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Abstract: Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) are well known optimization tools. PSO 
advantage is its capability for fast convergence to the promising solutions. On the other hand GAs are able 
to process schemata thanks to the use of crossover operator. However, both methods have also their 
drawbacks – PSO may fall into the trap of preconvergence, while GA capability of fast finding locally 
optimal (or close to optimal) solutions seems low when compared to PSO. Relatively new, important 
research direction in the field of Evolutionary Algorithms is linkage learning. The linkage learning methods 
gather the information about possible gene dependencies and use it to improve their effectiveness. Recently, 
the linkage learning evolutionary methods were shown to be effective tools to solve both: theoretical and 
practical problems. Therefore, this paper proposes a PSO and GA hybrid, improved by the linkage learning 
mechanisms, dedicated to solve binary problems. The proposed method tries to combine the GA schema 
processing ability, linkage information processing and uses fast PSO convergence to quickly improve the 
quality of already known solutions. 

1 INTRODUCTION 

Particle Swarm Optimization (PSO), proposed in 
(Eberhart and Kennedy, 1995) is a popular 
optimization technique, commonly used as a base 
for proposals of methods designed to solve hard 
computational problems (Baek et al., 2015; Liu 
2015; Lim and Isa 2014; Moubayed et al., 2014; Xua 
et al. 2015). Usually, the problems solved by PSO-
based methods use the floating-point problem 
encoding. One of the PSO advantages is its 
capability of reaching fast convergence speed. For 
instance, in (Baek et al. 2015; Lim and Isa 2014; Liu 
2015; Moubayed, et al. 2014) a stop condition is in 
range of 3100 up to 4.5 *105 fitness function 
evaluations (FFE) and is low when compared to 
GAs (Kwasnicka et al., 2015). A detailed analysis of 
PSO convergence speed and swarm diversity 
preservation can be found in (Bergh 2010). On the 
other hand the classical PSO analyses the 
dependencies between particles in the topological 
way – no schemata or Building Blocks (BB) 
(Goldberg et al., 1993) are neither found nor 
processed. The lack of BB processing and exchange 

mechanisms might limit the genotype-based method 
capability of solving hard discrete problems 
(Thierens 1999). Therefore the possible application 
of PSO-based methods to solve hard combinatorial 
problems like the Travelling Salesman Problem 
(TSP) (Rani and Vikas 2014), or the network flow 
optimization problems (Przewozniczek et al., 2015; 
Rani and Vikas 2014; Walkowiak et al., 2013) 
seems to be limited. 

The Genetic Algorithm (GA) is a base of many 
methods designed to solve hard optimization 
problems of discrete nature (Andrade at al., 2015; 
Przewozniczek et al. 2015; Walkowiak et al., 2013). 
Even the simple Genetic Algorithm (sGA) is able to 
find, populate and exchange the BBs (Thierens 
1999). The computational problem, when encoded 
with the use of genotype, is, at least partially, built 
from the groups of genes highly dependent on each 
other. Finding BBs and exchanging them between 
individuals opens the way for reaching the 
breakthrough and finding the solutions of a very 
good quality (Watson et. al. 1998). On the base of 
the BB theory, the linkage learning techniques were 
identified and their classification was proposed 
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(Chen et al. 2007b). Linkage learning methods 
gather the information about possible dependencies 
between genes and use this information to improve 
their effectiveness. Linkage learning methods have 
proven to be effective against both: theoretical 
(Correa and Shapiro 2006; Kwasnicka and 
Przewozniczek, 2011; Laumanns and Ocenasek 
2002; Pelikan et. al 2006;) and practical problems 
(Przewozniczek et al. 2015; Walkowiak et al. 2013).  

The above description has lead us to conclusion 
that a method characterized by PSO’s fast 
convergence speed (in which the PSO is used as a 
kind of clever local optimizer) and GA’s capability 
of BBs exchange enhanced by linkage learning 
techniques has a potential to be an effective one. 
Therefore this paper proposes a Multi-Swarm 
Particle Optimization with Crossing (MSPOCk). In 
the proposed method, PSO is used as an intelligent 
semi-local optimization tool (thanks to its fast 
convergence capability) and the GA crossover is 
used to exchange BBs and is enhanced by the 
linkage learning mechanism. The proposed method 
may be especially useful for solving practical 
problems, where mixed (discrete and floating point) 
problem encoding is used (Walkowiak et al. 2013; 
Przewozniczek et al. 2015). In such problems one 
gene is represented by two values: discrete one and 
floating point one. The method that is both: PSO- 
and GA-based may turn out to be an effective tool 
for solving such problems. 

This paper is organized as follows. In section 2 
the related work is presented. Section 3 contains the 
detailed description of the proposed MSPOCk 
method. The experiment setup, results of the 
computational tests and detailed experiment results 
analysis are placed in section 4. Finally, the last 
section concludes this work. 

