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Abstract: Changes in different heart rate variability (HRV) measures have been found to possess predictive 
information in patients with many different diseases, e.g. myocardial infarction, diabetic neuropathy, and 
patients at risk of developing sepsis. At the same time, the emerging of patch type electrocardiogram 
recorders facilitates new possibilities for long-term monitoring, real-time data analysis, and wireless 
transmission of clinically relevant parameters, e.g. short-term HRV measures. This information might in the 
future assist the healthcare professionals in timely notification of changes in the risk stratification profile 
obtained from the HRV measures. The purpose of this study is therefore to investigate the possibilities for 
quasi-continuous estimation of reliable HRV measures using the ePatch heart monitor. We compared the 
physiologically true values of 11 selected HRV measures with the values obtained using automatically 
generated RR series from electrocardiograms recorded with the ePatch using four different sampling 
frequencies (128 Hz, 256 Hz, 512 Hz, and 1024 Hz). We found no significant differences between neither 
the mean nor the median values of the obtained HRV measures for any of the sampling frequencies. This is 
very promising for the future application of the ePatch for quasi-continuous monitoring of HRV measures.  

1 INTRODUCTION 

The application of different heart rate variability 
(HRV) measures has become increasingly popular as 
a non-invasive clinical estimate of the state of the 
autonomic nervous system. One of the major 
application areas is risk stratification in cardiac 
patients, e.g. patients with myocardial infarction, 
congestive heart failure, and left ventricular 
dysfunction (Huikuri & Stein, 2013). Other 
promising clinical areas that might highly benefit 
from risk stratification based on HRV measures 
include general health management, patients at risk 
of developing sepsis, patients with diabetic 
neuropathy, and critically ill intensive care patients 
(Buchan et al., 2012; ESC and NASPE, 1996). Many 
of these application areas might benefit from 
continuous estimation of short-term HRV measures. 
Together with reliable continuous estimation of 
other vital sign parameters, this might provide a real-
time overview of a potential change in the clinical 
condition of the patient.  

The emerging of patch type electrocardiogram 
(ECG) recorders with embedded processing 
capability opens the possibility for this type of 
continuous monitoring. One of these patch ECG 
recorders is the ePatch designed by DELTA. The 
currently CE marked and FDA approved version of 
the ePatch stores the recorded ECGs internally for 
offline analysis for up to 72 hours. The ePatch 
consists of a reusable sensor and a disposable patch. 
The patch contains three internal measuring points 
that allow the recording of two bipolar ECG 
channels without the use of any cables. The ePatch 
system is further described in (Saadi et al., 2013) 
and (Saadi et al., 2014).  

One of the possible future HRV feedback loops 
is schematically illustrated in Figure 1. The ePatch 
sensor is expected to perform real-time embedded 
detection of each QRS complex. The obtained RR 
interval curve might then be wirelessly transmitted 
to a smart phone or a central monitoring station. 
This device could then automatically calculate 
preselected clinically relevant HRV measures. This 
would allow close to real-time feedback on potential 
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changes in the clinical condition. The information 
might be calculated with pre-defined intervals 
depending on the specific application. Hence, we 
introduce the term quasi-continuous evaluation of 
HRV measures. The growing clinical accept of patch 
type ECG recorders increases the real-life 
applicability of such a system.  

 

 

Figure 1: Schematic illustration of a possible future quasi-
continuous HRV feedback loop. 

One of the important prerequisites for reliable 
estimation of the HRV measures is the ability to 
obtain a correct RR interval curve. The obtained RR 
interval curve might be affected by several factors, 
e.g. the sampling frequency, the resolution of the 
digitalized signal, artefacts, the automatic R peak 
localization procedure, and physiological noise (e.g. 
beats that does not originate from the sinoatrial 
node). It is very important to obtain an RR interval 
curve with as few deviations from the true 
physiological variability of the heart as possible. In 
this paper, we therefore define the term 
“physiologically true R peak position” to describe 
the best possible localization of the R peak after 
correction for errors in the digitalization (sampling 
frequency and signal resolution), errors caused by 
inaccurate QRS detection (false or missed 
detections), and uncertainty induced by improper 
automatic localization of the exact R peak position. 
We thus use this expression to describe the R peak 
positions that best describe the true physiological 
variability of the heart with a minimum of influence 
from technical errors. The presence of e.g. ectopic 
beats has also been expected to cause errors and 
uncertainty in the calculation of the HRV measures 
(ESC and NASPE, 1996). On the other hand, several 
different automatic or semi-automatic methods for 
the editing of the automatically generated RR 
interval curve have been proposed recently (Citi et 
al., 2012; HASIBA Medical, 2015). It is therefore 
not entirely clear whether the manual editing is 
strictly required. The purpose of this study is thus to 
explore the possibilities for estimating reliable 
quasi-continuous HRV measures using the ePatch

