
L2 Designer
Language and Tool for Generative Art

Tomáš Konrády, Barbora Tesařová and Kamila Štekerová
Faculty of Informatics and Management, University of Hradec Králové, Hradec Králové, Czech Republic

Keywords: Formal Grammar, Generative Art, Genetic Programming, L-System.

Abstract: We propose a new formal grammar (L2 language) and its implementation in JavaScript tool (L2 Designer).
The L2 language allows us to create formal definition of the hierarchy of L-systems encapsulated in L-
scripts. The L2 Designer enables creation of initial L-system, its modifications based on genetic
programming and iterative evolution, and graphical interpretation. We provide an example of L2 program
and we illustrate possibilities of L2 Designer on a case study which was inspired by an artistic decorative
floral pattern.

1 INTRODUCTION

Lindenmayer systems (L-systems) are formal
grammars with parallel rewriting mechanism that
were originally developed for modelling and
visualization of the growth process of various types
of algae (Lindenmayer, 1968). Later they were
applied in the field of computer graphics. The best
known graphical interpretation of L-systems is based
on usage of a relative cursor upon a Cartesian plane
(turtle graphics). The L-systems are frequently used
in combination with evolutionary techniques, e.g.
(Hornby, 2001) presents a parametric L-system for
drawing virtual creatures for computer animations.

In this contribution we explore the emergence
phenomena growing from combination of L-
systems, genetic programming and interactive
evolution, especially we are interested in its
application in generative art and artificial creativity.
We were inspired by shape grammars that also
originate from the theory of formal grammars: it was
shown that even simple rules of shape grammars
produce complex results (Stiny, 1994), moreover
(Chakrabarti et. al., 2011) applied shape grammars
in design.

The key issue in our research area is the
definition of the fitness function. Artificial neural
networks or design principles measurements are
well-applicable techniques (Galanter, 2012), for
relevant results see e.g. (Ashlock and Bryden, 2004),

(McCormack, 2003), (McCormack, 2008) or
(Bergen and Ross 2013).

The graphical interpretation of L-system:
strongly depends on its definition, because even
minor changes of parameters lead to completely
different and surprising results. Here the
evolutionary techniques help to search the large
space of parameters and to modify production rules.

Current implementations of the L-system
theory are based on extensions of general purpose
programming languages. From the technical point of
view, languages such as L+C (Karwowski and
Prusinkiewicz 2003), L-Py (Boudon et al. 2012) or
XL (Kniemeyer and Kurth, 2008) are complex and
their implementations are platform dependent. Our
intention is to provide easy-to-use tool for partly
interactive creation of various types of graphical
outputs. On the contrary, our tool does not make
user to directly write production rules, in fact the
user does not need to know the grammar of the L-
system at all.

In following sections of this paper we propose a
new formal language (L2 language) which is easy to
parse to the tree representation. Then we provide a
plaftorm independent tool (L2 Designer) which
enables specification of L-systems within L2
language, with its subsequent evolution based on
genetic programming. Finally, the graphical
interpretation of outputs is presented.

352
Konrády, T., Tesařová, B. and Štekerová, K..
L2 Designer - Language and Tool for Generative Art.
In Proceedings of the 7th International Joint Conference on Computational Intelligence (IJCCI 2015) - Volume 1: ECTA, pages 352-357
ISBN: 978-989-758-157-1
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 L2 LANGUAGE

L2 language is designed for defining stochastic
context free parametric L-systems grammars. In
contrast to L+C or L-py, L2 does not include
anything else but features that we need for the
purpose of the definition of L-system. As well as
L+C, L2 supports the advanced properties of L-
systems:

 Sub-L-systems – it is possible to divide
large L-systems into smaller reusable parts,
 Interpretation production rules – it lets us
separate topology of the L-system from its
representation, therefore the application of
genetic programming operators is easier.

For detail specification of L2 language, see (L2
Documentation, 2015). Here we provide a sample
code. Its explanation and interpretation is shown
below.

