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This paper introduces a novel evolutionary approach which can be applied to supervised, semi-supervised and

unsupervised learning tasks. The method, Grammatical Evolution Machine Learning (GEML) adapts machine
learning concepts from decision tree learning and clustering methods, and integrates these into a Grammatical
Evolution framework. With minor adaptations to the objective function the system can be trivially modified
to work with the conceptually different paradigms of supervised, semi-supervised and unsupervised learning.
The framework generates human readable solutions which explain the mechanics behind the classification de-
cisions, offering a significant advantage over existing paradigms for unsupervised and semi-supervised learn-
ing. GEML is studied on a range of multi-class classification problems and is shown to be competitive with
several state of the art multi-class classification algorithms.

1 INTRODUCTION

Evolutionary algorithms (EAs) are a collection of al-
gorithms which to varying extents emulate aspects of
biological evolution. One of these, Genetic Program-
ming (GP) (Koza, 1990) has been successful on a
wide range of different problems from several diverse
domains (Fogel, 2000), achieving many human com-
petitive results (Banzhaf, 2013). However, it is proba-
bly fair to say that a significant proportion of previous
work has concentrated on supervised learning tasks
and, aside from some notable exceptions, studies on
unsupervised and semi-supervised learning have been
left to the wider machine learning (ML) community.

Two of the most important tasks tackled by ML
techniques are regression and classification, and GP
has proven itself as an effective learner on each of
these: GP has achieved competitive results partic-
ularly on symbolic regression and binary classifica-
tion tasks. Although many multi-class classifica-
tion (MCC) studies have been undertaken, it remains
a problem which is considered challenging for tradi-
tional tree based GP (Castelli et al., 2013). This paper
takes up a triple challenge: it investigates MCC in a
semi-supervised as well as in an unsupervised con-
text.

This study is the first step in a larger investiga-
tion for which the motivation is the requirement for
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an unsupervised algorithm which can be applied to
grouping/categorisation tasks involving unlabelled in-
puts from the medical domain, and where the unsu-
pervised algorithm can supply human interpretable
justification for categorisation decisions. The ulti-
mate objective is to go beyond labelling — we want
to see which patterns of input data group together, or
whether categories so arising can become a teaching
aid for training.

Clustering is a natural choice for such tasks, how-
ever standard clustering algorithms lack the ability to
provide the reasoning behind cluster allocations in a
human readable form. In the medical domain, it is
usually important that the learner has the capability
to provide human understandable explanations of its
decisions so that human experts can have confidence
in the system. In this respect, decision trees (DTs)
have the nice property that the induced DT itself pro-
vides an easily comprehensible explanation of all de-
cisions. Unfortunately, traditional DTs rely on ground
truth information to make decisions and use of this in-
formation is not permissible in an unsupervised con-
text. For these reasons, although each of these meth-
ods have attractive properties, we conclude that nei-
ther DTs nor clustering approaches are, in their nor-
mal mode of use, appropriate for unsupervised cat-
egorisation tasks which require an explanation from
the learner.
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Although there is some important existing work
in the area of unsupervised classification in the medi-
cal domain, see for example (Mojsilovi¢ et al., 1997,
Greene et al., 2004; Belhassen and Zaidi, 2010), the
topic remains relatively unexplored. This study is
the first step of a larger exploration of somewhat un-
charted waters.

We hypothesise that it may be possible to com-
bine the desirable qualities of both algorithms by tak-
ing the underlying concepts and wrapping them in an
evolutionary framework — specifically a grammatical
evolution (GE) (O’Neill and Ryan, 1999) framework.
This design is attractive due to its symbiotic nature:
a GE grammar is used to generate human readable
decision tree like solutions and the evolutionary pro-
cess is applied to the task of optimising the resulting
cluster assignments — thus emulating both the deci-
sion making behaviour of DTs and the iterative oper-
ation of traditional clustering approaches. Not only
does GE produce human readable solutions, but it has
been shown (Azad and Ryan, 2014) that the paradigm
seems to be able to avoid bloated, over-complex ones.

While we can hypothesise that this hybrid ap-
proach might be a good idea, objective evaluation of
algorithm performance is required before concluding
that the resulting models are likely to be of any prac-
tical use. One way of accomplishing this is to com-
pare results with other unsupervised algorithms using
some common metric of cluster performance. How-
ever, it could be argued that without ground truth in-
formation any method of comparison is flawed. An-
other possible approach for evaluating the effective-
ness of the proposed method would be to apply it to
data about which something is already known, where
that knowledge is not used in the learning process —
merely to evaluate and compare performance after-
wards.

Considering our original objective, we were also
interested in learning what sort of performance gaps
we could expect between our unsupervised method
and, supervised and semi-supervised approaches us-
ing the same data. Thus, we choose to construct this
study such that it would be possible to compare the
performance and behaviour of the hybrid unsuper-
vised learner with another state of the art unsuper-
vised algorithm as well as with supervised and semi-
supervised learners on the same data. Rather than
using our original medical dataset at this point, we
chose to carry out this first study using controllable
synthetic data as outlined in section 4.2, with the in-
tention of returning to the medical dataset if these pre-
liminary experiments prove successful.

