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Abstract: Neurosolver is a neuromorphic planner and a general problem solving (GPS) system. To acquire its problem 
solving capability, Neurosolver uses a structure similar to the columnar organization of the cortex of the brain 
and a notion of place cells. The fundamental idea behind Neurosolver is to model world using a state space 
paradigm, and then use the model to solve problems presented as a pair of two states of the world: the current 
state and the desired (i.e., goal) state. Alternatively, the current state may be known (e.g., through the use of 
sensors), so the problem is fully expressed by stating just the goal state. Mechanically, Neurosolver works as 
a memory recollection system in which training samples are given as sequences of states of the subject system. 
Neurosolver generates a collection of interconnected nodes (inspired by cortical columns), each of which 
represents a single point in the problem state space, with the connections representing state transitions. A 
connection map between states is generated during training, and using this learned memory information, 
Neurosolver is able to construct a path from its current state, to the goal state for each such pair for which a 
transitions is possible at all. In this paper we show that Neurosolver is capable of acquiring from scratch the 
complete knowledge necessary to solve any puzzle for a given Towers of Hanoi configuration. 

1 INTRODUCTION 

The goal of the research that led to the original 
introduction of Neurosolver, as reported in 
(Bieszczad and Pagurek, 1998), was to design a 
neuromorphic device that would be able to solve 
problems in the framework of the state space 
paradigm. Fundamentally, in this paradigm, a 
question is asked how to navigate a system through 
its state space so it transitions from the current state 
into some desired goal state. The states of a system 
are correspond to points in an n-dimensional space 
where each dimension is a certain characteristics of 
the system. Trajectories in such spaces formed by 
state transitions represent behavioral patterns of the 
system. A problem is presented in this paradigm as a 
pair of two states: the current state and the desired, or 
goal, state. If a sensory system is used, then the 
problem can be stated by just indicating the desired 
state, since the current state is detected by the sensors. 
A solution to the problem is a trajectory between the 
two points in the state space representing the current 
state and the goal state. 

Neurosolver can solve such problems by first 
building a behavioral model of the subject system and 
then by traversing the recorded trajectories during 

both searches and resolutions (Bieszczad, 2006; 
2007, 2008, 2011). This processes will be described 
with more detail in the following sections. The 
learning is probabilistic, so in many respects this 
approach is similar to Markov Models (Markov, 
2006). However, in some cases, any solution is a good 
solution, so rather than acquiring a behavioral model 
of the subject system, a random process can be used 
to detect all possible transitions between any two 
states. For example, paths can be constructed in a 
maze through allowing an artificial rat driven by a 
Neurosolver-based brain to explore the limits of the 
maze (e.g., the walls) (Bieszczad, 2007). 

In this paper, we demonstrate that Neurosolver 
can solve Towers of Hanoi puzzles with three towers. 
Conceptually, exactly same approach would be taken 
for any number of towers; we discuss that at the end 
of the paper. We explore the probabilistic aspects of 
the models for this particular application, and observe 
that they do not bring significant gains in 
functionality, while slowing down the efficiency of 
the searches. As could be expected, puzzles with 
larger number of disks require significantly more 
training steps to explore all valid trajectories in the 
state space. Nevertheless, allowing Neurosolver to 
explore the state space sufficiently guarantees that the 
best solution is found for any puzzle. 
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1.1 Inspirations from Neuroscience 

The original research on Neurosolver modeling was 
inspired by Burnod’s monograph on the workings of 
the human brain (Burnod, 1988). The class of systems 
that employ state spaces to present and solve 
problems has its roots in the early stages of AI 
research that derived many ideas from the studies of 
human information processing; among them on 
General Problem Solver (GPS) (Newell and Simon, 
1963). This pioneering work led to very interesting 
problem solving (e.g. SOAR (Laird, Newell, and 
Rosenbloom, 1987)) and planning systems (e.g. 
STRIPS (Nillson, 1980). 

