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Abstract: Class imbalance is a crucial problem in machine learning and occurs in many domains. Specifically, the 
two-class problem has received interest from researchers in recent years, leading to solutions for oil spill 
detection, tumour discovery and fraudulent credit card detection, amongst others. However, handling class 
imbalance in datasets that contains multiple classes, with varying degree of imbalance, has received limited 
attention. In such a multi-class imbalanced dataset, the classification model tends to favour the majority 
classes and incorrectly classify instances from the minority classes as belonging to the majority classes, 
leading to poor predictive accuracies. Further, there is a need to handle both the imbalances between classes 
as well as address the selection of examples within a class (i.e. the so-called within class imbalance). In this 
paper, we propose the SCUT hybrid sampling method, which is used to balance the number of training 
examples in such a multi-class setting. Our SCUT approach oversamples minority class examples through 
the generation of synthetic examples and employs cluster analysis in order to undersample majority classes. 
In addition, it handles both within-class and between-class imbalance. Our experimental results against a 
number of multi-class problems show that, when the SCUT method is used for pre-processing the data 
before classification, we obtain highly accurate models that compare favourably to the state-of-the-art. 

1 INTRODUCTION 

In an imbalanced dataset used for classification, the 
sizes of one or more classes are much greater than 
the other classes. The classes with the larger number 
of instances are called majority classes and the 
classes with the smaller number of instances are 
referred to as the minority classes. Intuitively, since 
there are a large number of majority class examples, 
a classification model tends to favour majority 
classes while incorrectly classifying the examples 
from the minority classes. However, in imbalanced 
datasets, we are often more interested in correctly 
classifying the minority classes. For instance, in a 
two class setting within the medical domain, if we 
are classifying patients’ condition, the minority class 
(e.g. cancer) is of more interest than the majority 
class (e.g. cancer free). In practice, many problems 
have more than two classes. For example, in 
bioinformatics, protein family classification, where a 
protein may belong to very small families within the 
large Protein Data Bank repository (Viktor et. al, 
2013), as well as protein fold prediction, are 

examples of multi-class problems. Typically, in such 
a multi-class imbalanced dataset, there are multiple 
classes that are underrepresented, that is, there may 
be multiple majority classes and multiple minority 
classes, resulting in skewed distributions. 

A number of research studies have been realized 
in order to improve classification performance on 
imbalanced binary class datasets, in which there is 
one majority class and one minority class. However, 
improving the performance on imbalanced multi-
class datasets has not been researched as 
extensively. Consequently, most existing techniques 
for improving classification performance on 
imbalanced datasets are designed to be applied 
directly on binary class imbalanced datasets. These 
methods cannot be applied directly on multi-class 
datasets (Wang and Yao, 2012). Rather, class 
decomposition is usually used to convert a multi-
class problem into a binary class problem. For 
instance, the One-versus-one (OVO) approach 
employs multiple classifiers for each possible pair of 
classes, discarding the remaining instances that do 
not belong to the pair under consideration. The One-
versus-all (OVA) approach, on the other hand, 
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considers one class as the positive class, and merges 
the remaining classes to form the negative class. For 
‘n’ classes, ‘n’ classifiers are used, and each class 
acts as the positive class once (Fernández et al., 
2010). Subsequently, the results from different 
classifiers are combined in order to reach a final 
decision. Interested readers are referred to (Ramanan 
et al., 2007) for detailed discussions of the OVO and 
OVA approaches. However, combining results from 
classifiers that are trained on different sub-problems 
may result in classification errors (Wang and Yao, 
2012). In addition, in OVO, each classifier is trained 
only on a subset of the dataset, which may lead to 
some data regions being left unlearned. In this paper, 
we propose a different method to improve 
classification performance on multi-class 
imbalanced datasets which preserves the structure of 
the data, without converting the dataset into a binary 
class problem. 

In addition to between-class imbalance (i.e. the 
imbalance in the number of instances in each 
classes), within-class imbalance is also commonly 
observed in datasets. Such a situation occurs when a 
class is composed of different sub-clusters and these 
sub-clusters do not contain the same number of 
examples (Japkowicz, 2001). It follows that 
between-class and within-class imbalances both 
affect classification performance. In an attempt to 
address these two problems, and in order to improve 
classification performance on imbalanced datasets, 
sampling methods are often used for pre-processing 
the data prior to using a classifier to build a 
classification model.  