We set out to investigate the hypothesis that com-
bining ML concepts with GE might facilitate the de-
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velopment of a new hybrid algorithm with two impor-
tant properties: the ability to learn in an unsupervised
way, and the capability of producing human readable
results. However, due to the way in which we have
designed the experiments — so that meaningful eval-
uation of the proposed algorithm would be possible,
the resulting system delivers much more than initially
planned.

In summary, we propose a novel hybrid GE sys-
tem which incorporates ideas from two popular ML
techniques: decision tree learning which is often
applied to supervised tasks, and clustering methods
which are commonly used for unsupervised learning
tasks. The proposed system which we call GEML
is applied to supervised, unsupervised and semi-
supervised MCC problems. Its performance is com-
pared with several state of the art algorithms and is
shown to outperform its ML counterparts and to be
competitive with the best performing ML algorithm,
on the datasets studied.

In the remainder of this section we will briefly ex-
plain some of the concepts employed.

1.1 Decision Tree Learning

A decision tree is a hierarchical model that can be
used for decision-making. The tree is composed of
internal decision nodes and terminal leaf nodes. In
the case of classification for example, internal deci-
sion nodes represent attributes, whereas the leaf nodes
represent an assigned class label. Directed edges con-
nect the various nodes forming a hierarchical, tree-
like structure. Each outgoing edge from an internal
node corresponds to a value or a range of values of
the attribute represented by that particular node. Tree
construction is a filtering and refining process which
aims to gradually separate samples into the various
classes with possibly multiple routes through the de-
cision process for a particular class assignment.

1.2 Clustering

Clustering involves the categorisation of a set of sam-
ples into groups or subsets called clusters such that
samples allocated to the same cluster are similar in
some way. There are various types of clustering algo-
rithms capable of generating different types of clus-
ter arrangements, such as flat or hierarchical cluster-
ing. One of the best known clustering algorithms is
K-means clustering which works in an iterative fash-
ion by creating a number of centroids (aspirationally
cluster centres). The algorithm groups samples de-
pending on their proximity to these centres and then
measuring the distance between the data and the near-
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est centroids — K-means iteratively minimises the sum
of squared distances by changing the centroid in each
iteration and reassigning samples to possibly differ-
ent groups. Of the EC work in the existing literature
which combines GP or GE with unsupervised meth-
ods, K-means is the most popular of those used, as is
outlined in Section 2.

1.3 Unsupervised, Semi-supervised and
Supervised Learning

In simple terms, supervised, semi-supervised and un-
supervised learning methods are differentiated by the
amount of ground truth information that is available
to the learning system: in supervised learning sys-
tems the ‘answer’” which may, for example, be a target
variable or a class label is known to the system; semi-
supervised systems may have access to such informa-
tion for a limited number of samples or may involve
revalidation of the automated prediction with expert
knowledge; and unsupervised learners do not have
any ground truth information with which to guide the
learning process.

Although classification and clustering are con-
ceptually similar, in practice the techniques are usu-
ally used in fundamentally different ways: clustering
methods are generally applied to unsupervised tasks
and do not require either training data or ground truth
label information, whereas classification is usually a
supervised task which requires both. At a basic level
the goal of clustering is to group similar things to-
gether without reference to the name of the group or
what membership of a group represents, other than
the fact that the members are similar in some way,
whereas the objective of classification is to learn,
from examples, relationships in the data which facili-
tate the mapping of training instances to class labels,
such that when presented with a new unseen instance
the classification system may assign a class label to
that instance based on rules/relationships learned in
the training phase

2 PREVIOUS WORK

An in-depth review of the application of EAs to both
clustering methods and decision tree induction is be-
yond the scope of this paper. Here we have chosen to
focus on the most recent work and that which we de-
termined to be most relevant to the current study. For
a comprehensive survey of EAs applied to clustering,
the interested reader is directed to (Hruschka et al.,
2009), whereas a detailed review of EAs applied to

decision tree induction can be found in (Barros et al.,
2012).

Relative to the volume of existing research on su-
pervised learning in the field of Evolutionary Compu-
tation (EC), unsupervised and semi-supervised learn-
ing have received little attention. Of the existing
work, a significant proportion in the area of unsu-
pervised learning recommends the use of clustering
methods for feature selection (Kim et al., 2000; Mier-
swa and Wurst, 2006; Morita et al., 2003), and much
of this utilises a traditional K-means approach.

Clustering was used in a novel way in (Omran
et al., 2005) which proposed a Differential Evolu-
tion (DE) algorithm with built-in clustering function-
ality. They investigated its effectiveness on an image
classification task, and compared their approach with
several well known algorithms such as K-means — re-
porting statistically indistinct results.