Neurosolver employs activity spreading 
techniques that have their roots in early work on 
semantic networks (e.g., (Collins and Loftus, 1975) 
and (Anderson, 1983)). 

1.2 Neurosolver 

Neurosolver is a network of interconnected nodes. 
Each node represents a state in the problem space. 
Rather than considering all possible states of the 
subject system, Neurosolver generates nodes only for 
states that were explicitly used during the training, 
although in principle, in future some hardware 
platforms could be easier to implement with 
provisions for all states rather than creating them on 
demand. In its original application, Neurosolver is 
presented with a problem by two signals: the goal 
associated with the desired state and the sensory 
signal associated with the current state. A sequence of 
firing nodes that Neurosolver generates represents a 
trajectory in the state space. Therefore, a solution to  
 

 

Figure 1: Neurosolver learning rule. 

the given problem is a succession of firing nodes 
starting with the node corresponding to the current 
state of the system, and ending with the node 
corresponding to the desired state of the system.The 
node used in Neurosolver is based on a biological 
cortical column (references to the relevant 
neurobiological literature can be found in (Bieszczad 
and Pagurek, 1998)). In this simplified model, the 
node, an artificial cortical column, consists of two 
divisions, the upper and the lower, as illustrated in 
Figure 1. The upper division is a unit integrating 
internal signals from other upper divisions and from 
the control center providing the limbic input (i.e., a 
goal or — using a more psychological term — a 
drive, or desire, that is believed to have its origins in 
the brain’s limbic system). The activity of the upper 
division is transmitted to the lower division where it 
is subsequently integrated with signals from other 
lower divisions and the thalamic input (i.e., the signal 
from the sensory system that is relayed through the 
brain’s thalamus; for example, a visual system that 
recognizes the current configuration of the Towers of 
Hanoi puzzle). The upper divisions constitute a 
network of units that propagate search activity from 
the goal, while the lower divisions constitute a 
network of threshold units that integrate search and 
sensory signals, and subsequently generate a 
sequence of firing nodes; a resolution of the posed 
problem (see Figure 2). The output of the lower 
division is the output of the whole node. 

The function of the network of upper divisions is 
to spread the search activity along the intra-cortical 
(i.e., upper-to-upper division) connections (as shown 
in Figure 3) starting at the original source of activity: 
the node associated with the goal state that receives 
the limbic input (representing what is desired). This 
can be described as a search network because the 
activity spreads out in reverse order from that node 
along the learned trajectories in hope to find a node 
that receives excitatory thalamic input that indicates 
that the node corresponds to the current state of the 
system. At that node, the activities of the upper and 
lower divisions are integrated, and if the combined 
activity exceeds the output threshold, the node fires. 
The firing node is the trigger of a resolution. The 
resolution might be only one of many, but due to the 
probabilistic learning it is best in the sense that it was 
the most common in the training. 

The process of spreading activity in a search tree 
is called goal regression (Nillson, 1980). The 
implementation on a digital computer is discrete in 
that it follows the recalculations of states in cellular 
networks. Double-buffering is used to hold the 
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Figure 2: Learning state space trajectories through bi-directional traces between nodes corresponding to transitional states of 
the system. 

 

Figure 3: Search in Neurosolver. The externally induced activity is propagated from the node representing the goal state along 
the connections between the upper divisions of the nodes in the reverse direction to the direction in which the training samples 
were presented. All such pathways are branches in the search tree. 

current state of Neurosolver 1  at some time tick t, 
while the next state at time tick t+1 is calculated; the 
buffers are swapped after that is complete2. 

The purpose of the network composed of lower 
divisions and their connections is to generate a 
sequence of output signals from firing nodes (along 
the connections shown in Figure 5). Such a sequence 
corresponds to a path between the current state and 
the goal state, so it can be considered a solution to the 
problem. As we said, a firing of the node representing 
the current state triggers a solution. Each subsequent 
firing node sends action potentials through the 
outgoing connections of its lower division. These 
signals may cause another node to fire especially if 
that node’s attention (i.e., the activity in the upper 
division; also called expectation) is sufficiently high, 
as that may indicate that the node is part of the search 
tree. In a way, the process of selecting the successor 

                                                 
1 It is important not to confuse the states of Neurosolver 
with the states of the subject system that Neurosolver is 
modeling. 

in the resolution path is a form of selecting the node 
most susceptible to firing. A firing node is inhibited 
for some time afterwards to avoid oscillations. The 
length of the inhibition determines the length of 
cycles that can be prevented. 