2 RELATED WORK 

Since the paper considers a number of different 
Evolutionary Computation fields this section is 
divided into the following subsections. In first, the 
description of linkage learning techniques is 
presented. Then, PSO propositions for solving the 
discrete problems, available in the literature, are 
presented. Third subsection presents the already 
known GA and PSO hybrids, Finally, the last 
subsection presents multi-population PSOs.  

2.1 Linkage Learning Techniques 

The  classification  of  linkage learning methods was  

proposed in (Chen et al. 2007b). The classification 
concerns different method features. In order to 
distinguish a bad linkage from a good one, method 
may use only the fitness function (unimetric 
approach) (Kwasnicka and Przewozniczek 2011; 
Przewozniczek et al. 2015; Walkowiak et al. 2013). 
If in addition to fitness function, the method uses 
additional measures then such approach is called 
multimetric.  

Linkage information may be represented in two 
different ways: virtual or physical. If the method 
uses matrices, graphs, gene patterns (Kwasnicka and 
Przewozniczek 2011) to represent linkage then the 
virtual way is used. If linkage is represented as the 
location of two or more genes in the chromosome 
(the closer the genes are in the chromosome the 
more dependent they are) then the linkage is 
represented in the physical way. The good example 
of physical linkage representation is the messy 
coding (Goldberg et. al 1993; Kwasnicka and 
Przewozniczek 2011; Przewozniczek et al. 2015; 
Walkowiak et al. 2013), where genes may have any 
position in the chromosome. Finally, linkage 
information may be stored in some central database 
or be distributed in a genetic-linkage model manner. 
Some methods, like Multi Population Pattern 
Searching Algorithm (MuPPetS) (Kwasnicka and 
Przewozniczek 2011), may be assigned more than 
one value to one linkage classification category. For 
example MuPPetS use both possible linkage 
representation approaches and both linkage storage 
ways. 

Usually, the linkage information is used by the 
crossover operator. In this group the GA methods 
may be found like MuPPetS (Kwasnicka and 
Przewozniczek 2011, Przewozniczek et al. 2015, 
Walkowiak et al. 2013) or DSMGA (Fan et al.). 
Recently, an interesting study proposing the Hybrid 
Linkage Crossover (HLX) operator and 
incorporating it into the Differential Evolution was 
presented (Cai and Wang, 2015). 

It is worth noting that linkage learning methods 
are successful in solving hard computational 
problems of both kinds: theoretical like CEC 2005 
(Cai and Wang, 2015) or deceptive functions 
concatenations (Correa  and Shapiro 2006; 
Kwasnicka and Przewozniczek, 2011; Pelikan et. al 
2006;) and large-scale practical problems 
(Walkowiak et al. 2013; Przewozniczek et al. 2015).  

2.2 Particle Swarm Optimization in 
Solving Discrete Problems 

To  our  best  knowledge,  the  first  PSO for discrete  
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problem optimization was proposed in (Kennedy 
and Eberhart 1997), this method will be called 
PSO_V1. Due to the problem nature, the particle 
speed is interpreted differently than in a classical 
PSO – it describes the probability that the particle 
position in each dimension will be assigned the 
value of 0 or 1. To calculate the particle position 
value on the base of particle speed, the sigmoid 
function presented in equation (1) is used. 
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The use of sigmoid function to translate the particle 
speed into the particle position allows for using the 
same particle speed computation as in classical PSO. 
To omit the problem of too high particle speeds, the 
speed limit is used. Here, as in (Bergh 2010), the 
speed limit is set on <-4; 4>. Finally, the ith particle 
position in jth dimension is calculated as follows. 
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where r is a random number from [0;1] uniform 
distribution. It is randomly generated each time, the 
particle position at each dimension is generated. 

The drawback of PSO_V1 is the unintuitive 
speed interpretation. Therefore the PSO_V2 
(Khanesar et al. 2007) was proposed. PSO_V2 is 
another PSO-based method for discrete (binary) 
problem solving. In PSO_V2 two particle speeds are 
used: the first one describes the probability to 
change the position value from 0 to 1, while the 
second is opposite. The speeds are defined as 
follows. 
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where vi,j is the ith particle speed in jth dimension, t 
is the iteration number, λ is the inertia weight, cp and 
cg are positive constants, rp and rg are random 
number from [0;1] uniform distribution, xi,j is the ith 
particle position in jth dimension, xi,j

best and gj
best are 

particle and global swarm optima found that far. 