Another interesting application of K-means was
proposed by (Kattan et al., 2010) who integrated it
into GP and used this hybrid approach for problem
decomposition — grouping fitness cases into subsets.
They applied their strategy to several symbolic regres-
sion problems and reported superior results to those
achieved using standard GP. They later developed a
similar approach (Kattan et al., 2015) for time series
prediction.

A different unsupervised GP approach was pro-
posed in (Neshatian and Zhang, 2009) where a novel
fitness function was used in feature selection for the
purpose of identifying redundant features. The au-
thors reported superior results when performance was
compared with several state of the art algorithms. GP
was again employed in (Fu et al., 2014) where it was
used to develop low level thin edge detectors. In
that work the authors demonstrated that edge detec-
tors trained on a single image (without ground truth)
could outperform a popular edge detector on the task
of detecting thin lines in unseen images.

With regard to multi-class classification problems,
there have been several interesting approaches us-
ing tree based GP including strategies for decom-
posing the task into multiple binary ones (Smart and
Zhang, 2005), treating MCC problems as regression
tasks (Castelli et al., 2013) and experimenting with
various thresholding schemes such as (Zhang and
Smart, 2004). Other interesting methods have been
proposed which utilise GP variants including multi
level GP (MLGP) (Wu and Banzhaf, 2011), Parallel
linear GP (Downey et al., 2012) and probability based
GP (Smart and Zhang, 2004) to name a few.

There have been several other evolutionary ap-
proaches to MCC including self-organising swarm
(SOSwarm) which was described in (O’Neill and
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Brabazon, 2006b). There, particle swarm optimisa-
tion (PSO) was used to generate a mapping which had
some similarities to a type of artificial neural network
known as a self organising map. SOSwarm was stud-
ied on several well known classification problems and
while the average performance seemed to degrade as
the number of classes increased — the best performing
solutions were competitive with the state of the art.

Clustering methods have also been applied to
MCC problems. A hybrid method which combined
a GA with local search and clustering was suggested
in (Pan et al., 2003), where it was applied to a multi-
class problem on gene expression data. The results
of that investigation showed that their method (HGA-
CLUS) delivered a competitive performance when
compared with K-means and several earlier GA ap-
proaches described in (Cowgill et al., 1999) and
(Maulik and Bandyopadhyay, 2000). GP was again
combined with K-means clustering for MCC in (Al-
Madi and Ludwig, 2013) where the researchers used
the K-means algorithm to cluster the GP program se-
mantics in order to determine the predicted class la-
bels.

DTs have previously been combined with GE
in (Deodhar and Motsinger-Reif, 2010). The algo-
rithm was applied to the binary classification task of
detecting gene-gene interactions in genetic associa-
tion studies. The researchers reported good results
when their GE with DT (GEDT) system was com-
pared with the C.45 DT algorithm. Our proposed
approach has some similarities to this work. How-
ever, that research focused on a supervised binary task
where attribute values were restricted to a common set
of 3 items.

Competitive results were also reported in (Munoz
et al., 2015) in which K-Means clustering was again
used with GP for MCC. There, clustering was com-
bined with a multigenic GP approach in which each
individual was composed of several solution parse
trees having a common root node.

Concerning DTs, (Barros et al., 2012) concluded
that good performance of EAs for decision tree induc-
tion in terms of predictive accuracy had been empiri-
cally established. They recommended that investiga-
tion of these algorithms on synthetic data should be
pursued and also the possibility of using evolution-
ary computation for the evolution of decision tree in-
duction algorithms. In this paper we address the first
of these recommendations. The candidate solutions
evolved by GE are computer programs which emu-
late decision trees, and these computer programs are
produced using a grammar template capable of gener-
ating a multitude of different solutions. Thus, it could
be argued that the proposed approach does, at least
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in some sense, also meet the second objective — the
evolution of DT induction algorithms.

The novel contributions of this study are the pro-
posal of a technique for unsupervised learning using
an EA where the evolved learning hypotheses are in
human readable form, and the extension of this to
the development of a hybrid GE framework which
can also be used for supervised and semi-supervised
learning. The new system which we call GEML
is successfully applied to the problem of multi-class
classification. This is a proof of concept investigation
and given the encouraging results, we anticipate that
this approach may be refined to produce even better
results on MCC problems but also modified and ex-
tended to combine other ML algorithms with GE and
also to tackle different tasks such as symbolic regres-
sion.

3 PROPOSED METHOD

In ML DTs often use the concept of information gain
to make branching decisions when constructing a de-
cision tree and the measure of information gain used
relies on knowledge of the ground truth labels. Thus,
it is not appropriate to use the same mechanism for
our semi-supervised and unsupervised methods. In-
stead, we make use of an if then else structure where
the if component may be used to test various condi-
tions pertaining to the data, whereby the learning sys-
tem has access to both the attribute values and also
to the variance of each attribute on the training data.
For the supervised learner it is acceptable to make
use of the ground truth information available in the
training data, and so we could, for example, use the
within class variance for each class. However, in this
initial investigation we chose to use the same gram-
mar for all tasks so that potential differences in be-
haviour and performance may be more easily under-
stood. Thus, by design our system does not currently
implement DTs according to a strict definition of the
algorithm, as using label information precludes unsu-
pervised learning.