Neurosolver exhibits goal-oriented behavior 
similar to that introduced in (Deutsch, 1960). 

The strength of every inter-nodal connection is 
computed as a function of two probabilities: the 
probability that a firing source node will generate an 
action potential in this particular connection and the 
probability that the target node will fire upon 
receiving an action potential from the connection (as 
shown in Equation 1).  

To compute the probabilities, statistics for each 
division of the node (both the upper and the lower) 
and each connection are collected as illustrated in 
Figure 5. The number of transmissions of an action  
 

2  In theory, alternate implementations — for example 
utilizing hardware to propagate analog signals — could be 
more efficient, but at the moment are hard to realize in 
practice. 
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Figure 4: Resolution in Neurosolver. When the search activity integrates with the thalamic input in the node representing the 
current state of the system, it triggers a chain reaction of firing nodes towards the node representing the desired — goal — 
state, from which the search activity in the upper divisions had originated. 

 

Figure 5: Statistics collected for computation of the 
connection strength between nodes. 

potential (i.e., transfer of the activity between two 
divisions) Tout is recorded for each connection. 
The total number of cases when a division positively 
influenced other nodes Sout is collected for each 
division. A positive influence means that an action 
potential sent from a division of a firing node to 
another node caused that second node to fire in the 
following time tick. In addition, statistical data that 
relate to incoming signals is also collected. Tin is the 
number of times when an action potential transmitted 
over the connection contributed to the firing of the 
target node and is collected for each connection. Sin, 
collected for each division, is the total number of 
times when any node positively influenced the node. 
With such statistical data, we can calculate the 
probability that an incoming action potential will 
indeed cause the target node to fire. The final formula 
that is used for computing the strength of a connection 
(shown in Equation 1) is the likelihood that a firing 
source node will induce an action potential in the 
outgoing connection, multiplied by the likelihood that 
the target node will fire due to an incoming signal 
from that connection: 

P = Pout Pin = (Tout/Sout) (Tin/ Sin) (1)

1.3 Problem: Towers of Hanoi 

Towers of Hanoi puzzle is a problem of moving a set  
 

of disks between a pair of pegs (“towers”) utilizing 
one or more auxiliary pegs with the rule that a larger 
disk can never be placed on top of a smaller disk. A 
generalized versions of the problem is to transition 
between any two disk configurations observing the 
same rules. The former is just a specific version of the 
latter, so in this paper we consider the generalized 
version of the puzzle. 

Commonly, three towers are used in the puzzles; 
however, that number can also be generalized. For 
example, a puzzle with four towers is called Reve’s 
puzzle. While there are known algorithms to find best 
solutions to puzzles (i.e., the transition between the 
start configuration and the goal configuration with the 
minimal disk moves), there is no known algorithm 
that can deal with the exponential explosion of 
complexity for problems with larger number of disks. 
There exists a presumed solution (Stewart, 1941); its 
correctness is based on Frame-Stewart conjecture and 
has been verified for four towers with up to 30 disks. 

In this paper, we deal with puzzles with three 
towers. A version with 5 disks is shown in Figure 6. 

2 IMPLEMENTATION 

Towers of Hanoi puzzle (often also called game) fits 
very well into the state space paradigm: each disk 
configuration corresponds to a state in the game state 
space, and a path between any two points in the state  
 

 

Figure 6: The Towers of Hanoi puzzle with three towers. 
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space is a solution to a puzzle for which these two 
states are the starting and the goal states. Depending 
on the number of disks the state space might be larger 
or smaller, but the fit for the paradigm is not affected. 

