabilities can be 
nested/combined to form larger capabilities.  

Capabilities can be related by ‘usage’ 
relationships. An ‘expose’ relationship can be used 
to indicate what capabilities (required or provided by 
a participant) should be exposed through a service 
interface. However, the operations and properties of 
a service interface may differ from operations and 
properties of a capability it exposes. “It is possible 
that services supported by capabilities could be 
refactored to address commonality and variability 
across a number of exposed capabilities” (SoaML, 
2015, p.47). 

The UML interface realization can be used to 
denote service interfaces that a capability ‘realizes’ 
(implements). As with the ‘expose’ relationship, the 
operations and properties of a service interface and a 
capability may differ. 

SoaML also defines the notion of a service 
channel as a communication path between consumer 
requests and provider services. The service channels 
between and within the architectural layers 
determine the complexity and adaptability of a 
service system. 

4 RESULTANT ARCHITECTURE 

In our past research we have argued that a valid 
answer to the software complexity and adaptability 
is the architecture-first design, i.e. that the 
architecture should be designed into the system. 
However, we have always recognized that the 
proactive forward-engineering architecture-first 
approach requires a parallel contribution from a 
reactive reverse-engineering approach (Maciaszek, 
2005). In other words, we have recognized that the 
architecture should result from roundtrip 
engineering. The concept of a resultant architecture, 
used in the titles of this paper and this section, is a 
consequence of of the above interpretation of 
roundtrip engineering. 

The primary purpose of an architecture is to 
minimize complexity of expected outcome and to 
lead to a solution that is adaptive, i.e. 
understandable, maintainable, and extendable. 
Software engineering and management has struggled 
to properly address systems complexity and 
adaptability. The reason is twofold: deficient 
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architectural design and/or nonconformance of 
software implementation to the architectural design. 

The paradigm shift to SCA-s has introduced new 
threats and opportunities with regard to complexity 
management and delivery of adaptive solutions. On 
one hand, the SCA-s assume dynamic composition 
of services and tenant variability and, therefore, they 
emphasize implementation over architecture (and 
over project management at large). On the other 
hand, the SCA-s are built on the technologies that, 
by their very nature, support adaptability. The 
concepts such as loose coupling, abstraction, 
orchestration, implementation neutrality, 
configurability, discoverability, statelessness, 
immediate access, etc. are exactly the ideas of 
adaptable architectural design. 

Figure 2 represents our meta-architecture (i.e. an 
architectural reference model) for SCA-s, called 
Meta-SCA. The model retains the conceptual thrust 
of the PCBMER meta-architecture and it provides 
roundtrip engineering perspective on our recently 
defined STCBMER (Smart Client, Template, 
Controller, Bean, Mediator, Entity, Resource) meta-
architecture (e.g. Maciaszek et al., 2015). 

The Meta-SCA model recognizes and even 
emphasizes the fact that SCA engineering activities 
are facilitated by software toolkits and frameworks. 
Toolkits enable code reuse. They support 
programmers in writing the real code – the main 
body of the program. Frameworks enable design 
reuse. They provide to programmers a skeleton of 
the program and inform programmers which code to 
write, so that the framework can call it.  

Toolkits and frameworks deliver reusability at 
the level of software implementation, but they need 
to be chosen to facilitate the forward engineering 
objective of minimizing complexity and maximizing 
adaptability. Frameworks need to facilitate 
implementation of the meta-architecture; toolkits 
need to facilitate implementation of patterns and 
principles. In the reality of SCA-s, toolkits and 
frameworks can be encapsulated within the 
technology of Platform-as-a-Service (PaaS).  

The Meta-SCA model defines four hierarchical 
layers for the application code placed on top of a 
Data Storage layer. The four layers are called Client 
Front-end, Client Back-end, Business Service and 
Data Access. They are modeled as SoaML 
collaborations and stereotyped as 
<<ServicesArchitecture>>. 

Each layer contains single SoaML 
<<Participant>> realizing specific capabilities. 
Participant at a higher layer requests services 
implemented in participants in lower layers. This is 

represented on the model by the UML notation of 
required and provided interfaces (so called lollypop 
notation). It also indicates a top-down single 
directional interface dependency between layers. 

 

 
Figure 2: Meta-architecture for service cloud applications 
(Meta-SCA). 

The service discovery can be realized through 
WSDL (Web Services Description Language). The 
service binding can be realized through SOAP 
(Simple Object Access Protocol), but even better 
degree of software adaptiveness can be achieved if 
the statelessness of the system is not an issue.  If it is 
not, then the REST (Representational State Transfer) 
architecture might be more desirable than the SOAP. 
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In parallel to the layers, the Meta-SCA model 
defines other participants, which are third-party 
frameworks and toolkits supporting the system's 
implementation. Each framework is understood as a 
service offering a special “framework interface” that 
is needed by some of the components of the 
proposed meta-architecture.  

Relations between frameworks and layer 
participants are defined as bi-directional service 
interfaces. This is because to use a framework you to 
have to deliver to it a code, which satisfies strict 
conditions defined by the framework. Also, the 
frameworks have to offer a given set of 
functionalities to the layer participants.  