2.3 Genetic Algorithm and Particle 
Swarm Optimization Hybrids 

The GA and PSO work in different ways and have 
different advantages and disadvantages. These 
differences make them good candidates for 
hybridization. Some PSO and GA hybrids were 
already proposed (Chen et al. 2007; Devicharan and 
Mohan 2004, Lovbjerg et al. 2001). In (Chen et al. 
2007) the combination of crossover and selection 
operator, PSO mechanisms and the linkage learning 
are proposed. At the beginning of the method, the 
PSO proposed in (Mu et al. 2009) is used. Then, the 
groups of dependent genes are generated randomly. 
For example the randomly generated gene group 
may contain gene positions 2, 5 and 6 of 10-bit 
problem. As long as the average population fitness 
improves fast enough, the dependent gene groups 
remain, otherwise they are reinitialized. Note that 
such linkage learning mechanism is primitive and 
may occur ineffective. 

2.4 Particle Swarm Optimization as a 
Multi-Population Method 

Similarly to other evolutionary methods PSO may be 
modified to become a multi-population method. The 
good example may be found in (Chang, 2015), 
where PSO’s original single swarm is divided into a 
number of subswarms. Such a multi-swarm PSO is 
used to solve multimodal problems. However, the 
proposed method does not incorporate any 
subswarm communication. A more evolved multi-
swarm PSO was presented in (Dahzi et al. 2008). 
After a certain number of generations, the 
neighbouring subswarms exchange their globally 
best positions found that far. The Multi-Swarm 
Cooperative Particle Swarm Optimizer (MCPSO) 
was presented in (Niu et al. 2007). In MCPSO the 
subswarms are not equal. One of them is the master 
swarm, while the other are called slaves. The slave 
swarms are executed independently, their role is to 
preserve the particles diversity and support the 
master swarm with knowledge they are able to 
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gather. Master swarm use its own knowledge and the 
information it is able to possess from slave swarms 
to improve the overall method effectiveness. 

3 THE PROPOSED HYBRID 

As stated in section 2.3, the GA and PSO hybrid 
proposed in (Chen et al. 2007) may be easily 
adjusted to solve binary problems. It is enough to 
exchange the standard PSO from (Mu et al. 2009) 
for PSO_V2. However, such a hybrid will have a 
significant drawback. Since all the particles know 
the best solution found by a method that far it is 
likely that many particles will converge to this 
solution. Therefore, in this section, a new GA and 
PSO hybrid improved by linkage learning 
mechanisms is proposed. In the proposed Multi-
Swarm Particle Optimization with Crossing 
(MSPOCk), PSO_V2 is used only as fast, quasi local 
optimizer. From this point of view, the very fast 
PSO convergence is a positive feature (even if it 
leads directly to preconvergence). In order avoid the 
preconvergence, a number of PSO swarms are 
executed separately and in parallel. These swarms 
should converge to different solution space parts. In 
order to exchange the information between the best 
solutions found by the coevolving swarms, the 
dedicated crossover operator is used and enforced 
with linkage learning. If some of the subswarms start 
to explore the same or similar solution space regions 
then only one of these subswarms is left unchanged, 
the rest is reinitialized. Note that such a way of 
preserving the population diversity is not typical for 
PSO-based methods. The usual way is to change the 
population topology from global best, to local best 
(Kennedy and Mendes 2006). In the MSPOCk 
method the global best topology is used but only 
within single subswarm. 

3.1 General Method Overview 

The general MSPOCk method overview, for P 
particle subpopulations is presented in Figure 1. 
The population initialization is done randomly for all 
the particles. Before execution of PSO for each 
subswarm, the check if subswarms are not too 
similar is done. If some subswarms explore the same 
or very similar solution space parts only one of them 
is left, the other are reinitialized in order to give 
them a chance to explore different solution space 
parts. This operation preserves population diversity. 

In order  to  choose  which  subswarms should be  
reinitialized,     the     similarity    measure    of    two  

subswarms is defined and presented in equation (5). 
 

t=0; 
InitializePopulation(); 
While(!StopCondition) 
Begin 
  ReinitializeSimilarSubswarms(); 
  for(int p = 0; p < P; p++) 
    Run PSO_V2 for pth subswarm; 
  UpdateLinkageInformation(); 
  CrossParticles(); 
  t = t+1; 
End of while; 

Figure 1: MSPOCk pseudocode. 
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where Gx,Gy are xth and yth subswarms respectively, 
and the gx,j

best, gy,j
best, are the jth dimension values of 

the best solution found by xth and yth subswarm 
respectively. 

The similarity check is done for all possible 
subswarm pairs. If any two subswarms are more 
similar than a user defined value D then the 
subswarm with lower gp

best value is reinitialized.  

3.2 New Particle Population Creation 
on the Base of Crossover 

In the particle creation phase, new particles, created 
by crossover operation, replace the old ones. The 
parents are chosen randomly with equal probability 
from k best individuals of each subswarm. Note, that 
except the incorporation of elitism, such a procedure 
is close to the tournament selection idea. Such 
method construction helps to preserve the population 
diversity. This feature is also enforced by the 
previously described subswarm reinitialization 
procedure. 