3.1 Grammatical Evolution

Grammatical Evolution (GE) (O’Neill and Ryan,
1999) is a flexible EC paradigm which has several ad-
vantages over other evolutionary methods including
standard GP. In common with its traditional GP rel-
ative, GE involves the generation of candidate solu-
tions in the form of executable computer programs.
The difference is that GE does this using powerful
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grammars whereas GP operates with a much more
limited tool-set.

A key aspect of the GE approach is genotype

phenotype separation whereby the genotype is usu-
ally (but not necessarily) encoded as a vector of in-
teger codons, some or all of which are mapped to
production rules defined in a user specified gram-
mar (usually in Backus-Naur-Form). This mapping
results in a phenotype executable program (candidate
solution). GE facilitates focused search through the
encoding of domain knowledge into the grammar and
the separation of search and solution space such that
the search component is independent of the represen-
tation and may, in principle, be carried out using any
suitable algorithm — a genetic algorithm is often used
but other search algorithms such as PSO (O’Neill
et al., 2006) and DE (O’Neill and Brabazon, 2006a)
have also been used to good effect.
The role of the user-defined grammar is key to guid-
ing the evolutionary search towards desirable solu-
tions. The grammar is essentially a specification of
what can be evolved and it is up to the evolutionary
system to determine which of the many possible so-
lutions which can be generated using the specifica-
tion should be evolved (Ryan and O’Neill, 2002). A
simple change in a grammar may induce drastically
different behaviour. In this work we have specified a
grammar, shown in Figure 1, which facilitates the al-
location of data instances to clusters based on the re-
sults of applying simple ‘if then else’ decision rules.
Although the rules are simple, the grammar allows for
the construction of rich expressions which may be ca-
pable of representing both simple and complex rela-
tionships between attributes as seen in Figure 3.

3.2 Objective Functions

For each learning task: supervised, unsupervised
and semi-supervised, we employ a different objec-
tive function to drive evolutionary progress. In the
supervised case we use classification accuracy which
is simply the proportion of instances correctly clas-
sified by the system. Since this study uses balanced
data sets, we simply use the number of correct pre-
dictions to measure system performance. Accuracy
values range between 0 and 1 where 1 represents per-
fect classification. The system is configured with an
objective function designed to maximise fitness .

For the unsupervised task we have chosen to use a
metric of clustering performance known as a silhou-
ette co-efficient or silhouette score (SC) as the objec-
tive function. The SC is a metric which does not re-
quire knowledge of the ground truth which makes it
suitable for use in an unsupervised context. For each

<expr> ::=<label> if <cond> else <label>
| <label>if<cond>else<expr>

<label>if<cond>and<cond>else <expr>

<label>if<cond>or<cond>else<expr>

<expr> 1f <cond> else <expr>

<expr> | <label>

<label> ::= 0 | 1 | 2 | 3 | 4

<cond> ::= <attr><relop><const>
| <subExpr><relop><const>
| <subExpr><relop><subExpr>
| <var><relop><var>
| <attr><relop><attr>

<subExpr> ::= <attr><op><const>
| <attr><op><var>
| <attr><op><attr>

<op> =4 | - | %]/

<relop> ::= <=

<const> ::= <digit>.<digit>
| -<digit>.<digit>

<digit> ::=0 | 1 | 2 | 3 | 4
' 51611 71819

<attr> ::= x[0] | x[1] | x[2]

<var> =v[0] | v[1] | v[2]

Figure 1: Example grammar for five class problem with
three attributes (< attr >). The < var > entries represent
the variance in the training data across each attribute. The
’then if else’ format is designed to simplify the syntax re-
quired in a python environment — as the system evolves
python expressions. The division operation is protected in
the implementation.

data point two measures are calculated: a. the average
distance (according to some distance metric) between
it and every other point in the same cluster and b. the
mean distance between it an all of the points in the
nearest cluster that is not it’s own cluster.

The silhouette score over all points is calculated
according to the formula shown in equation 1. Our
system tries to maximise this value during the evolu-
tionary process. Note that this approach, which aims
at optimising the SC rather than cluster centroids, is
quite different from the other EC methods outlined in
section 2 where the K-means algorithm was generally
used for clustering tasks.

(b—a)/max(a,b) (1)

The resulting value ranges between —1 and 1 where a
negative value suggests that samples are in the wrong

87



ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

clusters, a value near O indicates that there are over-
lapping clusters and a score close to 1 means that clus-
ters are cohesive and well separated.

In order to calculate the silhouette scores it is first
necessary to choose an appropriate distance metric
from the many and varied options available in the
literature. In this work we have used cosine dis-
tance also known as cosine similarity as it is suitable
for determining the similarity between vectors of fea-
tures and obviates the need for data normalisation.
Also, we experimented with several metrics includ-
ing euclidean and mahalanobis distance before choos-
ing cosine distance — as its use resulted in the best
results over a range of synthetic classification prob-
lems. The results for cosine distance were better in
terms of classification accuracy when cluster assign-
ments were converted to class labels using a standard
approach.