Example 1: L2 sample code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

alphabet Turtle2D {
 F, f, L, R, PU, PS
};
$black = __rgb(0,0,0,255);
lscript BranchingLScript {
 lsystem Bloom(F(0.01), 3)
 using Turtle2D {
 $angle = 90;
 $colorA = __rgb(255,100,0,200);
 $colorB = __rgb(150,50,50,200);
 F(a) -->
 F($a) L($angle) F($a) A($a);
 F(a) -->
 F($a) R($angle) F($a) A($a);
 F(a) -h>
 F($a, 0.003, __rgb(0,0,0,0));
 A(a) -h>
 [F(0.0001, $a * 1.5 *
__random(), $colorA)] |
 [F(0.0001, $a * 1.5 *
__random(), $colorB)];
 };
 lsystem Branching(G(0.1), 4)
using Turtle2D {
 $ratio = 0.9;
 $angle = 60;
 $anglePrec = 50;
 $stroke = 0.003;
 G(a) -->
 F($a) [L($angle)
 G($ratio * $a)B($a)]
 [R($angle) G($ratio * $a)
 B($a)];
 L(a) -h>
 L($a - $anglePrec * 0.5);
 R(a) -h>

37
38
39
40
41
42
43
44
45

 R($a - $anglePrec * 0.5);
 F(a) -h>
 F($a, $stroke, $black)
 [sublsystem Bloom(F($a / 10),
 6)];
 };
 main call Branching();
};
derive BranchingLScript;

As shown in Example 1, the L2 program consists of
three main parts:

 Alphabet - a set of symbols (line 1),
 L-script encapsulating L-systems (line 5),
 L-system - the unit defining production rules,
default axiom and default number of derivations
(lines 6, 23).

The user can add variables (line 4). Variable names
start with symbol $. The L-script contains the main
L-system (line 43). Start of the derivation of the L-
script is done by derive statement (line 45) resulting
in string of the modules.

BranchingLScript contains a definition of two L-
systems called Branching and Bloom (lines 6–22,
23–42). The heading of the L-system consists of:

 name,
 default axiom,
 default number of derivations,
 alphabet.

The body of L-systems includes the list of
productions. For the L-system productions we use
either the --> operator (line 11) or the –h> for
interpretation rules (line 15). The replacement string
on the right side of the production rule can contain
sublsystem statement (line 40) that calls derivation
of the other L-system within the same L-script.

3 L2JS LIBRARY

The L2 language is accessible within our L2JS
library which is the core of L2 Designer. The library
includes compiler, interpreter and module for
genetic programming.

The compiler of the L2JS library translates L2 to
JavaScript (Figure 1). The scripting language was
chosen due to its flexibility, dynamic scoping,
closures and both functional and object-oriented
programming support.

L2 Designer - Language and Tool for Generative Art

353

Figure 1: Scheme of the L2JS library.

The usage of JavaScript allows us to distribute the
computing within the web browser and Node.js web
server. The compilation starts with the linking of the
input source files. The whole code is parsed by Jison
parser into the abstract syntax tree (AST). The AST
consists of the nodes representing statements,
arguments, entities, names, variables and
expressions. Jison is a JavaScript implementation of
the combination of (Flex, 2015) and (Bison, 2015).
The parser requires the L2 grammar description file.
After the L2 AST is created by Jison, the translation
to the JavaScript code can be performed.

Our compiler is able to decompile L2 AST back
to the L2 code. This feature is essential for further
application of genetic programming.

The output of the compilation process is a
JavaScript program representing the derivation of
the L-script.

Figure 2: Turtle graphics for the sample code.

The Interpreter operates with an alphabet of the
L-system to resolve the type of interpretation. In our
sample code, an alphabet Turtle2D is used. Symbols
of the alphabet are understood as the instructions for
the turtle graphics (Figure 2).

The Interpreter works with rules that specify how
symbols are related to the set of statements from the
alphabet. E.g. the module F(a) is replaced with
F($a, 0.003, __rgb(0,0,0,0)) according to
the corresponding interpretation rule (lines 15–16).
The interpretation in this particular case results in a-
long line with 0.003 size filled with transparent
colour.

The Evolver implements the L-system genetic
programming over the hierarchy of L-systems in L2
language. Details are provided in the next section.

4 GENETIC PROGRAMMING

Genetic programming is involved in the process of
iterative modifications of L-scripts.

After the initial L-script is provided to the
Evolver module, it becomes the base for the initial
generation. Each individual is represented by the L-
script which is converted to L2 AST (see Figure 3
for illustration). The user has to specify which of
sub-L-systems should be modified by the Evolver.