Before crossing, the linkage information is 
updated. If this operation is done for the first time 
every gene is randomly assigned to one of the two 
gene groups: group A or group B. If the linkage 
information update is done later then the current 
gene groups are preserved, if the average population 
fitness has increased. Otherwise the gene groups are 
reinitialized.  

When two parents are chosen the crossover 
operator is used to generate offspring. The crossover 
operator exchange genes marked by the current gene 
exchange pattern. To create one offspring genes 
from group A are taken from parent A and genes 
from group B are taken from parent B. For example, 
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if the genotypes of parents A and B are: 111000110, 
010101011, and the gene exchange pattern is 
AAABBBAAB then the offspring genotype will be: 
111 101 11 1. After crossing, for each subswarm, the 
xi

best and gp
best are reinitialized with all the previous 

history of found solutions cleaned. The particles 
speeds are cleaned as well and are randomly 
reinitialized. 

Note that such linkage generation procedure is 
similar to (Chen et al. 2007) and is still quite 
primitive. Nevertheless it removes the gene order 
dependency of single point crossover and allows for 
significant method performance improvement if 
good quality gene exchange pattern was created. 

3.3 Proposed Method Summary 

The proposed MSPOCk method is a multi- 
population method which uses one of the main 
weaknesses of PSO concept, namely the 
preconvergence, as an advantage. The crossover 
operator is used to transmit the genetic information 
between fully separated and coevolving subswarms. 
The mechanism of subswarm reinitialization 
introduces the idea of global mutation into the 
method. 

The MSPOCk method uses simple, but still 
effective, linkage learning mechanisms to reinforce 
the quality of crossover operator. The linkage 
information is stored in a centralized way. All 
methods considered here use unimetric way to 
distinguish the good and bad linkage as it is based 
only on fitness value. 

It is worth noting that MSPOCk is completely 
different to other multi-swarm PSOs presented in 
section 2.4. First of all it incorporates a direct data 
exchange between particles by the use of crossover 
operator. Second, it uses linkage learning to improve 
the crossover quality. Third, it reinitializes 
subswarms if they get too close to each other. 
Finally, the possible PSO preconvergence is used as 
advantage, not a drawback. 

4 THE RESULTS 

In this section the results of the performed 
experiments are presented. This section is organized 
as follows. First, the test problems based on 
deceptive functions concatenations are presented 
(Deb and Goldberg, 1992). In the second subsection 
the tuning procedure and its results for all the 
competing methods are presented. The third 
subsection describes and discusses the main results. 

The competing methods are: PSO_V1, PSO_V2, 
GA+PSO (GA and PSO hybrid from (Chen et al. 
2007) with PSO_V2 used) and MSPOCk. All 
methods were coded in C++ in Qt 5.1.1 (MSCV 
2010, 32-bit). The complete sourcecodes, results and 
summaries may be downloaded from: 
http://www.mp2.pl/download/ai/20150617_mspock.
zip. All the test runs were executed on Intel Core i7-
3632QM machine with 64-bit Windows 7 on board. 
Each method was executed 5 times for each test 
case. In order to make the results reliable, all the 
methods shared the parts of code whenever it was 
possible and all experiments were executed in clean 
system environment with no other resource 
consuming processes running. 

4.1 The Deceptive Functions 
Concatenations 

In the performed experiments the deceptive 
functions concatenations were used as a test 
problems. The deceptive functions were proposed in 
(Deb and Goldberg, 1992) and are a common test 
tool for methods that use the binary coding. The 
deceptive function value is based on its unitation. 
The unitation of a binary string is a number of ‘1’s 
in the string. The function value increase as its 
unitation is decreasing, but the function value is 
optimal only for the maximal unitation. Therefore, 
the optimization methods are often misled to the 
suboptimal solutions characterized with low 
unitation. 

The concatenations of deceptive functions are 
hard to solve for any method that does not have 
mechanisms based on the prior knowledge about 
deceptive function nature. Usually, the test cases are 
just concatenation of identical order-3 up to order-5 
deceptive functions. Here, the test cases used, are 
more diverse in order to better imitate the real life 
problems. In other words – it seems doubtful that a 
real life problem will be built from the identical 
subproblems. It seems also reasonable that a real life 
problem may contain a part that is easy to solve for 
any GA-based method (Kwasnicka and 
Przewozniczek). Therefore the test cases are the 
concatenation of four different deceptive functions, 
presented in Table 1 and the tail function given in 
equation (6). 

luxftail /)( = ,  (6)

where u is the argument unitation, and l is a bit 
number. 
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Table 1: Deceptive functions used for tests. 