Sampling methods focus on adapting the class 
distribution in order to reduce the between-class 
imbalance. Sampling methods may be divided into 
two categories, namely undersampling and 
oversampling. Undersampling reduces the number 
of majority class instances and oversampling 
increases the number of minority class instances. 
Unfortunately, both random oversampling and 
undersampling techniques present some weaknesses. 
For instance, random oversampling adds duplicate 
minority class instances to the minority class. This 
may result in smaller and more specific decision 
regions causing the learner to over-fit the data. Also, 
oversampling may increase the training time. 
Random undersampling randomly takes away some 
instances from the majority class. A drawback of 
this method is that useful information may be taken 
away (Han et al., 2005).  Further, when performing 
random undersampling, if the dataset has within-
class imbalance and some sub-clusters are 
represented by very few instances, the probability 

that instances from these sub-clusters be retained is 
relatively low. Consequently, these instances may 
remain unlearned. 

SMOTE represents an improvement over random 
oversampling in that the minority class is 
oversampled by generating “synthetic” examples 
(Chawla et. al., 2002). However, in highly 
imbalanced datasets, too much oversampling (i.e. 
oversampling using a high sampling percentage) 
may result in overfitting. This is especially 
important in a multi-class setting where there are a 
number of minority classes with very few examples. 
Further, in a multi-class setting, there is a need to 
find the correct balance, in terms of number of 
examples, between multiple classes. In order to 
address this issue, we propose an algorithm called 
SCUT (SMOTE and Clustered Undersampling 
Technique) which combines SMOTE and cluster-
based undersampling in order to handle between-
class and within-class imbalance.  

Undersampling is required to balance the dataset 
without using excessive oversampling. If majority 
class instances are randomly selected, small 
disjuncts with less representative data may remain 
unlearned.  Clustering the majority classes helps 
identify sub-concepts, and if at least one instance is 
selected from each sub-concept (cluster) while doing 
undersampling, this issue might be addressed 
(Sobhani et. al, 2014). This implies that the scenario 
of having unlearned regions when within-class 
imbalance exists, is reduced. In this setting, 
combining clustering and undersampling makes 
sense as it addresses the disadvantage of random 
undersampling. To this end, Yen and Lee proposed 
several cluster-based undersampling approaches to 
select representative data as training data to improve 
the classification accuracy for the minority class 
(Yen and Lee, 2009). The main idea behind their 
cluster-based undersampling approaches was based 
on the assumption that each dataset has different 
clusters and each cluster seems to have distinct 
characteristics. Subsequently, from each cluster, a 
suitable number of majority class samples were 
selected (Yen and Lee, 2009). Rahman and Davis 
also used a cluster-based undersampling technique 
for classifying imbalanced cardiovascular data that 
not only balances the data in a dataset, but further 
selects good quality training set data for building 
classification models (Rahman and Davis, 2013). 

Chawla et al. combined random undersampling 
with SMOTE, so that the minority class had a larger 
presence in the training set. By combining 
undersampling and oversampling, the initial bias of 
the learner towards the majority class is reversed in 
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the favour of the minority class (Chawla et al., 
2002). In summary, cluster-based undersampling 
ensures that all sub-concepts are adequately 
represented.  When used in conjunction with 
SMOTE, the hybrid sampling method thus aid to 
ensure that between-class imbalance is reduced 
without excessive use of oversampling and 
undersampling. 

This paper is organized as follows. Section 2 
contains a description of the proposed method. In 
Section 3, the experimental setup and results are 
presented while Section 4 concludes the paper and 
discusses our future plans. 

2 SCUT ALGORITHM 

Our SCUT algorithm combines both undersampling 
and oversampling techniques in order to reduce the 
imbalance between classes in a multi-class setting. 
The pseudocode for our SCUT method is shown in 
Figure 1.  