ECG monitor.  

2 METHODS 

An overview of the study design is provided in 
Figure 2. The overall purpose was to investigate 
whether RR interval series obtained automatically 
using the ePatch ECG recorder would be of 
sufficient quality to provide reliable estimates of 
clinically relevant HRV measures. To investigate 
this, we compared HRV measures based on the 
automatically generated RR series with an estimate 
of the physiologically true HRV measures. The 
physiologically true HRV measures were estimated 
based on manual annotations of QRS complexes in 
5-min ECG segments and a method recently 
designed by our group to accurately locate the 
physiological R peak position independently of the 
applied sampling frequency and bit resolution 
(Ahrens et al., 2015).  

 

Figure 2: Schematic overview of the study design. The 
input to the analysis is a raw ePatch ECG signal. The 
output of the analysis is a comparison between the values 
of the physiologically true HRV measures and the HRV 
measures obtained using the automatically generated RR 
interval series. 

2.1 Data Acquisition 

The ECG recordings were obtained using the ePatch 
recorder. The ePatch stores the recorded ECG 
channels locally for later offline analysis. The 
ePatch was placed horizontally on the lower part of 
the chest (see Figure 3). The ePatch can record with 
four different sampling frequencies (128 Hz, 256 
Hz, 512 Hz, and 1024 Hz). With the future 
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embedded data processing in mind, it is desired to 
apply a low sampling frequency. However, a higher 
sampling frequency might induce less R peak jitter, 
i.e. less error in the exact R peak localization. We 
therefore found it relevant to investigate the 
application of all four sampling frequencies. For 
each sampling frequency, we obtained six 24-hour 
recordings yielding a total of 24 recordings. The 
recordings were obtained on healthy, young 
volunteers. We had 12 different subjects, and each 
subject was therefore monitored with two different 
sampling frequencies on two different days. The 
subjects were instructed to continue all normal daily 
life activities throughout the monitoring period. This 
ensures a realistic amount of artefacts and a realistic 
impression of the normal changes in the HRV 
measures during a full day of normal daily life 
activities.   

 

Figure 3: (a) Illustration of the placement of the ePatch on 
the chest. (b) Illustration of a two-channel ECG snippet 
obtained with the ePatch recorder. It is observed how this 
location of the ePatch ensures large R peak amplitudes and 
relatively small P- and T-waves.  

2.1.1 Manual QRS Annotations 

Manually annotated QRS positions are required both 
to estimate the performance of the automatic QRS 
complex detection algorithm and to obtain the 
physiologically true HRV measures. To obtain these, 
we automatically extracted and manually annotated 
one 5-min ECG segment every third hour of each 
recording. The manual annotation procedure was 
similar to previous studies conducted by our group 
(Saadi et al., 2015). All beats were labelled as 
normal.  

2.2 Automatic QRS Complex Detection 

For the automatic QRS complex detection step, we 
decided to apply an algorithm previously designed 
by our group (Saadi et al., 2015). We selected this 
algorithm based on several considerations: 1) It was 
optimized for QRS complex detection in ePatch 
ECGs, 2) The algorithm obtained very high clinical 
performance on both ePatch ECGs and two large 
standard databases, and 3) The algorithm is 
computationally efficient enough for real-time 
embedded functionality. The algorithm is based on 
bandpass filtering, adaptive thresholding, and a 
search back mechanism. The algorithm was 
originally designed for a sampling frequency of 512 
Hz. We therefore made small modifications in the 
algorithm to allow automatic QRS complex 
detection with all four sampling frequencies. The 
modifications are described in the Appendix. The 
RR interval series obtained automatically using this 
algorithm were applied directly to calculate what we 
term the “estimated” HRV measures. This would 
correspond to the output from the potential future 
feedback loop illustrated in Figure 1. However, in 
this study, the QRS complex detection algorithm 
was applied offline in MATLAB R2013b.  