Semi-supervised learning is suitable for classifi-
cation situations where some but not all ground truth
labels are available. It may be the case, for example,
that scarce or expensive human expertise is required
to determine the labels. In these cases, it is usu-
ally possible to improve unsupervised performance by
adding a small number of labelled examples to the
system. Although, our synthetic data is fully labelled,
we simulate partial labelling by only considering a
random subset of training data (20% of the full data
set) to be labelled; the rest of the data set is treated
as unlabelled. We compute prediction accuracy on
the labelled data and the silhouette score on the un-
labelled set. We then add the two measures to get a
final score and strive to maximise this score during
evolution.

To summarise, candidate solutions are generated
using a specification described in a grammar such as
the one shown in Figure 1, where the same grammar is
used for all of the GEML setups. Next, using the de-
cision rules defined in the grammar problem instances
are assigned to clusters as illustrated in Figure 2 and
then depending on whether the task is supervised, un-
supervised, or semi-supervised the system tries to op-
timise the classification accuracy, the silhouette score
or a combination of the two. The key point here, is
that the same grammar is used for each type of learn-
ing — only the objective function is different.

Figure 2 illustrates the expression tree of an example
solution for a five-class task. Similar to a DT, the in-
ternal nodes of the tree represent branching decision
points and the terminal nodes represent cluster assign-
ments.
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(X[2]<=-0.0) and ((x[1]*v[2])<=(x[0]/-0.6))

N

3 ((x[0/5.6)<=(x[2]/-7.7)) and (x[2]<=0.2)

(x[1]<=-0.0)

N

1 ((x[1]/v[0])¢=-0.2) and x[0]<=x[1]

N

(x[1]/0.8)<=(x[0}+0.9))

s

0

Figure 2: Example Expression Tree.

4 EXPERIMENTS

In this section we outline the construction of our
experiments including the parameters, datasets and
benchmarks used. We also detail the results of these
experiments together with the results achieved on
the same problems with our chosen benchmark algo-
rithms. Details of the naming convention for the vari-
ous experimental configurations are shown in Table 1.

4.1 Benchmark Algorithms

As we incorporate ideas from DT learning and clus-
tering methods into our hybrid GEML approach, it
is appropriate that we benchmark the proposed ap-
proach against Decision Trees (Breiman et al., 1984)
as a supervised method and against the K-means clus-
tering algorithm (Steinhaus, 1957) as an unsupervised
paradigm. For semi-supervised learning we compare
with a label propagation (LP) (Raghavan et al., 2007)
algorithm. The idea behind LP is similar to k-Nearest
Neighbours (k-NN) (Altman, 1992) and was origi-
nally proposed for detecting community structures in
networks.

We also compare with support vector ma-
chines (SVMs) (Boser et al., 1992) for supervised
learning as the method may provide a useful bench-
mark as it is known to achieve good results with bal-
anced datasets, which is the case here, and while
SVMs are inherently binary classifiers they can per-
form multi-class classification in various ways, most
commonly using a “one versus all” strategy.

For comparison purposes we choose simple classi-
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2 1f x[0]1*v[1]<=-0.2 and v[2]

else 0 if x| 2]/v[2]<— x[0]*-2.0 or
else 1 if x[0]*x[2]<=x[1]/x[0] and
1f x[2]/v[2]<=x[0]*2.9 or x[2]<=x[1

2]1<=v[1l] else 1 if (x[1]*v[0])<=(x[0]*-0.8)
x[2]<=x[1] else 1 if x[1]<=x[0]
x[1]/v[2]<=-0.3) else 2

] else 1 if x[0]<=-0.1 else 0

Figure 3: Example expression generated for a three class, three attribute classification task.

fication accuracy as a performance metric. It has been
empirically established in the GP literature that sim-
ple classification accuracy is not a reliable measure of
classification on unbalanced datasets (Bhowan et al.,
2012), and that other measures such as average ac-
curacy or Matthews Correlation Co-efficient might be
more appropriate especially if combined with a sam-
pling approach (Fitzgerald and Ryan, 2013). How-
ever, in this preliminary investigation, the classes are
balanced which allows us to consider simple classifi-
cation accuracy as a reasonable measure, particularly
as we want to be able to observe differences in perfor-
mance across the various levels of learning.

Table 1: Experimental Configurations.