A question then arises if Neurosolver that is 
designed to work with problems posed in the terms of 
state spaces can indeed be used to tackle Tower of 
Hanoi game problems. 

2.1 Modeling Towers of Hanoi 

In our implementation, each state of the puzzle is 
represented as a string as the following examples 
show: 

• 3 disks: [000,000,123] 

• 4 disks: [0012,0003,0004] 

• 5 disks: [12345,00000,00000] (see Figure 6) 
Here, each tower is represented by n numbers, 

separated by a comma where n represents the number 
of disks. The example string with 5 disks (n=5) 
represents the configuration shown in Figure 4. The 
goal state of all disks on peg 3 would be 
[00000,00000,12345]. This method of encoding the 
state of the game is simple yet also uniquely readable 
and convenient as input to Neurosolver. Such 
representation could be easily obtained using a 
number of methods; for example applying image 
processing potentially with some machine learning 
techniques for classification. Such preprocessing is 
outside of the scope of this paper, so we assume that 
the input data are already in this format. 

The hypothesis is that after training, Neurosolver 
will be able to solve any puzzle problem; i.e., find a  
 

path in the state space of the puzzle going from any 
state A, to the goal state B, that can also be any of the 
states. Typically the goal is to start with all disks in 
tower 1, and move all of them to tower 3; the stated 
hypothesis encompasses such a specific case. 

Figure 7 shows a partial state space of a puzzle 
with three towers and three discs. Only valid states 
and valid transitions are shown in the diagram. 

2.2 Modeling Neurosolver 

Neurosolver consists of a collection of nodes 
representing the configurations of the Tower of Hanoi 
game. 

Each node has two parts, an upper division, which 
contains connections for searching, and a lower 
division, which contains connections for actually 
solving a problem. The upper level can also be 
considered the desire, or goal part of the node, 
whereas the lower level represents the current 
configuration (as determined by the sensory input) as 
well as a controller for forcing disk moves that are 
required to get to the goal configuration. Each node 
representing a single configuration is connected to 
one or more nodes representing other valid 
configurations. Neurosolver training is the process of 
building nodes corresponding to configurations that 
are encountered in the training samples and 
constructing a connection map between the nodes. 
The connections represent moves of a single disk. 

As explained earlier, the connections can have 
associated weights that vary based on parameters 
such as transitional frequencies, however as we will 
see, this does not affect the functional effectiveness 
of the model in solving Towers of Hanoi problems. 

 

Figure 7: A partial state space for Towers of Hanoi puzzle with three towers and three discs. Only valid states are included; 
i.e., the states that can be reached observing the puzzle rules. 
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2.3 Neurosolver Operation 

Neurosolver requires three main stages to solve a 
problem: 

• training, 
• searching, and 
• solving. 

2.3.1 Training 

Training is responsible for generating state nodes and 
for building the connection map between subsequent 
states observed in training sequences. This can be 
done through various types of training, with a 
common approach of Neurosolver exploring actual 
transitions between states. For this research, we 
implemented two methods of training, user-guided, 
and random. 

In user-guided training, the system just lets the 
user play the game, while it records all moves that the 
user makes. While this supervised training is very 
effective and can capture user’s experience, it is also 
extremely slow (and tedious to the expert player) for 
all but the smallest state spaces. While the system will 
capture and generalize user’s experience, there will 
be no explorations for unknown solutions. There is 
also exposure to user mistakes in both entering 
invalid configurations and suboptimal resolutions. In 
that respect, that approach is similar to building an 
expert system through knowledge acquisition from 
presumed experts. As with expert systems, the 
expertise is captured, but there is no guarantee that 
best, or even good, solutions are found; simply, the 
experts may not know them. 

To get much wider exploration of possible 
solutions, perhaps unknown to any users (“experts”), 
a random training was implemented. In this mode,  in 
the spirit of stochastic search methods, random but 
still valid moves between puzzle configurations (i.e., 
moves that do not violate the rules of the game) are 
generated and input to Neurosolver. It then records all 
state transitions as inter-nodal connections. 