2.3 Estimation of Physiological R Peak 

The digitalization of the physiological R peak 
depends both on the sampling frequency and the bit 
resolution of the recorded data. It might therefore be 
difficult to conduct an accurate estimation of the 
physiologically true R peak position based only on 
the recorded waveform directly. This might induce 
recording jitter in the HRV measures. Recently, our 
group has therefore designed a method to estimate 
the physiologically true R peak position 
independently of the applied sampling frequency 
(Ahrens et al., 2015). The input to the algorithm is 
an approximate QRS location. In our case, this 
location was the manual annotations. The data is 
then up-sampled to 8191 Hz. In this high frequency 
domain, a template matching is performed to 
maximize the alignment of R peaks and hereby 
obtain a very accurate assessment of the 
physiologically true RR interval series. This RR 
interval series is applied to calculate what we term 
as the “physiologically true” HRV measures.   
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2.4 Calculation of HRV Measures 

A high number of different short-term HRV 
measures have been proposed. We decided to 
investigate three time domain measures, four 
frequency domain measures, and four dynamic 
measures: 1) SDNN represents the standard 
deviation of the RR intervals, 2) RMSSD is the 
square root of the mean squared differences of 
successive RR intervals, 3) pNN50 is the percentage 
of interval differences of successive RR intervals 
that exceeds 50 ms, 4) VLF represents the very low 
frequency power component (≤0.04 Hz), 5) LF is the 
low frequency power component (0.04 – 0.15 Hz), 
6) HF is the high frequency power component (0.15 
– 0.4 Hz), 7) LF/HF is the relation between the low 
and high frequency components, 8) ApEn is the 
approximate entropy (a measure of the regularity of 
the RR intervals), 9) SD1 is a geometric measure of 
the short-term variations, 10) SD2 is a geometric 
measure of long-term variations, and 11) SD1/SD2 
represents the relation between the two axis in the 
Poincaré plot. The different measures are described 
in more details in (ESC and NASPE, 1996).  

3 RESULTS 

3.1 Performance of QRS Detection 

The performance of the automatic QRS complex 
detection algorithm was evaluated as the sensitivity 
(Se = TP/(TP+FN)) and the positive predictivity (P+ 
= TP/(TP+FP)), where TP is the number of true 
positive detections, FN is the number of false 
negative detections (missed beats), and FP is the 
number of false positive detections. The 
performance was evaluated using  the bxb function 
in the WFDB Toolbox (Goldberger et al., 2000).  
The performance of the algorithm is provided in 
Table 1 for each of the four investigated sampling 
frequencies. The algorithm only obtained Se and/or 
P+ of less than 99.0% on seven of the 191 segments 
(three obtained with 128 Hz and two obtained with 
256 Hz and 512 Hz, respectively). This lower 
performance was obtained on segments with high 
amounts of artefacts. These artefacts are also 
expected to influence the estimation of the 
physiologically true HRV measures, and these seven 
segments were therefore excluded from the HRV 
investigations described in the following sections. 
The automatic QRS detection performance on the 
184 included 5-min segments is also provided in 
Table 1.   

3.2 Comparison of HRV Measures 

The median values of the physiologically true and 
the estimated HRV measures are provided in Table 2 
for each sampling frequency. It generally appears 
that the automatically generated RR series have a 
tendency to slightly overestimate the median values 
of most of the HRV measures for all four sampling 
frequencies. Therefore, we also investigated the 
distribution of the differences between the true HRV 
measures and the estimated values. A few examples 
of this are provided in Figure 4. It is observed that 
most of the differences have slightly negative values 
corresponding to a minor overestimation when the 
automatically generated RR series is applied. 
However Mann-Whitney U tests and anova tests 
showed that the differences observed in the median 
and mean values, respectively, are not significant for 
any of the HRV measures for any of the sampling 
frequencies. Both tests were conducted with a 
significance level of α = 0.05.  