u 3a 3b 5a 5b 
0 0.900 9.000 0.900 9.000 
1 0.45 4.500 0.675 6.750 
2 0.000 0.000 0.450 4.500 
3 1.000 10.000 0.225 2.250 
4 N/A N/A 0.000 0.000 
5 N/A N/A 1.000 10.000 

The concatenations of the functions presented above 
were made in four different versions: flat, flat+tail, 
rough, rough+tail. The flat test cases were built 
from deceptive functions with the same maximum 
value (only 3a and 5a functions), while rough are the 
concatenation of functions with different maximum. 
In addition, to some of the test cases, the tail 
function was added to imitate the fact that some part 
of the real life problem may be fairly easy to solve. 
The list of used test cases is given in Table 2. 

Table 2: The test cases used in the experiments. 

Deceptive 
functions 
total len. 
(order of 
functions 

used) 

Version 
Deceptive 

function number 
Tail 

length 
3a 3b 5a 5b 

30 
(3 and 5) 

Flat 5 0 3 0 0 
Flat+tail 5 0 3 0 30 
Rough 3 2 2 1 0 
Rough+Tail 3 2 2 1 30 

30 (5) 

Flat 0 0 6 0 0 
Flat+tail 0 0 6 0 30 
Rough 0 0 3 3 0 
Rough+Tail 0 0 3 3 30 

50 
(3 and 5) 

Flat 10 0 4 0 0 
Flat+tail 10 0 4 0 50 
Rough 5 5 2 2 0 
Rough+Tail 5 5 2 2 50 

50(5) 

Flat 0 0 10 0 0 
Flat+tail 0 0 10 0 50 
Rough 0 0 5 5 0 
Rough+Tail 0 0 5 5 50 

150 
(3 and 5) 

Flat 30 0 12 0 0 
Flat+tail 30 0 12 0 150 
Rough 15 15 6 6 0 
Rough+Tail 15 15 6 6 150 

150 (5) 

Flat 0 0 30 0 0 
Flat+tail 0 0 30 0 150 
Rough 0 0 15 15 0 
Rough+Tail 0 0 15 15 150 

Note, that similar test case generation was proposed 
in (Kwasnicka and Przewozniczek, 2011). The genes 
in the concatenations were not shuffled since all 
competing methods are not gene order dependent, 

which is a desired feature for any method that uses 
genotype-based problem coding. 

4.2 The Tuning Procedure 

Finding the optimal parameter settings for the 
competing methods, does not seem possible due to 
practical reasons. Therefore the tuning procedure 
was as follows. First, the initial settings for each 
method were proposed on the base of authors 
experience and literature review. Second, each 
parameter was separately tuned in an order presented 
in Table 3. For each parameter, a range of values 
was checked and the best was chosen for further use. 
The final parameter settings, with their initial values 
are given in Table 3. The values λ, cp and cg for 
GA+PSO and MSPOCk methods were copied from 
the final values tuned for PSO_V2. The maximum 
computation time was 3000 seconds for all methods. 

Table 3: Tuning results. 

Method Par. Initial 
value 

Final 
value 

Par. description 

PSO 
V1 

N 1000 400 Population size 
λ 1 0.99 Inertia weight 
cp 2 1.81 As in eq. (3), (4) 
cg 2 1.50 As in eq. (3), (4) 

PSO 
V2 

N 1000 700 Population size 
λ 1 0.87 Inertia weight 
cp 2 2.00 As in eq. (3), (4) 
cg 2 1.86 As in eq. (3), (4) 

GA 
+ 

PSO 

N 1000 100 Population size 
λ 0.87 0.87 Inertia weight 
cp 2.00 2.00 As in eq. (3), (4) 
cg 1.86 1.86 As in eq. (3), (4) 

lmax 200 60 
PSO iteration 

number 

k 0.25 0.27 
% of best particles 
used for crossover

ε 0.01 0.05 
Min. avr. fitness 
increase to stay 

with cur. linkage 

 
 

MSPO
Ck 

N 1000 1000 Population size 
λ 0.87 0.87 Inertia weight 
cp 2.00 2.00 As in eq. (3), (4) 
cg 1.86 1.86 As in eq. (3), (4) 

lmax 200 160 PSO iter. num. 

k 0.25 0.05 
% of best particles 
used for crossover

P 25 25 Subswam number 

S 0.95 1.0 
Min. subswarm 

similarity 
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4.3 Main Results 

The main measure of the result quality in the 
performed tests is the function unitation – the higher 
number of ‘1’s, the closer the solution is to the 
optimum. Note, that sometimes the function value 
difference may be relatively small, while the 
difference in unitation will be very large. The 
method capable of finding solutions with high 
unitation is expected to be more capable of leaving 
the local optima areas and less likely to stuck. 
Therefore, such a method should be more useful for 
solving hard computational problems (Kwasnicka 
and Przewozniczek, 2011). The average unitation for 
all the competing methods is given in Table 4. 