It should be emphasized again that the training 
only creates connections between nodes that 
correspond to states that were observed; there are 
neither nodes nor connections for states that were 
never entered. For example, any invalid state does not 
have a representation in Neurosolver. If two states are 
theoretically connected, but were not part of any 
training sample, then Neurosolver will not use this 
theoretical link to solve a problem, as it doesn’t know 
of such a connection. Hence, in random mode, it is a 
prerogative to allow ample time for space 

explorations to capture all possible — and valid — 
transitions. 

There is a profound functional difference between 
the models built with two training techniques: the 
former (user-guided) is a probabilistic model that 
captures preferred solutions; the latter (random) 
builds a connection map, but the statistical 
observations need to be ignored as they are also 
random. 

The models built with both techniques generalize 
and optimize solutions by potentially concatenating 
parts of other paths into a novel solution. For 
example, if a path between [123,000,000] and 
[000,123,000], and a path between [000,123,000] and 
[000,000,123] are both learned, then the system can 
solve a problem [123,000,000]→[000,000,123] in 
spite of never seeing such a training sequence. 
Essentially, in the random method only singular state 
transitions may be used in training. 

In both training modes we allow selection of the 
number of disks to use in the simulator. In the random 
mode of training, the user additionally can select how 
many training cycles should be used; in the user-
guided mode the number of training cycles is a 
function of user’s tutoring persistence. The program 
then returns how many states it managed to find out 
of the theoretical total. As we can see in Figure 8, and 
as no surprise, the larger the number of possible 
states, the more training cycles are required. 

This step could be much improved by training in 
some controlled manner. The state space of the Tower 
of Hanoi problem is fairly well structured, so any 
controlled training scheme would give very good 
results, but we wanted the process to be completely 
unsupervised to explore Neurosolver’s capabilities to 
capture the complete knowledge from scratch. 

Figure 8 shows the effectiveness of the random 
training with 1,000,000 training samples (i.e., single 
state transitions). 

2.3.2 Searching 

After the training is complete, Neurosolver will have 
built a connection map between numerous states of 
the problem domain. The next step is to apply our 
goal (”limbic” or desire) and current/start (“thalamic” 
or sensory) inputs to the system. Using past 
knowledge from training, the search phase is looking 
for a plan that will be used to actually solve the given 
problem. 

The search mechanism is implemented by 
traversing the upper level of the nodes (states) and 
their connections. The idea behind the search, is that 
our goal is our desire; here, the puzzle configuration  
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Figure 8: Output capture from Neurosolver shows the 
performance of training Neurosolver with 1,000,000 
training cycles on a fairly fast iMac (4 GHz Intel Core i7 
with 4 cores and 32 GB RAM) using Python 3 with NumPy 
version 1.9.2. 

The search mechanism is implemented by 
traversing the upper level of the nodes (states) and 
their connections. The idea behind the search, is that 
our goal is our desire; here, the puzzle configuration 
that we want. We start from our desired goal state, 
and begin to traverse the state space via our learned 
connections (see Figure 9). 

This is done via an activation value that is applied 
to our goal state that is propagated along connections 
to the neighboring nodes. Eventually, the hope is that 
the spread of the activity will stimulate the node that 
also receives the thalamic input to its lower level that 
indicates the perceived current state. Once the 
activation from the upper level and the lower level are 
combined, the node will fire itself from the lower 
level, subsequently projecting the activation to its 
connected neighboring nodes. If any of the nodes at 
the receiving side of these connections has both upper 
and lower activation values, then that node will get 
increase in the activity sufficient to fire; and so on and 
so forth. This constitutes the third stage of 
Neurosolver’s operation, the solving. Eventually the 
lower level nodes will fire back to the goal. That will 
have solved the problem as the goal node gets 
inhibited, and consequently the source of the search 
activity ceases. 

 

Figure 9: The searching phase of Neurosolver’s operation. 
This is a top view of the nodes. Compare with Figure 3 and 
Figure 4. 