Configuration  Explanation
GEML-SUP Supervised GEML
GEML-SEMI  Semi-Supervised
GEML-UN Unsupervised GEML
DT Decision Tree Learning
LP Label Propagation

KM K-means Clustering
SVM Support Vector Machine

We adopt a popular mechanism to determine which
predicted label represents which a priori class label:
the predicted class is mapped to the a priori class
which has the majority of instances assigned to it, e.g
for a binary task with 1000 training instances, if pre-
dicted class 1 has 333 members of ground truth class
1 assigned to it and 667 instances of class 0, then pre-
dicted class 1 is determined to represent the a priori
class 0. It is important to note that this method is used
to calculate the accuracy metric and used only for re-
porting and comparison purposes across all tasks and
methodologies. The measure (classification accuracy)
is of course used to drive the evolutionary process in
the supervised tasks, and applies to only a percent-
age of the training instances in the semi-supervised
case. In all cases, the same mapping from cluster as-
signment to class label determined during the training
phase also applies when evaluating performance on
test data.

For each of the GEML methods the evolved solu-
tions look something like the example shown in Fig-
ure 3 which is essentially a python expression that

can be evaluated for each training and each test in-
stance. The result of evaluating the expression on a
given instance is an integer which is converted into
first a cluster assignment and then a class label, using
the method already described. Although the objective
functions used to determine fitness and drive evolu-
tion differ according to the type of learning model as
detailed in section 3.2, we calculate the classification
accuracy for each unevaluated individual at each gen-
eration on training and test data. At no time is the test
data used in the learning process.

In each case, the algorithm was run fifty times us-
ing the same synthetic datasets and train/test splits as
the GEML experiments. A different random seed was
used for each run of the same algorithm and these
same random seeds were used for the corresponding
run of each algorithm. The popular scikit-learn (Pe-
dregosa et al., 2011) python library for machine learn-
ing was used for all of these ML experiments.

4.2 Datasets

The various algorithms were tested on several syn-
thetic multi-class datasets which were produced using
the scikit-learn library (Pedregosa et al., 2011) which
provides functionality for the generation of datasets
with the aid of various configurable parameters. For
this initial study we investigate balanced multi-class
problems of two, three, four and five classes each.
The library facilitates user control of the number, type
and nature of features selected for experiments. For
example, features can be informative, duplicate or re-
dundant. We have chosen to use informative features
only for the current work.

Given a problem configuration (number of
classes), for each run of each algorithm a dataset of
1000 instances was generated and then split into train-
ing and test sets of 700 and 300 instances respectively.
Identical random seeds were used for the correspond-
ing run for each configuration, such that the same
dataset was generated for each setup for a particular
run number.

As this is very much a proof of concept investi-
gation we have chosen to use synthetic datasets: we
generated a reasonable number of instances, without
added noise, and with few features, each of which is
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Table 2: Evolutionary Parameters.

Parameter Value

Population Size 500
Replacement Strategy Generational
Number of Generations 100
Crossover Probability 0.9
Mutation Probability 0.01

informative. Employing synthetic datasets allows us
to configure the data to have informative features such
that it is, as far as possible, amenable to being clus-
tered or classified. We have made these choices in an
effort to ensure that the data is not biased to favour any
particular algorithm or learning paradigm. For exam-
ple, DTs are known to over-fit and not generalise well
where there are a large number of features and few
instances.

We note also that the decision to use synthetic
datasets also delivers on the recommendation of (Bar-
ros et al., 2012) to use synthetic data for decision tree
induction, as described in section 2.

4.3 EC Parameters

Important parameters used in these experiments are
outlined in Table 2. Evolutionary search operators in
GE are applied at the genotypic level, and in this work
each individual’s genotype is a linear genome repre-
sented by a vector of integers. The mutation operator
operates by replacing a single integer with a new one
randomly generated within a predefined range. One
point crossover is used, whereby a single crossover
point is randomly and independently selected from
each of the two parents (that is, the two points are
likely to correspond to different locations) and two
new offspring are created by splicing parental seg-
ments together. In both cases, these operations take
place in the effective portion of the individual, i.e the
segment of the integer vector that was used in the
genotype to phenotype mapping process — sometimes
a complete phenotype is generated before requiring
the full integer vector.

4.4 Results

Results for average and best training and test accu-
racy can be seen in Table 3, where for convenience the
best result in each category is in bold text. For com-
parison purposes we are interested in comparing the
supervised methods with each other and the unsuper-
vised approaches with the other unsupervised meth-
ods etc. Thus we compare GEML-SUP with both DT
and SVM, GEML-UNS with KM and GEML-SEMI
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with LP. However, we are also interested in observing
the relative performances of the three different levels
of learning.

Looking first at the supervised approaches, we can
see that the SVM approach performs well across all of
the problems studied with regard to average classifica-
tion accuracy on both training and test data. Encour-
agingly, the GEML-SUP configuration is very com-
petitive with SVM on the first three problems and out-
performs DT on each of those tasks.

On the semi-supervised experiments GEML-
SEMI outperforms LP on all problems for both train-
ing and test data in terms of average classification ac-
curacy.

Finally, with regard to the unsupervised setups
GEML-UN outperforms KM for average accuracy on
training and test data on all problems.