Table 4: Average untiation for each experiment group. 

Test case 
group Ver. 

PSO 
V1 
[%] 

PSO 
V2 
[%] 

GA+ 
PSO 
[%] 

MSPOCk 
[%] 

30  
(3 and 5) 
 

r 96.67 76.67 100.00 100.00

r + t 98.33 88.33 95.00 100.00

f 93.33 66.67 100.00 100.00

f + t 96.67 86.67 93.33 100.00

30  
(5) 

r 93.33 60.00 100.00 100.00

r + t 93.33 78.33 93.33 100.00

f 90.00 70.00 100.00 100.00

f + t 91.67 83.33 93.33 100.00

50  
(3 and 5) 

r 90.00 82.00 92.00 100.00

r + t 97.00 89.00 90.00 100.00

f 80.00 72.00 88.00 100.00

f + t 94.00 87.00 83.00 100.00

50  
(5) 

r 82.00 52.00 74.00 100.00

r + t 92.00 77.00 77.00 100.00

f 74.00 40.00 54.00 100.00

f + t 78.00 70.00 63.00 100.00

150 
(3 and 5) 

r 68.00 69.33 68.00 74.00

r + t 86.00 85.00 83.33 84.33

f 65.33 70.00 68.67 71.33

f + t 84.33 85.00 83.67 82.67

150 
(5) 

r 26.00 23.33 26.00 40.00

r + t 61.33 61.00 63.00 69.67

f 14.00 22.00 18.67 42.67

f + t 56.00 61.00 56.67 69.67

As shown in Table 4, the proposed MSPOCk 
method outperforms all the competing methods. It 

was the best for 22 of 24 test problems. For the 
shorter test cases the MSPOCk is able to report 
perfect results in every run, for the 150-bit problems 
the MSPOCk supremacy is still significant, but the 
unitation rate significantly drops down. Both binary 
PSO versions are able to propose reasonable results, 
but of significantly lower quality than MSPOCk. 
The MSPOCk advantage over the other methods is 
smaller for the longest problems built from mixed 
deceptive blocks of different size. It seems that these 
problems are hard enough to deceive all methods 
equalizing their quality. In all other problem groups 
MSPOCk has clear advantage over the competing 
methods (except the shortest problems, where 
GA+PSO is sometimes also able to gain optimal 
results in all runs). Note that the obtained results 
indicate the importance of building deceptive 
function concatenations also from blocks of mixed 
size, not only identical ones. 

For both PSO and MSPOCk, the unitation 
increases if the problem is added a tail. This 
observation is an expected one – for any PSO- or 
GA-based method it is easy to optimize the tail-like 
functions. In the case GA+PSO the situation is 
sometimes opposite (for both 30-bit problems and 
one 50-bit). The reason of this phenomenon is that 
the more bits are necessary to encode the problem, 
the harder it is to randomly generate proper linkage 
information, therefore the overall effectiveness of 
GA+PSO drops down. Note, that GA+PSO 
generates the linkage information in the most 
primitive way – randomly. It seems clear that 
without any other performance improving 
mechanisms, such a method will not be able to 
effectively solve hard problems. On the other hand, 
although MSPOCk also use primitive linkage 
information generation procedure, it uses a number 
of different diversity preservation mechanisms and a 
kind of global mutation operator (subswarm 
reinitialization). Therefore, MSPOCk is able to 
remain effective even if the linkage information 
quality is, in general, low. Note, that thanks to the 
population diversity, MSPOCk is able to leave the 
local optima and continue the search for the global 
one. 

Differently to results presented in (Kwasnicka 
and Przewozniczek, 2011), the competing method 
effectiveness was not always dependent on function 
type (rough/flat) and, if the dependency was 
occurring, then better results were proposed to the 
rough function type (eg. PSO_V1, PSO_V2 and 
GA+PSO results for both 50-bit problems). This last 
observation is partially opposite to the analysis 
presented in (Kwasnicka and Przewozniczek, 2011). 
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The explanation of this phenomenon may be that for 
rough functions it is easier for the method to 
concentrate its computation effort on the more 
valuable (measured in fitness function value) 
problem parts first, which improves the method 
effectiveness as it works like if it was solving a 
sequence of many shorter problems instead of 
single, but long one. In the flat problems case such 
computation effort concentration is impossible since 
all problem parts are equally valuable. 