Figure 3: Example of simple AST of L2 script.

The genotype for the Evolver is represented by a tree
data structure, as it was originally introduced by
(Koza, 2000). Genetic operators modify the abstract
syntax trees using crossover or mutation. The

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

354

genetic operators designed for the parametric L-
systems were originally proposed by (McCormack,
2008).

In our case each part of AST has to its special
operators. The operators are applied either on the L-
systems (axiom, production rules) or on the
expressions used within the program (variable
assignments, expressions within modules). The
Evolver module supports:

 mutation of production rules,
 crossover of production rules,
 mutation of expressions – variation,

creation and colour mutation.
The main task was to identify the right terminals.

We found the way of an automatic detection of
terminals without the need of its explicit
specification by the user.

In case of production rule mutation, the set of
terminals consists of distinct symbols occurring in
all production rules of parent L-system. In case of
expression mutation the set of terminals depends on
the context of expression. On the other hand the
terminals within the rule are enriched with
parameters from the ancestor of the rule.

The Evolver implements two types of mutations.
The first of them modifies the numbers only
(variation mutation), the second one generates new
expressions (creative mutation).

Special mutation operator was developed for the
colours: user can specify maximum percentage of
modification for each of the channel of the colour
model. For hue channel it is possible to specify an
exact angle that can be added or reduced.

We represent production rules using target tree
structures similarly to (Jacob, 1994). Every leaf is a
module of the rule and every new level of the tree is
determined by stack symbols ([,]).

The crossover is represented by an exchange of
the branches from the tree representation of L-
systems. The newly created production rule either
replaces the rule which was selected for the
crossover (parent rule) or is added to the definition
of the L-system. Probability of the newly created
rule is determined by product of the probability of
parent rule and a predefined constant.

In the process of the fitness evaluation, the user
selects the best solutions generated by the program
and assigns the integer fitness values to these
solutions. This approach is known as interactive
evolutionary computation (IEC). In comparison with
other methods, IEC is more time consuming, only
small populations and low number of generations
can be processed effectively. On the other hand,
with IEC the user can apply his aesthetic
preferences.

The rank selection mechanism is combined with
elitism. For details of this method see (Sivaraj and
Ravichandran, 2011).

5 IMPLEMENTATION

The L2 Designer is a web-based JavaScript
application enabling the interactive designing of L-
systems. The core of the application is L2JS library.
The server is running on Node.js. Other main
technologies we are using are MongoDB and
Angular.js.

Figure 4: Interface of L2 Designer with a visualization of
L-system.

Within the L2 Designer the user can manage
projects and directories of scripts. The main focus is
on the process of designing new L-systems (Figure
4). The source codes are available together with their
interpretations.

6 CASE STUDY

Let us demonstrate the L2 Designer workflow. The
decorative floral pattern Michaelmas Daisy 1929
(The Warner Textile Archive, 2015) was our
inspiration.

The process starts with creation of L-script
which contains several sub-L-systems. The first part
of L-systems represents basic shapes (flower petal,
leaf, disc floret); the second part represents a layout
of basic shapes (flower head, layout of flowers,
layout of leaves).

The aim of interactive evolutionary computation
(IEC) is to increase the similarity of the output
graphic interpretation of L-system with the original
pattern. The original pattern background is covered
with leaves. The interpretation of the L-system
before and after the process of IEC is shown on
Figures 5 and 6.

L2 Designer - Language and Tool for Generative Art

355

Figure 5: Layout of leaves before the interactive evolution
computation: completely regular distribution of leaves of
one size, with limited number of colour shades.

Figure 6: Layout of leaves after the interactive evolution
computation: irregular distribution of leaves on the canvas,
higher number of colour shades and variable sizes.

The next step is the creation of the main L-system
which generates the layout of flowers. Firstly it is
necessary to define L-system for random distribution
of flower heads over the canvas. This initial result
still does not correspond to the original artefact
(Figure 7): there is a lack of the grouping of flowers
of the same type. Again, this issue can be solved by
evolution of the L-system.
See Figure 8 for the final pattern. Notice that our L-
script does not cope in any way with external image
files or predefined patterns. Every shape is produced
solely by the turtle graphics interpretation of our L2
script. The source code of the L-script is available
online (L-script Examples, 2015).

