REFERENCES 
Salton, G., Wong, A., Yang, C. S. (1975). A vector space 
model for automatic indexing. Communications of the 
ACM, 18(11), 613-620. 
Carpineto, C., Romano, G. (2012). A survey of automatic 
query expansion in information retrieval. ACM 
Computing Surveys (CSUR), 44(1), 1.  
Stokoe, C., Oakes, M. P., Tait, J. (2003). Word sense 
disambiguation in information retrieval revisited. In 
Proceedings of the 26th annual international ACM 
SIGIR conference on Research and development in 
information retrieval (pp. 159-166). ACM.  
Mangold, C. (2007). A survey and classification of 
semantic search approaches. International Journal of 
Metadata, Semantics and Ontologies, 2(1), 23-34. 
Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, 
D., Kalyanpur, A., Welty, C. et al. (2010). Building 
Watson: An overview of the DeepQA project. AI 
magazine, 31(3), 59-79. 
Šveikauskienė, D., Telksnys, L. (2014). Accuracy of the 
Parsing of Lithuanian Simple Sentences. Information 
Technology and Control, 43(4), 402-413. 
Kiryakov, A., Popov, B., Terziev, I., Manov, D., 
Ognyanoff, D. (2004). Semantic annotation, indexing, 
and retrieval. Web Semantics: Science, Services and 
Agents on the World Wide Web, 2(1), 49-79. 
Castells, P., Fernandez, M., and Vallet, D. (2007). An 
adaptation of the vector-space model for ontology-
based information retrieval. Knowledge and Data 
Engineering, IEEE Transactions on, 19(2), 261-272.  
Fernández, M., Cantador, I., López, V., Vallet, D., 
Castells, P., Motta, E. (2011). Semantically enhanced 
Information Retrieval: an ontology-based approach. 
Web Semantics: Science, Services and Agents on the 
World Wide Web, 9(4), 434-452.  
Lopez, V., Uren, V., Sabou, M. R., Motta, E. (2009). 
Cross ontology query answering on the semantic web: 
an initial evaluation. In Proceedings of the fifth 
international conference on Knowledge capture  (pp. 
17-24). ACM. 
Zinkevičius, V. (2000). Lemuoklis–morfologinei analizei. 
Darbai ir dienos, 24, 245-274. 
Šveikauskienė, D. (2005). Formal description of the 
syntax of the Lithuanian language. Information 
Technologies and Control, 34(3). 
Kapociute-Dzikiene, J., Nivre, J., Krupavicius, A. (2013). 
Lithuanian Dependency Parsing with Rich 
Morphological Features. In Fourth Workshop on 
Statistical Parsing of Morphologically Rich 
Languages (p. 12). 
Krilavičius, T., Medelis, Ž., Kapočiūtė-Dzikienė, J., 
Žalandauskas, T. (2012). News Media Analysis Using 
Focused Crawl and Natural Language Processing: 
Case of Lithuanian News Websites. In Information 
and Software Technologies (pp. 48-61). Springer 
Berlin Heidelberg. 
Amardeilh, F. (2008). Semantic annotation and ontology 
population. Semantic Web Engineering in the 
Knowledge Society, 424-p. 
Navigli, R., Ponzetto, S. P. (2012). BabelNet: The 
automatic construction, evaluation and application of a 
wide-coverage multilingual semantic network. 
Artificial Intelligence, 193, 217-250. 
OMG, 2008. Semantics of Business Vocabulary and 
Business Rules (SBVR). Version 1.0. December, 
2008, OMG Document Number: formal/2008-01-02. 
Goedertier, S., Vanthienen, J. (2008). A Vocabulary and 
Execution Model for Declarative Service 
Orchestration.  Business Process Management 
Workshops, LNCS, Vol. 4928, 496–501. 
Bodenstaff, L., Ceravolo, P., Ernesto Damiani, R., 
Fugazza, C., Reed, K., Wombacher, A. (2008). 
Representing and Validating Digital Business 
Processes. Web Information Systems and 
Technologies, LNBIP, Vol. 8(1), 19–32. 
Karpovič, J., Kriščiūnienė, G., Ablonskis, L., Nemuraitė, 
L. (2014). The Comprehensive Mapping of Semantics 
of Business Vocabulary and Business Rules (SBVR) 
to OWL 2 Ontologies. Information Technology and 
Control, 43(3), 289-302. 
Sukys, A., Nemuraite, L., Paradauskas, B., Sinkevicius, E. 
(2012). Transformation framework for SBVR based 
semantic queries in business information systems. In 
BUSTECH 2012, The Second International 
Conference on Business Intelligence and Technology 
(pp. 19-24). 
Sukys, A., Nemuraite, L., Paradauskas, B. (2012). 
Representing and transforming SBVR question 
patterns into SPARQL. In Information and Software 
Technologies (pp. 436-451). 
Bernotaityte, G., Nemuraite, L., Butkiene, R., 
Paradauskas, B. (2013). Developing SBVR 
vocabularies and business rules from OWL2 
ontologies. In Information and Software Technologies 
(pp. 134-145). 
Shekarpour, S., Marx, E., Ngomo, A. C. N., & Auer, S. 
(2015). Sina: Semantic interpretation of user queries 
for question answering on interlinked data. Web 
Semantics: Science, Services and Agents on the World 
Wide Web, 30, 39-51. 
Yao, X., Van Durme, B. (2014). Information extraction 
over structured data: Question answering with 
freebase. In Proceedings of ACL.