The similarity between the true and the estimated 
5-min HRV measures were furthermore investigated 
using correlation plots. A few examples are provided 
in Figure 5. It is visually observed that there is a 
high correlation between the true HRV measures and 
the estimated HRV measures for all four sampling 
frequencies. This was observed for all of the 11 
investigated 5-min HRV measures. The correlation 
coefficients between the true and the estimated HRV 
measures are provided in Table 3. Statistical tests 
showed that all the correlations are significant with a 
significance level of α = 0.001. 

Table 1: Evaluation of the automatic QRS detection 
performances for each sampling frequency with all 
segments (top line) and with exclusion of segments with 
very poor performance (lower line). N indicates the 
number of segments applied. 

Fs 
N Total 

beats 
Se 

(%) 
P+ 

(%) 

128 Hz 
48 17,664 99.58 99.55 

45 16,029 99.98 99.93 

256 Hz 
48 18,283 99.97 99.87 

46 17,573 99.99 99.96 

512 Hz 
48 17,965 99.65 99.64 

46 16,651 99.98 99.93 

1024 Hz 
47 18,338 99.96 99.95 

47 - - - 

Total 
191 72,105 99.79 99.76 

184 68,582 99.98 99.94 
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Table 2: Median values of the investigated 5-min HRV measures obtained from the physiologically true RR series (“truth”) 
and obtained directly from the automatic QRS complex detection (“estimate”) for each sampling frequency. The median 
values are applied because several of the parameters are not normally distributed.  

Parameter 
Fs = 128 Hz Fs = 256 Hz Fs = 512 Hz Fs = 1024 Hz 

Truth Estimate Truth Estimate Truth Estimate Truth Estimate 
SDNN (s) 0.0607 0.0681 0.0640 0.0639 0.0606 0.0650 0.0518 0.0529 
RMSSD (s) 0.0350 0.0416 0.0316 0.0342 0.0374 0.0439 0.0314 0.0335 
pNN50 (%) 13.896 14.402 10.069 11.780 15.205 16.117 10.671 11.024 
SD1 (s) 0.0248 0.0295 0.0223 0.0242 0.0265 0.0311 0.0222 0.0237 
SD2 (s) 0.0870 0.0888 0.0862 0.0861 0.0758 0.0829 0.0691 0.0704 
SD1/SD2 0.2994 0.3270 0.2511 0.2746 0.3611 0.4122 0.2549 0.2985 
ApEn 0.5719 0.5700 0.5403 0.5411 0.5889 0.5713 0.5735 0.5767 
VLF (s2) 3.78·105 3.77·105 3.53·105 3.56·105 3.80·105 3.80·105 3.12·105 3.11·105 
LF (s2) 568.14 626.54 484.99 454.93 447.06 477.66 455.94 441.18 
HF (s2) 248.23 316.00 224.45 230.97 229.96 319.59 159.42 184.05 
LF/HF 2.5396 2.1458 2.5691 2.5391 1.9684 1.3634 3.1721 2.9977 

 
Figure 4: Examples of the distribution of the differences between the physiologically true HRV parameter and the estimated 
HRV parameter value for each 5-min ECG segment. Negative differences correspond to the estimated value being larger 
than the physiologically true value. It is observed that the distribution of the differences is comparable for all four 
frequencies. The probability distributions are calculated as histograms with 30 equally distributed bins.  

3.3 Applications of the HRV Measures 

One of the interesting applications of quasi-
continuous estimation of HRV measures is the 
possibility to explore transient changes in the HRV 
measures over time. This could be relevant on larger 
time scales (e.g. month or years), but also on shorter 
time scales (e.g. days). We therefore investigated the 
time course of a few selected HRV measures during 
the entire duration of our recordings. A few 
examples are provided in Figure 6. The daily 

variations are especially observed for the first 
subject. In order to automatically detect these 
transient changes using the estimated HRV 
measures, it is necessary to ensure that the before 
mentioned tendency to a minor (non-significant) 
overestimation of many of the measures does not 
interfere with the ability to correctly classify 
between simulated groups of high and low 
variability, respectively. This ability is also expected 
to be important with respect to detection of different 
patient populations based on the HRV measures.  
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Figure 5: Examples of representative correlations between 
the physiologically true HRV measures and the estimated 
HRV measures for the four different sampling frequencies. 
The green marks indicate segments that were excluded 
from the HRV comparisons due to poor QRS detection 
performance. 