To implement the search stage, a method similar 
to cellular automata was used, where at each search 
step, the activity of the current node is projected to all 
connected nodes, but the activity of those nodes is 
recalculated only in the following step (time tick). As 
the system progresses through a number of goal 
regression cycles, the activity is spread to increasing 
number of connected nodes, essentially exploring all 
learned paths concurrently in search of the node 
associated with the current state. 

The benefit of this approach is that it will find the 
shortest solution that Neurosolver knows about, as all 
possibilities are explored one step at a time. This also 
means that any solutions that are close to our current 
state will be found quickly. 

The downside to this method is that for states that 
are far from the goal state, Neurosolver will end up 
iterating over many nodes. Depending on the state 
space, this could increase dramatically. 

One interesting note about searching in the 
context of Neurosolver, is that the search is not 
actually producing a specific path to the goal. Once 
the start node is activated, we do not have a specific 
solution. However, the solution is embedded into the 
state of Neurosolver itself in the form of activation 
values applied to its state nodes. Using this 
information, we can construct a path from our start 
node back to our goal! The search portion of 
Neurosolver produces a directed search tree. Here, as 
we traverse backwards through connections in the 
upper level of the node, we produce a tree that can be 

Disk Count: 1 
States found: 3 out of 3 possible. 
Runtime: 140.733876 sec 
Disk Count: 2 
States found: 9 out of 9 possible. 
Runtime: 125.792373 sec 
Disk Count: 3 
States found: 27 out of 27 possible. 
Runtime: 126.491495 sec 
Disk Count: 4 
States found: 81 out of 81 possible. 
Runtime: 128.699436 sec 
Disk Count: 5 
States found: 243 out of 243 possible. 
Runtime: 125.649405 sec 
Disk Count: 6 
States found: 729 out of 729 possible. 
Runtime: 128.065042 sec 
Disk Count: 7 
States found: 2187 out of 2187 possible. 
Runtime: 129.181981 sec 
Disk Count: 8 
States found: 6561 out of 6561 possible. 
Runtime: 131.752802 sec 
Disk Count: 9 
States found: 19683 out of 19683 possible. 
Runtime: 135.488318 sec 
Disk Count: 10 
States found: 48727 out of 59049 possible. 
Runtime: 137.897707 sec 
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used to generate the actual solution from the start 
node to the goal node. 

Now that we have our first phase complete with a 
list of connections, and we have gone through the 
searching portion and generated our search tree, we 
can move to the final step in solving the problem. 

2.3.3 Solving 

The last stage of Neurosolver is to use all of the 
information collected thus far, and to generate a 
solution from the given current state to the specified 
goal state. 

During the search phase of Neurosolver’s 
operation the activity has spread from the goal state 
along all possible connections in the upper divisions.  
Since the start state has enough activity from both the 
upper division (as the result of the search) and lower 
division (due to the sensory signal indicating the 
current state of the system), it will cause the lower 
level to fire, and subsequently excite its neighbor 
nodes (along the connections in between the lower 
divisions). Since both upper and lower division 
activations are required for the lower division to fire, 
only the nodes that contain upper division activation 
will fire, and that’s only possible for the nodes that 
are activated during the search phase. As each lower 
division node fires to its neighbor nodes, only the 
ones that are activated (i.e., are in an attentive state) 
will be activated at levels sufficient to fire; so on and 
so forth until the activity reaches the goal state at 
which point the problem will have been solved. That 
process is illustrated in Figure 10. 

 

Figure 10: The solving phase of Neurosolver’s operation. 

As stated earlier, the solving phase still doesn’t 
actually give us a complete solution path; it just 
causes a sequence of firing nodes. To actually solve 
the problem we need to engage the firing of each node 
as a trigger for an action that will force the solution 
(such as, for example, printing a configuration 
associated with the firing node, or, actually 
transitioning the puzzle from configuration A to 
configuration B in some virtual or real environment). 

