Towards Quasi-continuous Heart Rate Variability Estimation using a Patch Type Electrocardiogram Recorder

Dorthe B. Saadi, Esben Ahrens, Helge B. D. Sorensen, Henning Langberg, Karsten Hoppe

2015

Abstract

Changes in different heart rate variability (HRV) measures have been found to possess predictive information in patients with many different diseases, e.g. myocardial infarction, diabetic neuropathy, and patients at risk of developing sepsis. At the same time, the emerging of patch type electrocardiogram recorders facilitates new possibilities for long-term monitoring, real-time data analysis, and wireless transmission of clinically relevant parameters, e.g. short-term HRV measures. This information might in the future assist the healthcare professionals in timely notification of changes in the risk stratification profile obtained from the HRV measures. The purpose of this study is therefore to investigate the possibilities for quasi-continuous estimation of reliable HRV measures using the ePatch heart monitor. We compared the physiologically true values of 11 selected HRV measures with the values obtained using automatically generated RR series from electrocardiograms recorded with the ePatch using four different sampling frequencies (128 Hz, 256 Hz, 512 Hz, and 1024 Hz). We found no significant differences between neither the mean nor the median values of the obtained HRV measures for any of the sampling frequencies. This is very promising for the future application of the ePatch for quasi-continuous monitoring of HRV measures.

References

  1. Ahrens, E., Sorensen, H. B. D., Langberg, H., Hoppe, K., & Saadi, D. B. (2015). Investigation of the Minimum Conditions for Reliable Estimation of Clinically Relevant HRV Measures - Introducing a Novel Approach to the Validation of HRV Measurement Systems. In CARDIOTECHNIX 2015: Proceddings of the International Congress of Cardiovascular Technologies 2015. SciTePress. Accepted.
  2. Buchan, C. A., Bravi, A., & Seely, A. J. E. (2012). Variability analysis and the diagnosis, management, and treatment of sepsis. Current Infectious Disease Reports, 14, 512-521. doi:10.1007/s11908-012-0282-4
  3. Citi, L., Brown, E. N., & Barbieri, R. (2012). A real-time automated point-process method for the detection and correction of erroneous and ectopic heartbeats. IEEE Transactions on Biomedical Engineering, 59, 2828- 2837. doi:10.1109/TBME.2012.2211356
  4. ESC and NASPE (Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology). (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European Heart Journal, 17, 354-381.
  5. García-González, M. A., Fernández-Chimeno, M., & Ramos-Castro, J. (2004). Bias and uncertainty in heart rate variability spectral indices due to the finite ECG sampling frequency. Physiological Measurement, 25, 489-504. doi:10.1088/0967-3334/25/2/008
  6. Ghaffari, A., Homaeinezhad, M. R., & Daevaeiha, M. M. (2011). High resolution ambulatory holter ECG events detection-delineation via modified multi-lead waveletbased features analysis: Detection and quantification of heart rate turbulence. Expert Systems with Applications, 38, 5299-5310. doi:10.1016/j.eswa.20 10.10.028
  7. Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J.E., Moody, G.B., Peng, C.-K. & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet?: Components of a new research resource for complex physiologic signals. Circulation, 101, e215-e220. doi:10.1161/01.CIR.101.23.e215
  8. Huikuri, H. V., & Stein, P. K. (2013). Heart rate variability in risk stratification of cardiac patients. Progress in Cardiovascular Diseases, 56, 153-159. doi:10.1016/j.pcad.2013.07.003
  9. Li, C., Zheng, C., & Tai, C. (1995). Detection of ECG characteristic points using wavelet transforms. IEEE Transactions on Biomedical Engineering, 42. doi:10.1109/10.362922
  10. Martínez, A., Alcaraz, R., & Rieta, J. J. (2010). Application of the phasor transform for automatic delineation of single-lead ECG fiducial points. Physiological Measurement, 31, 1467-85. doi:10. 1088/0967-3334/31/11/005
  11. HASIBA Medical GmbH. (2015). Cardioscope(TM) Analytics. Retrieved October 12, 2015, from https://cardiscope.com
  12. Pan, J., & Tompkins, W. (1985). A real-time QRS detection algorithm. IEEE Transactions on Biomedical Engineering, 32, 230-236. doi:10.1109/TBME.1985 .325532
  13. Saadi, D. B., Fauerskov, I., Osmanagic, A., Sheta, H. M., Sorensen, H. B. D., Egstrup, K., & Hoppe, K. (2013). Heart rhythm analysis using ECG recorded with a novel sternum based patch technology. In CARDIOTECHNIX 2013: Proceedings of the International Congress on Cardiovascular Technologies 2013, SciTePress, 15-21. doi:10.5220/ 0004640900150021
  14. Saadi, D. B., Sorensen, H. B. D., Hansen, I. H., Egstrup, K., Jennum, P. J., & Hoppe, K. (2014). ePatch(R) - A Clinical Overview. Retrieved from http://orbit.dtu.dk/fedora/objects/orbit:135692/datastre ams/file_56776d8b-c232-4bcb-af6c20f3a00382a9/content
  15. Saadi, D. B., Tanev, G., Flintrup, M., Osmanagic, A., Egstrup, K., Hoppe, K., Jennum, P., Jeppesen, J.L., Iversen, H.K. & Sørensen, H. B. D. (2015). Automatic Real-Time Embedded QRS Complex Detection for a Novel Patch-Type Electrocardiogram Recorder. IEEE Journal of Translational Engineering in Helath and Medicine, 3, 1900112. doi:10.1109/JTEHM.2015.242 1901
  16. Tapanainen, J. M., Seppänen, T., Laukkanen, R., Loimaala, A., & Huikuri, H. V. (1999). Significance of the accuracy of RR interval detection for the analysis of new dynamic measures of heart rate variability. Annals of Noninvasive Electrocardiology, 4, 10-18. doi:10.1111/j.1542-474X.1999.tb00359.x
Download


Paper Citation


in Harvard Style

Saadi D., Ahrens E., Sorensen H., Langberg H. and Hoppe K. (2015). Towards Quasi-continuous Heart Rate Variability Estimation using a Patch Type Electrocardiogram Recorder . In Proceedings of the 3rd International Congress on Cardiovascular Technologies - Volume 1: CARDIOTECHNIX, ISBN 978-989-758-160-1, pages 20-29. DOI: 10.5220/0005605500200029


in Bibtex Style

@conference{cardiotechnix15,
author={Dorthe B. Saadi and Esben Ahrens and Helge B. D. Sorensen and Henning Langberg and Karsten Hoppe},
title={Towards Quasi-continuous Heart Rate Variability Estimation using a Patch Type Electrocardiogram Recorder},
booktitle={Proceedings of the 3rd International Congress on Cardiovascular Technologies - Volume 1: CARDIOTECHNIX,},
year={2015},
pages={20-29},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005605500200029},
isbn={978-989-758-160-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Congress on Cardiovascular Technologies - Volume 1: CARDIOTECHNIX,
TI - Towards Quasi-continuous Heart Rate Variability Estimation using a Patch Type Electrocardiogram Recorder
SN - 978-989-758-160-1
AU - Saadi D.
AU - Ahrens E.
AU - Sorensen H.
AU - Langberg H.
AU - Hoppe K.
PY - 2015
SP - 20
EP - 29
DO - 10.5220/0005605500200029