Table 3: Correlation coefficients between the true and the 
estimated value of each investigated HRV measure for all 
four sampling frequencies. Examples of correlation plots 
are provided in Figure 5.  

Parameter 
128 
Hz 

256 
Hz 

512 
Hz 

1024 
Hz 

SDNN 0.97 0.98 0.95 0.99 
RMSSD 0.93 0.96 0.87 0.95 
pNN50 0.99 1.00 0.97 1.00 
SD1 0.93 0.96 0.87 0.96 
SD2 0.62 1.00 0.80 0.93 
SD1/SD2 0.86 0.94 0.88 0.95 
ApEn 0.93 0.99 0.96 0.99 
VLF 1.00 1.00 1.00 1.00 
LF 0.94 0.95 0.89 0.98 
HF 0.94 0.99 0.93 0.99 
LF/HF 0.89 0.99 0.86 0.97 

 

 

Figure 6: Illustration of the time course of pNN50 (blue 
line) and LF/HF (red line) calculated using the estimated 
HRV measures from every 5-min segment throughout the 
recording on two different days for two different subjects.  

To investigate the ability to classify between 
different states of low and high HRV measures, we 
divided the included 5-min segments into two 
groups. The first group represents the lowest half of 
the HRV measures and the second group represents 
the highest half for each parameter. The division was 
based on the physiologically true HRV measures. 
We first confirmed that there was a statistical 
significant difference between both the mean and the 
median values of the two obtained groups using the 
true HRV measures. This was confirmed for all 11 
HRV measures for all four frequencies. This 
division can thus be applied to simulate two truly 
different groups. We then investigated whether the 
difference was still significant when the estimated 
HRV measures where applied. A few representative 
examples of the two obtained distributions are 
provided in Figure 7. It is generally observed that 
there is a clear difference between the two groups 
using the true HRV measures. This difference is 
furthermore observed to be correctly reproduced by 
the estimated HRV measures. The results were  
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Figure 7: Illustration of division of the LF measure into a high and a low variability group. Each curve illustrates the 
distribution of the LF measure for class 1 using the physiologically true values (red lines), class 2 using the physiologically 
true values (blue lines), class 1 using the estimated values (green lines), and class 2 using the estimated values (black lines). 
The probability distributions are calculated as histograms with 10 equally distributed bins. 

similar for all 11 HRV measures for all four 
sampling frequencies. Mann-Whitney U tests and 
anova tests revealed that the difference between 
median and mean values, respectively, were still 
significant (α = 0.01) with the estimated values of 
the HRV measures. 

4 DISCUSSIONS 

The performance of the automatic QRS complex 
detection algorithm was found to be high for all four 
frequencies. This was especially clear when the 
seven worst segments were removed. The exclusion 
of these segments was considered necessary to 
ensure reliable estimation of the HRV measures due 
to the lack of manual editing in our setup. However, 
this suggests that a reliable HRV estimate can be 
obtained in more than 96% of the segments. This is 
considered acceptable with the quasi-continuous 
application in mind. In future studies, it should be 
investigated how these segments could be excluded 
automatically. This could for instance include an 
automatic pre-qualification of the quality of each 
segment. Furthermore, the next generation of the 
ePatch is able to record simultaneous accelerometer 
data. This could be applied to detect periods of high 
activity and thus base the quasi-continuous HRV 
estimation on segments with potentially low noise 
levels. Furthermore, several studies have recently 

investigated the possibility for automatic correction  
of errors in the RR interval curve (Citi et al., 2012). 
These methods might also be able to decrease the 
influence of poor QRS detection performance and 
hereby allow inclusion of more of the segments. 
However, it should be noted that this study was 
conducted on young, healthy, and physically active 
volunteers where the amount of abnormal beats is 
expected to be low. In cardiac patients or healthy 
elderly, it is probably necessary to account for 
abnormal beats in the automatically generated RR 
interval series before the HRV measures are 
estimated. As mentioned, several studies have 
recently designed methods to account for these 
automatically based on outliers in the RR interval 
curve (Citi et al., 2012).  