2.4 Optimizing Neurosolver for Towers 
of Hanoi 

For this specific application, there is an opportunity 
to apply some modifications to the operation that 
diverge from the original intent of Neurosolver. 
Again, for this particular application owing to the fact 
that the connection weights are ignored, we can just 
reverse the search path that led from the goal state to 
the current state. 
There are two optimizations that we performed 
during the search phase that yielded a direct solution; 
i.e., the shortest path to the goal. 

• First, let’s observe that since the activity of the 
lower divisions of the nodes will spread in the 
opposite direction to that of the upper divisions 
(since we ignore the probabilities). This means 
that every branch of the search tree leads to the 
goal if traversed in the opposite direction to the 
flow of search. This has the implication that there 
are no dead ends; essentially, all branches that do 
not lead to the goal, or that are loops, are cut out. 
It is clearly seen in Figure 10 that shows that the 
solving activity (starting in the start/current node) 
cannot go “against the traffic” into any of the 
branches. 

• The second optimization is that during the search 
phase, we only create directed search connections 
if the node has not already been activated in the 
progression of the current search. This is 
essentially “shutting down” the node during the 
search after it conducts the search activity first 
time. This follows the observation that if during 
the search the node we are trying to move to has 
already been activated previously, we must be in 
a loop, since the search activity must have been 
carried over some other path first. Since that other 
path evidently carried the activity faster, the path 
that is attempted now must be a longer, less 
optimal path; hence, no learning should take 
place, so no connection is made. This has the 
effect of breaking any loops, since the last 
connection is a loop is prevented. Since any loop 
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is prevented, each path is a loop-less branch; 
hence, it will be effectively pruned by the effects 
of the first optimization. 

Using the above two optimizations, the only path 
from the current state to the goal state is the shortest 
optimal path; the best possible solution. 

3 CONCLUSIONS 

Neurosolver was able to solve Towers of Hanoi  
problems without knowing anything specific about 
the problem domain. Figure 11 and Figure 12 show 
the results of tests in solving problems in three-tower 
puzzles with three and with nine disks respectively. 
Substantially longer training was required for 
building a model for the nine-disc version. It took 
1,000,000 steps vs. 10,000 that were sufficient to 
create a model for the four disc version. Evidently, 
Neurosolver suffers from the similar problem as other 
methods that have been tried to solve Towers of 
Hanoi puzzle problems: exponential explosion. 
However, by not having all possible states in the 
system (as the system is prevented from entering 
illegal states), the state space is significantly reduced. 
That has a positive effect on the efficiency of 
searches. The downside of this is that the training 
sessions must be sufficiently long to ensure that all 
legal states are included in the training (and hence in 
the model), since otherwise some problems may not 
be solvable, or their solutions might not be optimal. 

The approach taken here considers the shortest 
path as the best. That may not necessarily be true. Just 
like avoiding bad parts of the city while planning 
errands some applications may have the quality of 
problem solutions evaluated by another measure. One 
aspect of such evaluation might be based on the 
frequency of state transitions, so the strength of the 
connections that Neurosolver accumulates may be 
needed. As we said, it’s an unlikely scenario in the 
case of Towers of Hanoi, and accordingly we did not 
find much use of that capability. 

One observation about using the connection 
strengths in searches, was that extremely high values 
of initial activation were needed to extend the reach 
of the search activity from the goal node to the current 
node; the more complex the puzzle (more discs), the 
higher initial activity was needed. This is because at 
every node, the amount of activation is reduced by a 
certain percentage depending on the distribution of  
 

                                                 
3 This is clearly the area in which an analog implementation 
of Neurosolver would be superior. The analog search signal 

probabilities amongst the connections. To understand 
this, let’s consider the case where all paths are equally 
likely, and there are just two outgoing connections 
from each node. The “resistance” will be 50% of the 
current activation and the projection is split between 
the two neighbors. Using this simple observation, we 
can see that to move through n consecutive nodes, we 
will need an activation value of 2n, as each node will 
reduce our activation by 2. 