5 CONCLUSIONS AND FURTHER 
WORK 

In this paper, the new PSO and GA hybrid with 
linkage learning mechanisms for solving the binary 
problems was presented. The proposed MSPOCk 
uses many coevolving subswarms in order to be able 
to leave local optima. The main paper purpose was 
to show that the combination of PSO fast 
convergence, GA capability of exchanging groups of 
genes via crossover operator reinforced with linkage 
learning is the promising way for discrete problems 
solving. The MSPOCk was significantly more 
effective than all other competing methods. In some 
of the test cases it was able to repetitively find the 
optimal solution. 

As stated above, this work is only the 
presentation of the possible effectiveness potential 
behind the GA and PSO hybrids application to 
discrete problems. Therefore, the future work shall 
concern most of the MSPOCk mechanisms 
presented here: 
 The linkage learning mechanisms, similar to 

(Kwasnicka and Przewozniczek, 2011; 
Pelikan et al. 2006) shall be introduced into 
the method. Such modification should 
improve the method effectiveness.  

 The subswarm number should not be a method 
parameter. It should be designated by the 
method itself. The interesting idea is to use the 
same or similar mechanisms as presented in 
(Kwasnicka and Przewozniczek, 2011; 
Przewozniczek et al. 2015; Walkowiak et al. 
2013) were a number of coevolving 
subpopulations change during the method run 
and is dependent on the method state. 

 PSO_V2, used in MSPOCk, is unable to solve 
other than binary problems. The future work 
should concentrate on proposing PSO based 
methods capable of solving any discrete 
problem, not only binary one.  

 The proposed MSPOCk should be compared 
on the base of wide experiment set with well 
known, effective GA-based methods like 
MuPPetS, BOA and hBOA.  

The further study on MSPOCk should also 
consider its application to hard practical problems. 

REFERENCES 

Andrade, C., Toso, R., Resende, M., Miyazawa, F., 2015, 
Biased Random-Key Genetic Algorithms for the 
Winner Determination Problem in Combinatorial 
Auctions, In Evolutionary Computation, Vol. 23, No. 
2: 279–307. 

Baek,H., Ryu, J., Oh, J., Kim T., 2015, Optimal design of 
multi-storage network for combined sewer overflow 
management using a diversity-guided, cyclic-
networking particle swarm optimizer – A case study in 
the Gunja subcatchment area, Korea, In Expert 
Systems with Applications, Vol. 42, Issue 20, pp. 
6966-6975. 

Bergh F., 2010, An Analysis of Particle Swarm 
Optimization. In Computer and Information Science, 
Vol.3, no. 1, pp.180-184. 

Cai, Y, Wang, Y., 2015, Differential evolution with hybrid 
linkage crossover. In Information Sciences, Vol. 237, 
pp. 244-287. 

Chang, W.D., 2015, A modified particle swarm 
optimization with multiple subpopulations for 
multimodal function optimization problems. In 
Applied Soft Computing, Vol. 33, pp. 170-182. 

Chen, Y., Peng. W, Jian M., 2007, Particle Swarm 
Optimization With Recombination and Dynamic 
Linkage Discovery, In IEEE Transactions on Systems, 
Man and Cybernetics, Part B: Cybernetics, Vol.37, 
Issue 6, pp.1460-1470. 

Chen, Y., Sastry, K., Goldberg, D.E., 2007b, A Survey of 
Linkage Learning Techniques in Genetic and 
Evolutionary Algorithms, In IlliGAL Report No. 
2007014, Illinois Genetic Algorithms Laboratory. 

Correa, E.S., Shapiro, J.L., 2006,  Model Complexity vs. 
Performance in the Bayesian Optimization Algorithm, 
In Lecture Notes in Computer Science , Vol. 4193, pp. 
998-1007. 

Dahzi, W.., Wu, CH., Ip, W.H., Wang, D., Yan, Y., 2008, 
Parallel multi-population Particle Swarm Optimization 
Algorithm for the Uncapacitated Facility Location 
problem using OpenMP. In IEEE Congress on 
Evolutionary Computation. 

Deb, K., Goldberg, D. E., 1992, Sufficient Conditions for 
Deceptive and Easy Binary Functions, In Annals of 
Mathematics and Artificial Intelligence, Vol. 10, pp. 
385-408. 

Devicharan, D., Mohan, C.K., 2004, Particle Swarm 
Optimization with Adaptive Linkage Learning, In 
Congress on Evolutionary Computation, Vol.1, 
pp.530-535. 

Towards Finding an Effective Way of Discrete Problems Solving: The Particle Swarm Optimization, Genetic Algorithm and Linkage
Learning Techniques Hybrydization

235



Eberhart, R. & Kennedy, J., 1995. A New Optimizer 
Using Particle Swarm Theory. In Proceeding of, 6th 
International Symposium on Micro Machine and 
Human Science, pp.530-535. 

Fan, K., Yu, T. Lee, J., 2013, Linkage learning by number 
of function evaluations estimation: practical view of 
building blocks. In Information Sciences, Vol. 230, 
Issue 1, pp. 162–182. 