Generally, there was a tendency to overestimate 
most of the HRV measures for all the sampling 
frequencies. This might indicate that a certain 
amount of high frequency noise is induced due to the 
finite sampling of the signals. However, looking at 
the distributions of the differences in Figure 4, it 
appears that the overestimation is quite similar for 
all four frequencies. Furthermore, the correlation 
was found to be high for all the investigated HRV 
measures for all four sampling frequencies and we 
found no statistical significant differences for any of 
the sampling frequencies. This suggests that all four 
frequencies can be applied to obtain a very accurate 
assessment of the true physiological variability. 
With the embedded implementation in mind, it is 
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therefore appealing to apply the lower sampling 
frequencies. However, the usual recommendation 
has been to apply a higher sampling frequency, 
especially when the HRV measures are expected to 
have low values which is often the case in 
autonomous dysfunction (Citi et al., 2012; ESC and 
NASPE, 1996; García-González et al., 2004; 
Tapanainen et al., 1999). Our findings should 
therefore be confirmed on a larger population that 
includes different clinically relevant patient groups. 
It is especially important to investigate whether the 
findings can be reproduced in populations with more 
complicated ECGs, e.g. patients with ectopic beats, 
and patients with reduced HRV measures, e.g. 
patients with autonomic dysfunction and critical care 
patients. However, it is very promising that our 
simulated division into low and high variability 
groups are quite similar using the true and the 
estimated HRV parameter values.   

Figure 6 contains an example of the application 
of quasi-continuous HRV measures to investigate 
daily variations in the autonomic tone. It is generally 
observed that a clear increase in pNN50 is 
associated with a clear decrease in LF/HF. This is as 
expected: A high value of pNN50 indicates more 
high frequency variations and more high frequency 
content is associated with a decrease in LF/HF. An 
increase in the high frequency components are 
believed to be associated with an increase in the 
parasympathetic nervous system. For the first 
subject, it is clearly observed how the high 
frequency components are more pronounced during 
the night in both recordings. For the second subject, 
this difference is only observed on the first day. It is 
furthermore observed that there is a decrease in 
pNN50 and hereby a decrease in the high frequency 
components, in the middle of the night. That might 
indicate that the subject woke up at night. This 
illustrates how quasi-continuous estimation of HRV 
measures might assist in keeping an eye on the 
development of changes in the autonomic tone. This 
could for instance prove useful for the monitoring of 
critical care patients or patients at risk of developing 
sepsis. It might also be helpful in general health 
management or for monitoring of improvments 
obtained by exercise or stress management 
programs. These examples illustrate how new 
knowledge about the constantly changing autonomic 
tone might be gained by working towards quasi-
continuous monitoring of HRV measures. This paper 
is a very early step in the direction of real-time 
quasi-continuous monitoring of changes in the 
autonomic tone through HRV measures, but the 
results are promising and suggest that more  research  

in this area might prove beneficial.   
Generally, there are three requirements for 

obtaining reliable estimates of clinically relevant 
HRV measures: 

1. The patient should be able to comply with 
wearing the system for the necessary amount of 
time.  

2. The system should be able to correctly 
reproduce the physiological variability of the 
heart in quasi-continuous segments.  

3. The system should be able to automatically 
select the ECG segments that are suitable for 
reliable estimation of the HRV measures.  

 
The first requirement is clearly fulfilled by the 

patch type ECG recorders. The second requirement 
is bound by the ability to automatically detect and 
localize the R peaks with sufficient accuracy. The 
focus of this study was to investigate this second 
requirement. Overall, we found that when the ECG 
is of sufficient quality (defined by the ability to 
obtain sufficient automatic QRS complex detection), 
it was possible to reproduce the physiological 
variability using the ePatch recorder and an 
automatic QRS complex detection algorithm. Our 
findings thus suggest fulfilment of the second 
requirement. However, as mentioned, this was based 
on segments from healthy volunteers with expected 
low arrhythmia burden and with high QRS detection 
performance. This leads to the third requirement that 
is related to the ability to automatically select the 
segments that are suitable for the quasi-continuous 
estimation of the short-term HRV measures. This 
might include automatic selection of segments with 
sufficient signal quality, automatic selection of 
segments without arrhythmias, or automatic 
correction of abnormal beats in the RR series before 
calculation of the HRV measures. This area should 
thus be the subject of further research in the future.  