In all cases, the performance of the various config-
urations degrades as the number of classes increases
which is not surprising as adding more classes in-
creases the difficulty of the problem to be solved.
Overall, the SVM algorithm suffered less from this
issue, which is again not surprising given that the im-
plementation used here (Pedregosa et al., 2011) solves
MCC problems using a binary decomposition strat-
egy.

Looking again at the results in Table 3, we note
that values for best overall training and test accuracy
on the binary and three class tasks for each of the
GEML methods are not competitive with the other ap-
proaches. For example, on the three class task, the av-
erage test accuracy for K-means is 0.74 whereas the
best result is 0.99 compared with GEML-UN which
has an average test accuracy of 0.75 and a best result
of 0.86 and the GEML-SUP which has an average test
accuracy of 0.92 and a best result of 0.95. The results
for each of the GEML setups show that the reported
standard deviation is lower than for the other algo-
rithms.

It is unclear to us at this stage whether this
phenomenon is associated associated with the GE
paradigm or related to the MCC problem or some-
thing else. However, it could be argued that the be-
haviour is not necessarily a bad thing, as having a
larger standard deviation with a higher extreme value
can also mean that the algorithm is unreliable. After
all, a good test set performance is only useful if it is
consistently achieved, not as an exceptional case.

Due to the stochastic nature of GE one might hy-
pothesise that there is a higher probability of many
individuals achieving good results across many runs
on the easier one and two class problems than on
the more difficult problems where individuals have to
learn to incorporate a larger number of class labels:
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due to the added complexity there are likely to be
fewer fit solutions early in the evolutionary process
and thus fewer opportunities to improve through the
application of genetic operators. One can easily imag-
ine that there could be significant variability across
runs depending on the quality of the initial population,
and the existence of fewer highly fit solutions reduces
the probability of truly excellent ones emerging.

Looking at the generalisation performance of each
method in terms of the variance component, we adopt
a simple measure whereby the variance error is simply
the difference in performance of the various learning
hypothesis between training and test data. In this re-
spect, of the algorithms studied only the LP approach
exhibits high variance. The various GEML methods
all produce good generalisation performance. This is
quite interesting as its close relation GP is known to
exhibit a low bias high variance behaviour (Keijzer
and Babovic, 2000). We can hypothesise that possi-
ble contributing factor to this contrast in behaviour
is due to the grammar used, even if it contains re-
cursive rules it is likely to constrain the size of the
evolved programs. (Azad and Ryan, 2014) demon-
strated empirically that while program size tends to
increase steadily during GP runs, the average size of
GE genomes remains roughly static after an initial pe-
riod of growth or shrinkage. In those experiments, GP
genomes were consistently larger than GE genomes
after only fifty generations. It may be the case that
these effects are preventing the evolved models from
becoming over complex. It would be informative to
apply the system to some regression problems where
the required grammar would be fundamentally differ-
ent, to see if the lack of over-fitting observed in the
current experiments would also be seen there. The re-
cent results shown in (Azad and Ryan, 2014) would
suggest that GE does not over-fit on those problems
either.

If we analyse the difference in performance be-
tween the various supervised, semi-supervised and
unsupervised algorithms, it is not surprising that in
all cases the supervised algorithms produced the best
results and that the semi-supervised algorithms per-
formed better than the unsupervised ones. Of course,
the unsupervised and semi-supervised methods are
not usually evaluated in the same way as supervised
classification approaches: using accuracy as a perfor-
mance metric. We have chosen to do so here as a con-
venient and practical way to gain some insight into the
likely relative performance of our hybrid technique
when it is applied to the three learning approaches.

The results suggest that while the performance of
all of the algorithms deteriorates as the number of
classes increases, this effect is even more evident for

Table 3: Average and Best Classification Accuracy on
Training and Test Data.
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GEML-UN  0.90 0.01 0.92 0.91 0.01 0.93
KM 0.84 0.08 0.99 0.84 0.08 0.99
GEML-SUP 0.93 0.01 0.94 0.92 0.02 0.95
DT 0.87 0.04 0.97 0.88 0.05 0.99
SVM 0.92 0.03 0.98 0.92 0.04 0.99
e« GEML-SEMI 0.88 0.04 0.94 0.87 0.04 0.92
CLp 0.83 0.05 0.96 0.79 0.08 0.93
GEML-UN  0.76 0.04 0.87 0.75 0.04 0.86
KM 0.75 0.07 0.91 0.74 0.08 0.99
GEML-SUP 0.86 0.01 0.88 0.86 0.02 0.89
DT 0.82 0.04 0.94 0.83 0.04 0.93
SVM 0.88 0.03 0.94 0.88 0.03 0.96
<+ GEML-SEMI 0.78 0.05 0.84 0.78 0.05 0.85
CLp 0.77 0.05 0.88 0.71 0.07 0.85
GEML-UN  0.71 0.04 0.79 0.71 0.04 0.81
KM 0.65 0.06 0.83 0.67 0.07 0.84
GEML-SUP 0.77 0.06 0.85 0.75 0.04 0.83
DT 0.77 0.04 0.88 0.79 0.05 0.89
SVM 0.85 0.03 0.93 0.86 0.03 0.94
w; GEML-SEMI 0.72 0.04 0.76 0.75 0.06 0.82
CLp 0.71 0.05 0.84 0.65 0.07 0.83
GEML-UN  0.66 0.06 0.77 0.69 0.07 0 .82
KM 0.63 0.05 0.78 0.63 0.06 0.79