Goldberg, D.E., Deb, K., Kargupta H., Harik, G., 1993, 
Rapid, accurate optimization of difficult problems 
using fast messy genetic algorithms, In Proceedings of 
5th International Conference on Genetic Algorithms. 

Kennedy, J. & Eberhart, R., 1997, A Discrete Binary 
Version of the Particle Swarm Algorithm. In IEEE 
International Conference on Systems, Man and 
Cybernetics, Computational Cybernetics and 
Simulation, Vol.5, pp.4104-4108. 

Kennedy, J., Mendes, R., 2006, Neighborhood Topologies 
in Fully-InformedandBest-Of-Neighborhood 
ParticleSwarms, In IEEE Transactions on 
Systems,Man,and Cybernetics, PartC: Applications 
and Reviews, Vol. 36, Issue 4, pp.515-519. 

Khanesar, M. A, Teshnehlab, M. & Shoorehdeli, M.A., 
2007, A Novel Binary Particle Swarm Optimization, 
In Proceedings of the 15th Mediterranean Conference 
on Control&Automation, pp.1-6. 

Kwasnicka, H., Przewozniczek, 2011, M., Multi 
Population Pattern Searching Algorithm: a new 
evolutionary method based on the idea of messy 
Genetic Algorithm, In IEEE Transactions on 
Evolutionary Computation, Vol. 15 Issue 5, pp.715-
734. 

Laumanns, M., Ocenasek, J., 2002, Bayesian Optimization 
Algorithms for multi-objective optimization,  In 
Lecture Notes in Computer Science , Vol. 2439, pp. 
298-307.  

Lim, W.H., Isa, N., 2014, Bidirectional teaching and peer-
learning particle swarm optimization, In Information 
Sciences, Vol. 280, pp. 111-134.  

Liu, Q., 2015, Order-2 Stability Analysis of Particle 
Swarm Optimization, In Evolutionary Computation, 
Vol. 23, No. 2, pp.  187–216.  

Lovbjerg, M., Rasmussen, T. K., Krink, T., 2001, Hybrid 
Particle Swarm Optimiser with Breeding and 
Subpopulations, In Proceedings of the Genetic and 
Evolutionary Computation Conference, Vol.24, 
pp.469-476. 

Moubayed, N., Petrovski, A., McCall, J., 2014, 
D2MOPSO: MOPSO Based on Decomposition and 
Dominance with Archiving Using Crowding Distance 
in Objective and Solution Spaces, In Evolutionary 
Computation, Vol. 22, No. 1, pp. 47–77.  

Mu, A.Q., Cao, D.X., Wang, X.H., 2009, A Modified 
Particle Swarm Optimization Algorithm, In Natural 
Science, Vol.1, No. 2, pp. 151-155. 

Niu, B., Zhu, Y., He, X., Wu, H., 2007, MCPSO: A multi-
swarm cooperative particle swarm optimizer, In 
Applied Mathematics and Computation, Vol. 185, pp. 
1050-1062. 

Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E., 2006, 
Hierarchical BOA on Random Decomposable 
Problems,  In MEDAL Report No. 2006001.  

Przewozniczek, M., Goscien, R., Walkowiak, K., 
Klinkowski, M., 2015, Towards Solving Practical 
Problems of Large Solution Space Using a Novel 
Pattern Searching Hybrid Evolutionary Algorithm - 
An Elastic Optical Network Optimization Case Study, 
In Expert Systems with Applications, Vol. 42, pp. 
7781-7796. 

Rani K., Vikas K., 2014, Solving Travelling Salesman 
Problem Using Genetic Algorithm Based On Heuristic 
Crossover And Mutation Operator, In International 
Journal of Research in Engineering & Technology, 
Vol. 2, Issue 2, pp. 27-34. 

Thierens, D., 1999, Scalability problems of simple genetic 
algorithms, In Evolutionary Computation, Vol. 7, 
Issue 4, pp. 331-352. 

Walkowiak, K., Przewozniczek, M., Pajak, K., 2013, 
Heuristic Algorithms for Survivable P2P Multicasting, 
In Applied Artificial Intelligence, Vol. 27, Issue 4, pp. 
278-303. 

Watson, R.A., Hornby, G.S., Pollack, J.B., 1998, 
Hierarchical Building-Block Problems for GA 
Evaluation, In Parallel problem solving from nature , 
pp. 97-106. 

Xu, L., Wang, J., Li, Y, Li, Q., Zhang, X., 2015, Resource 
allocation algorithm based on hybrid particle swarm 
optimization for multiuser cognitive OFDM network, 
In Expert Systems with Applications, Vol. 42, Issue 20, 
pp. 7186–7194. 

ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications

236