5 CONCLUSIONS 

We found a high correlation between the 
physiologically true HRV measures and the 
measures estimated with an automatically obtained 
RR interval series for four different sampling 
frequencies (128 Hz, 256 Hz, 512 Hz, and 1024 Hz). 
This indicates that the described ePatch system is 
able to obtain reliable estimates of clinically relevant 
HRV measures. These findings should be further 
investigated in larger patient populations with more 
complicated ECGs and in patient populations with 
expected low variability in the heart rate. However, 
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the findings are still promising for the future 
application of the ePatch ECG recorder in the 
growing area of risk stratification based on HRV 
measures.  
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APPENDIX 

The automatic QRS complex detection algorithm 
was originally designed for a sampling frequency of 
512 Hz (Saadi et al., 2015). The performance of this 
version of the algorithm on the MIT-BIH 
Arrhythmia Database (MITDB) is compared to other 
published algorithms in Table 4. Two modifications 
were required to adapt the algorithm to the other 
three sampling frequencies. The first adaptation was 
an adjustment of a threshold that decides the 
variability mode of the algorithm. The original 
threshold was Tθ,original = 35 samples. This threshold 
was updated to Tθ = 8 samples for fs = 128 Hz, Tθ = 
17 samples for fs = 256 Hz, and Tθ = 70 samples for 
fs = 1024 Hz. The second modification was related 
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to the digital filters. The original filter coefficients 
for fs = 512 Hz are provided in (Saadi et al., 2015). 
For fs = 1024 Hz, all coefficients were doubled. 
Thus the length of all the cascaded filters was 
doubled. This keeps the bandpass region for a 
doubled sampling frequency. Likewise, every other 
filter coefficient was removed to adjust for a 
sampling frequency of 256 Hz. This modification 
was not possible for fs = 128 Hz. Instead, the two 
first bandpass filters were therefore modified 
according to (1) and (2).  

Table 4: Comparison of performances obtained on the 
MITDB by different algorithms published in the literature. 
In this study we applied the algorithm designed by (Saadi 
et al., 2015). This algorithm was designed and optimized 
for detection of QRS complexes in ePatch ECGs.  

Algorithm Se (%) P+ (%) 
(Saadi et al., 2015) 99.90 99.87 
(Ghaffari, Homaeinezhad, & 
Daevaeiha, 2011) 99.94 99.91 

(Martínez, Alcaraz, & Rieta, 
2010) 99.71 99.97 

(Li, Zheng, & Tai, 1995) 99.89 99.94 
(Pan & Tompkins, 1985) 99.75 99.54 

 ݄஻௉ଵሾ݊ሿ ൌ ሼെߜሾ݊ ൅ 3ሿ ൅ ሾ݊ߜ ൅ 2ሿ ൅ 
ሾ݊ߜ      െ 1ሿ െ ሾ݊ߜ െ 2ሿሽ.  (1) 

 ݄஻௉ଶሾ݊ሿ ൌ ሼെ2ߜሾ݊ ൅ 4ሿ െ ሾ݊ߜ	 ൅ 3ሿ ൅ ሾ݊ ൅ 2ሿ ൅ ሾ݊ߜ2 ൅ 1ሿ ൅ ሾ݊ሿߜ2 ൅ ሾ݊ߜ െ 1ሿ െߜߜሾ݊ െ 2ሿ െ ሾ݊ߜ2 െ 3ሿሽ.   (2) 
 
For the average filters, half the coefficients were 
removed relative to the filters applied for fs = 256 
Hz. The bandpass filter characteristics for the four 
different sampling frequencies are provided in 
Figure 8. It is observed that the filter characteristics 
are very similar. It is expected that the performances 
obtained by the three modified algorithms (fs = 128 
Hz, fs = 256 Hz, and fs = 1024 Hz) will be 
comparable to the performance stated in Table 4 for 
the original algorithm (fs = 512 Hz).  

 

Figure 8: Amplitude characteristics for the combined 
bandpass filters for each sampling frequency.  
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