the unsupervised and semi-supervised methods where
the performance of GEML-UN drops from 90% on
the binary task to 66% for the five class problem, al-
though this is still better than the corresponding LP al-
gorithm. Again, we can hypothesis that while adopt-
ing a binary decomposition approach may seem at-
tractive, this would be very challenging in an unsu-
pervised context. However, there may be some scope
for the strategy in the semi-supervised paradigm.

We carried out tests for statistical significance on the
test results using the non-parametric Mann-Whitney
U-Test. This revealed that statistical significance of
results sometimes varied depending on the problem.
Comparing SUP against SVM any differences were
not significant for the two and three class problems
but for the four and five 5 ones SVM is significantly
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better with 99% confidence. Comparing SUP against
DT, the differences are significant at the 95%, 99%
and 99% confidence levels for the two, three and
four class problems respectively (SUP is better), but
not significant for the five class ones. For the semi-
supervised tasks, any differences are not significant
for the binary task but the GEML-SEMI results are
significantly better, at the 99% confidence level for
the other three problems. Finally, the analysis com-
paring GEML-UNS with K-Means appears similar,
where GEML-UNS is significantly better on the two,
four and five class tasks having confidence levels of
99%, 95% and 95% respectively, and with a p-value
of 0.58 there was no significant difference of the three
class task.

4.5 Discussion

This is a simple study into the potential of the GEML
system to perform effectively in unsupervised and
semi-supervised tasks. Although the results are quite
encouraging we feel that there is potential for im-
provement in the existing system. The obvious place
to look for improvement is the all-important grammar.
Our next steps will be to examine this to see how we
can make it more effective. As a first move in that di-
rection we will analyse the best individuals from our
existing runs to determine which rules are contribut-
ing most and which are not performing. We will then
modify the system applying this new information and
use it to tackle a large, potentially noisy real-world
medical dataset.

In the results section of this paper we have com-
pared with several multi-class classification algo-
rithms, and the reported results demonstrate that the
most successful supervised technique is SVM. How-
ever, it is perhaps fair to point out that SVMs are
not inherently multi-class, rather the algorithm usu-
ally (but not always) implements multi-class prob-
lems in either a “one versus one” or a “one versus
all” approach, which in fact was how SVMs were
implemented in this study. Thus, the performance
of GEML and SVMs are, in one sense, not directly
comparable. Given that the average performance of
GEML on the two and three class problems is very
competitive with that of the SVM, it is reasonable
to hypothesise that equivalent performance to SVMs
which use binary decomposition, might be expected
on problems with greater numbers of classes if the
GEML method were adapted to also perform multi-
classification by way of binary decomposition. It
may also be worth re-iterating that unlike SVMs the
GEML setups all provide human readable solutions,
which is an important consideration in many problem
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domains.

We have seen in this investigation that the GEML
system which incorporates ideas from decision tree
and cluster based learning has produced some statis-
tically significant results. As GE is such a flexible
paradigm there is no reason why alternative ML al-
gorithms could not be incorporated instead. Once the
candidate ML algorithm has some aspect which re-
quires optimisation it should be suitable for an evolu-
tionary approach.

Memetic algorithms (MA) are one of the inter-
esting research topics in evolutionary computation at
present, where the term MA is generally used to de-
scribe a synergistic algorithm which combines evo-
lutionary approaches with population-based methods
that use local search techniques or facilitate separate
individual learning for problem search. It has been
shown recently in the literature (Fitzgerald and Ryan,
2014) that individualised techniques can be effective
when applied to GP generally. It may be illuminating
to examine the effects of similar techniques in GE.

S CONCLUSIONS

In this paper we introduced a prototypical, novel GE
system which we call GEML which incorporates ML
techniques commonly used for supervised and unsu-
pervised learning into a flexible evolutionary frame-
work which although designed primarily to perform
unsupervised learning while providing human read-
able results, can also be used with minor modification
for supervised and semi-supervised learning. We pro-
vided a brief description of important existing work
in the areas of unsupervised learning and multi-class
classification in both GP and GE and we briefly out-
lined how our novel approach may contribute to the
existing literature. Following this, we described our
algorithm in some detail together with some neces-
sary background information about GE and other rel-
evant concepts. Next, we described a set of experi-
ments undertaken using GEML together with several
other state of the art comparative ML algorithms. We
presented and discussed the results of these experi-
ments noting the promising performance of the new
system which delivered competitive, statistically sig-
nificant accuracy and good generalisation on all of the
problems studied. Finally, we ended by suggesting
some possible improvements to the existing system
as well as proposing some potentially interesting new
directions for GEML.
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