For more graphical outputs produced by L2
Designer see (Konrády, 2014).

Figure 7: Random distribution of flowers.

Figure 8: Final pattern resulting from the evolution of L-
system.

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

356

7 CONCLUSIONS

The current version of L2 Designer is capable of
evolving stochastic parametric L-systems which are
described by L2 language and generate complex
graphical patterns.

Our next intention is to improve the
effectiveness of genetic operators to speed up the
fitness evaluation. For that we are going to
implement a module for the processing of user’s
input using graphic tablet or vector image file.

The development of L2 language continues. New
features will be added such as decomposition rules
or rule conditions.

Finally, with respect to the generative art
applications, we want to explore the possibility of
integration of L2 Designer with graphical editors to
support creativity in users.

ACKNOWLEDGEMENTS

This work was supported by the University of
Hradec Králové under the specific research project
7/2015.

REFERENCES

Ashlock, D., Bryden, K.M., 2004. Evolutionary control of
Lsystem interpretation. CEC2004, vol. 2, pp.2273–
2279.

Bergen, S., Ross, B.J., 2013. Aesthetic 3D model
evolution. Genet. Program. Evol. Mach. 14, pp.339–
367.

Bison, 2015. http://www.gnu.org/software/bison/
Boudon, F. et al., 2012. L-Py: an L-system simulation

framework for modeling plant architecture
development based on a dynamic language. Front.
Plant Sci. 3(76).

Flex, 2015. http://flex.sourceforge.net/
Galanter, P., 2012. Computational Aesthetic Evaluation:

Past and Future. In: McCormack, J., d’ Inverno, M.
(Eds.): Computers and Creativity. Springer, pp.255–
293.

Chakrabarti, A., Shea, K., Stone, R. et al. , 2011.
Computer-Based Design Synthesis Research: An
Overview. J. Comput. Inf. Sci. Eng 11, 021003–
021003.

JacoHornby, G.S., Pollack, J.B., 2001. Evolving L-
systems to generate virtual creatures. Computers &
Graphics, Artificial Life 25, pp. 1041–1048.
doi:10.1016/S0097-8493(01)00157-1.

Jacob, C., 1994. Genetic L-system programming, in:
Parallel Problem Solving from Nature—PPSN III.
Springer, pp.333–343.

Jison, 2015. http://zaach.github.io/jison/
Karwowski, R., Prusinkiewicz, P., 2003. Design and

Implementation of the L+C Modeling Language,
Electronic Notes in Theoretical Computer Science,
86(2), pp.134-152.

Kniemeyer, O., Kurth, W., 2008. The Modelling Platform
GroIMP and the Programming Language XL, in:
Schürr, A., Nagl, M., Zündorf, A. (Eds.), Applications
of Graph Transformations with Industrial Relevance,
LNCS, Springer pp.570–572.

Konrády, T. 2015. L2 documentation.
https://github.com/tommmyy/l2js.

Koza, J.R., 2000. Genetic programming. 1: On the
programming of computers by means of natural
selection, MIT Press.

L2 documentation, 2015.
https://github.com/tommmyy/l2js.

Lindenmayer, A., 1968. Mathematical models for cellular
interactions in development. J. of Theoretical Biology,
Elsevier, Part I and II, pp.280–315.

L-script Examples, 2015.
https://github.com/tommmyy/l2js.

McCormack, J., 2003, The Application of L-systems and
Developmental Models to Computer Art, Animation
and Music Synthesis.
http://www.csse.monash.edu.au/~jonmc/research/thesi
s.html.

McCormack, J., 2008. Evolutionary L-systems, in:
Hingston, P.F., Barone, L.C., Michalewicz, Z. (Eds.),
Design by Evolution, Natural Computing Series.
Springer Berlin Heidelberg, pp.169–196.

Node.js, 2015 https://nodejs.org/
Sivaraj, R., Ravichandran, T., 2011. A Review of

Selection Methods in Genetic Algorithm. International
Journal of Engineering Science & Technology 3.

Stiny, G., 1994. Shape rules: closure, continuity, and
emergence. Environment and Planning B: Planning
and Design 21, pp.49 – 78.

The Warner Textile Archive, 2015.
http://www.warnertextilearchive.co.uk/

L2 Designer - Language and Tool for Generative Art

357