 

Figure 11: The optimal solution to a problem in a three-
tower four-disc Towers of Hanoi puzzle. 

Finding the right activation amount is a problem in 
itself: too high value might lead to an infinite search, 
as all paths will be activated; too low value may not 
spread far enough to reach the current node. In both 
cases no solution will be generated. Finding the 
minimal value sufficient to find a solution requires an 
incremental approach in which the activity is 
gradually increased, and that unfortunately leads to 
increase in the processing as the whole search must 
be redone for the new value3. 

Taking all of these divagations into account, in 
the case of this application, we found that ignoring the 
connection strengths offered not only the quickest 
solutions, but also had the added benefit of 
guaranteeing the shortest path; i.e., the optimal 
solution for a Towers of Hanoi puzzle. 

would be continuously increased until one of the nodes 
fires. 

States found: 81 out of 81 possible. 
 
Searching... 
Start found 15 nodes away, out of 81 
states, after checking 80 nodes. 
 
Solving... 
1234,0000,0000 
0234,0001,0000 
0034,0001,0002 
0034,0000,0012 
0004,0003,0012 
0014,0003,0002 
0014,0023,0000 
0004,0123,0000 
0000,0123,0004 
0000,0023,0014 
0002,0003,0014 
0012,0003,0004 
0012,0000,0034 
0002,0001,0034 
0000,0001,0234 
0000,0000,1234 
Solution Length: 15 
Runtime: 0.260015 sec 
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Figure 12: The optimal solution to a problem in a three-
tower four-disc Towers of Hanoi puzzle. Note that most of 
the steps are not shown; only the beginning and the end of 
the solution are included. 

It was also interesting to observe that the “search” 
was simply an encoding of activation data across 
Neurosolver itself, without a clear and specific path 
being generated. But by using this data, a solution 
could be constructed. 

For the Tower of Hanoi problem, Neurosolver 
worked extremely well. Although this problem did 
not take full advantage of Neurosolver capabilities, 
through tackling it we did show again that in fact 
Neurosolver can solve state-space problems without 
having any intrinsic knowledge about the specifics of 
the problem domain. That reaffirms our conviction 
that Neurosolver indeed is a general problem solver. 

4 FUTURE 

We are in the process of expanding our experiments 
to generalized Towers of Hanoi puzzles like Reve’s 
puzzle. In theory, Neurosolver should be able to solve 
problems for these puzzles since they also can be 
modeled by state spaces. 

It is evident that for applications in which 
connection strengths are desirable, the issue with 
selecting appropriate initial search activity is of 
paramount importance. Baring a somewhat elusive 
hardware-based analog implementations of 

Neurosolver, a good approach could be to set the 
activity of each subsequent node to the same activity 
at each step of the computation. We are expanding 
our model to use activation functions other than the 
linear function used in the current implementation 
(threshold, sigmoidal, etc.). For this round, we had it 
on a back burner, since we did not need to use 
probabilities in the experiments with tackling Towers 
of Hanoi problems. 

While adding front end sensory and back end 
effector interfaces would not bring much to the 
fundamentals of Neurosolver’s operation, it would 
create a more realistic exploratory and demonstration 
environment. We are actually applying Neurosolver 
in a robot that has a LIDAR scanner as the sensor and 
engine-power wheels as the effectors (Bieszczad, 
2015). Nevertheless, in the spirit of deep learning we 
are also planning to use puzzle images rather than 
encoded configurations for training. For that, we will 
add an unsupervised configuration classifier as a front 
end (e.g., a Support Vector Machine), and use the 
classifier’s output as the input to Neurosolver. While 
it will necessarily take some time for the classifier to 
categorize all puzzle configurations consistently, we 
hypothesize that given sufficient time, Neurosolver 
will acquire the same level of capabilities as with the 
tutoring and random methods. We conjecture that 
Neurosolver will need to utilize the probabilities, so 
that the inter-nodal connectivity has a chance to 
evolve to a stable point after the unavoidable chaos 
caused by initial poor input from the classifier. 
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