Some frameworks in Meta-SCA – Responsive 
Client Framework and SW MVC Framework – are 
needed and used by two different layers. In such a 
case, each framework has its own framework 
instance (this way the Meta-SCA does not introduce 
to the model disallowed dependencies).  

Each layer participant has various components 
inside. The dependencies between those components 
can be organized in various ways – according to 
different need of a specific environment, 
technologies and project as well as chosen 
frameworks (which support the implementation). 
The organization of those dependencies follows the 
guidelines and propositions consistent with and 
based on the PCBMER and STCBMER studies.  

The Client Front-end and Client Back-end layers 
form an abstract application layer, while the 
Business Service and Data Access layers together 
form an abstract business layer (e.g. Maciaszek et 
al., 2015). 

The Front-end MVC framework is a JavaScript 
framework needed to implement complex, off-line, 
widget-based asynchronous web applications. The 
Responsive Client Framework is a presentation 
framework supporting implementation of 
Responsive Web applications.  

The Web Services MVC Framework is a server-
side framework, which offers building the web 
services communication as well as layering the code 
into separate parts based on different variants of the 
MVC pattern. These types of frameworks are often 
called just web frameworks.  

The PEAA Framework means a framework 
containing different, needed implementations of the 
patterns from the Catalog of Patterns of Enterprise 
Application Architecture by Martin Fowler (2013).  

The Events Framework refers to frameworks and 
toolkits offering project-specific event-based 
implementations. This includes authorization tools 
and notification schemes (e.g. SMS notifications), 

but also any other event-driven mechanisms 
allowing interoperability with cyber-physical 
monitoring systems (IoT sensors and actuators) and 
integration with enterprise, government and social 
networking systems.  

The Data Mapper Framework is a type of 
framework, which offers connecting to a database or 
other data stores, mapping of database entities to 
programming objects, transaction management, etc.  

Table 1 presents examples of Meta-SCA 
frameworks and toolkits. 

Table 1: Examples of Meta-SCA frameworks. 

Framework Examples 

Front-end MVC 
Framework 

Angular.js, Backbone.js, 
Knockout.js 

Responsive Client 
Framework 

Bootstrap,  
Foundation 

WS MVC Framework  Django, Pyramid, Rails, 
Spring MVC, ASP .NET, 
Symfony 

PEAA Framework Spring, .NET, Django 
REST Framework 

Events Framework  JMS (Java Message 
Service), Activiti, 
Kinoma 

Data Mapper 
Framework 

Hibernate,  
SQL-Alchemy 

 
Some of the meta-architecture components 

(Tenant Routing, Tenant Mapping, Tenant 
Configuration Activator] are placed in the diagram 
to emphasize that modern tenant-oriented systems 
often need to have tenant-specific code in different 
layers. In addition, this special code has to cooperate 
with the frameworks used in a specific project. As a 
result there is a need of having the code organized in 
independent modules that can be easily used when 
needed.  

There are several ways of building the tenant-
based systems. Separation of data and functionalities 
can be implemented on different layers of the system 
(also the databases often are playing a role in it). 
That is why the proposed meta-architecture has 
different tenant-specific components placed in 
different layers. In reality not all of them might be 
needed – based on the chosen design patterns, 
different layers might or might not need the tenant-
specific code.  
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Concrete instances of architectures derived from 
the Meta-SCA in the roundtrip engineering process 
need to conform to the additional rules and 
principles over and above the layering shown in 
Figure 2. Because of the space limitations of this 
paper we cannot describe them in any details. 
Nevertheless most of the twelve principles defined 
for the STCBMER meta-architecture (Maciaszek et 
al., 2015) remain relevant for the Meta-SCA.  

Three most fundamental principles from the 
PCBMER and STCBMER - DDP (downward 
dependency principle), UNP (upward notification 
principle) and CEP (cycle elimination principle) - 
fully apply to the Meta-SCA. This means, that 
message dependencies are only allowed in 
downward communication between layers and the 
upward communication requires event notifications 
from lower layers, possibly combined with the use 
of interface inheritance. Implementation inheritance 
is disallowed between layers; it is restricted to intra-
layer implementations. Cycles of message 
communications (method invocations) are 
disallowed between layers, inside layers, and for any 
granularities of objects (classes, components, 
packages, web services). Cycles need to be 
eliminated using well-known software engineering 
rules, exhaustively explained for example in 
Maciaszek and Liong (2005). 

In reality – when programmers start to code – it 
is very hard to stick to the abstract meta-architecture 
without breaking some of its principles and 
assumptions. This is because of different patterns 
chosen to base the frameworks on and because of 
various technologies used by the frameworks.  

Since the frameworks in modern software 
engineering are more and more becoming the 
backbones of the software solution, it is very 
important to choose the right ones for implementing 
a concrete instance of the architecture so that it fully 
conforms to the abstract meta-architecture. There are 
two ways of how to do this. The first is by choosing 
the frameworks which are compatible with the meta-
architecture. The second is by choosing the 
frameworks which are modular and flexible enough 
to set them up in a way that is satisfying the meta-
architecture. Nowadays many frameworks have 
sufficient modularity and flexibility so that the 
programmers can easily replace predefined 
framework's components with other 
implementations – written by themselves or by third-
party organizations. 

The conformance of the project’s resultant 
architecture to the meta-architecture and its 
principles should be evaluated by an in-depth 

analysis of dependencies. This must involve some 
reverse-engineering of code to establish factual 
dependencies to compare them against the allowed 
dependencies of the meta-architecture. The DSM 
method briefly discussed in Section 3 provides an 
excellent vehicle for dependency analysis and 
calculation of dependency metrics.   

Unfortunately measuring the dependencies in a 
project built with the help of a number of 
frameworks and toolkits is a difficult task. It 
constitutes a new and important research challenge. 
We intend to focus on this problem in our future 
work and to measure the impact of contemporary 
frameworks and toolkits on architectural design of 
SCA-s from the viewpoint of software complexity 
and adaptiveness.  

5 CONCLUDING DISCUSSION  

Traditional software development lifecycles assume 
architecture-first design (Booch, 2007; Maciaszek, 
2007). However, the confluent factors of modern 
software engineering have led to practices where 
software architecture evolves in parallel with 
software construction. As noted by Jacobson and 
Seidewitz (2014), “...agile development have made 
it possible to create high-quality software systems of 
significant size using a craft approach - negating a 
major impetus for all the up-front activities of 
software engineering" (p.50).  

Moreover, modern multi-tenant SaaS 
applications (Walraven et al., 2014) demand the 
built-in capability of dynamic software adaptation 
(Kakoutsis et al., 2010). This in turn requires 
inventing new architectural styles that respond to 
and embrace the dynamic runtime software 
adaptability (not addressed in this paper, but refer 
e.g. Kakoutsis et al., 2010). 

Roundtrip engineering activities that aim at 
resultant architectures for SCA-s are based on and 
driven by various reuse strategies (e.g. Maciaszek, 
2007). The forward engineering activities are driven 
by an assumed meta-architecture. Associated with 
the meta-architecture are matching architectural 
patterns and architectural principles. A meta-
architecture delivers reusability at the level of a 
solution idea. Patterns and principles deliver 
reusability at the level of software design.  

The reverse engineering activities aim at 
software architecture recovery (e.g. Solms, 2015) 
and at measurably validating the conformance of a 
system’s resultant architecture to the meta-
architecture (Maciaszek, 2008b). An ultimate 
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objective is a SCA that minimizes complexity and 
maximizes adaptability. 

Information systems in general, and service 
cloud applications in particular, need to be designed 
for change. They need to be adaptive. Ideally, they 
need to be self-adaptive, but such an aim is 
unreachable as yet in practical software engineering 
(Maciaszek, 2012). 

The confluent factors of modern software 
engineering reflect the necessity of designing for 
change. Unfortunately, this is not sufficiently 
reflected in contemporary practice of software 
engineering. Current practice is full of ideas, 
methods and tools to facilitate 
development/programming for change, but lacks 
systematic and rigorous approach to designing for 
change.  

The development/programming for change is 
exemplified, for example, by the growing popularity 
of DevOps, which is an approach to merging 
development and operations (Huttermann, 2012). 
Another example, on the level of user interface and 
web programming, are approaches known as 
responsive development, progressive enhancement, 
graceful degradation (Overfield et al., 2013).  

The design for change must revolve around the 
software architecture, which sets a fundamental 
structural organization for a software system. Such 
an organization must determine hierarchical layers 
of software elements (components, objects, services) 
ensuring separation of concerns and resulting in a 
tractable/adaptive complexity of the solution. 

There seem to be three approaches to considering 
software architecture in software engineering 
projects. The architecture: 
1. can be designed into the system, 
2. can emerge from the implementation, 
3. can result from roundtrip engineering 

The first approach is synonymous with the 
architecture-first approach. It is a commendable 
approach, but increasingly impractical in the fast-
paced world demanding immediate software 
solutions. 

The second and third approach can be best 
understood by reference to complexity theory (e.g. 
Agazzi, 2002). Since complexity entails existence of 
relations/dependencies between elements, then - by 
opposition - simplicity (something that is 
analytically simple) entails no internal relations. 

Further, the complexity theory distinguishes 
between emergence and resultance. We speak of 
emergence when a complex structure emerges from 
the properties of the “analytic simples” in a way that 
is not completely understandable and explainable. In 

this sense, software architecture can emerge in a 
bottom-up fashion from the implementation of 
software elements. 

By contrast, we speak of resultance when a 
complex structure results from the properties of the 
analytic simples by the guidance of the relations 
between software elements. This means that a meta-
architecture exists prior to the implementation and it 
guides software engineers in designing concrete 
system architecture (an instance of meta-
architecture) in parallel with software 
implementation. This is a roundtrip engineering 
effort leading to, what we call, a resultant 
architecture.  
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