For undersampling, we employ a cluster-based 
undersampling technique, using the Expectation 
Maximization (EM) algorithm (Dempster et al., 
1977). The EM algorithm replaces the hard clusters 
by a probability distribution formed by a mixture of 
Gaussians.  Instead of being assigned to a particular 
cluster, each member has a certain probability to 
belong to a particular Gaussian distribution of the 
mixture.  The parameters of the mixture, including 
the number of Gaussians, are determined with the 
Expectation Maximization algorithm. An advantage 
of using EM is that the number of clusters does not 
have to be specified beforehand. EM clustering may 
be used to find both hard and soft clusters. That is, 
EM assigns a probability distribution to each 
instance relative to each particular cluster (Dempster 
et al., 1997).  

The SCUT algorithm proceeds as follows. The 
dataset is split into n parts, namely D1, D2, D3 ... Dn, 
where n is the number of classes and Di represents a 
single class. Subsequently, the mean (m) of the 
number of instances of all the classes is calculated. 

i) For all classes that have a number of instances 
less than the mean m, oversampling is performed in 
order to obtain a number of instances equal to the 
mean. The sampling percentage used for SMOTE is 
calculated such that the number of instances in the 
class after oversampling is equal to m. 

ii) For all classes that have a number of instances 
greater than the mean m, undersampling is 
conducted to obtain a number of instances equal to 
the mean. Recall that the EM technique is used to 

discover the clusters within each class (Dempster et 
al., 1977). Subsequently, for each cluster within the 
current class, instances are randomly selected such 
that the total number of instances from all the 
clusters is equal to m. Therefore, instead of fixing 
the number of instances selected from each cluster, 
we fix the total number of instances. It follows that a 
different number of instances may be selected from 
the various clusters. However, we aim to select the 
instances as uniformly as possible. The selected 
instances are combined together in order to obtain m 
instances (for each class). 

iii) All classes for which the number of instances 
is equal to the mean m are left untouched.  
 

 
Input: Dataset D with n classes 
Output: Dataset D' with all classes 
having m instances, where m is the mean 
number of instances of all classes 

 
Split D into D1, D2, D3, ..., Dn where Di 
is a single class 
Calculate m 

 
Undersampling:  
For each Di, i=1,2, ... , n where 
number of instances >m 

 Cluster Di using EM algorithm 
 For each cluster Ci, i = 1,2,           

 ... , k 
       Randomly select instances    

      from Ci 
       Add selected instances to  

      Ci’ 
 End For 
 C = Ø 
 For i=1,2, ... , k 
   C = C U Ci’ 
 End For 
 Di’ = C 

End For 
 

Oversampling: 
For each Di, i=1,2, ... , n where 
number of instances <m 

 Apply SMOTE on Di to get Di’ 
End For 
 
For each Di, i=1,2, ... , n where 
number of instances = m 

 Di’ = Di 
 
D’ = Ø 
For i = 1,2, ... , n 

D’ = D’ U Di’ 
End For 
Return D’ 

Figure 1: SCUT Algorithm. 
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Finally, all the classes are merged together in order 
to obtain a dataset D’, where all the classes have m 
instances. Classification may be performed on D’ 
using an appropriate classifier.  

For instance, one of the datasets used in our work 
is the Lymphography dataset, as obtained from the 
KEEL repository (Alcalá-Fdez et al., 2011). This 
dataset concerns detecting the presence of a 
lymphoma, together with its current status, and 
contains four (4) classes (normal, metastases, 
malignant-lymphoma and fibrosis), with 2, 81, 61 
and 4 examples, respectively. That is, the dataset has 
a high level of imbalance and contains two majority 
and two minority classes. The dataset is split into 
four (4) classes and the mean is 37.  

i) For class 1, the number of instances is 2, so 
SMOTE is applied with a sampling percentage of 
1850% in order to obtain 37 instances.  

ii) For class 2, the number of examples is 81, so 
EM is applied and 3 clusters are obtained, with the 
numbers of instances equal to 29, 17 and 35 
respectively. In order to obtain a total of 37 
instances, 12, 12 and 13 instances are randomly 
selected from the clusters. 

iii) For class 3, the number of instances is 61. 
When EM is applied, only one cluster is obtained. 
Next, 37 instances are randomly selected from this 
one cluster.  

iv) The number of instances of class 4 is equal to 
4, so SMOTE is applied with a sampling percentage 
of 925% in order to obtain 37 instances.  
Lastly, the classes are merged together and a new 
dataset of 148 instances (in which each class has 37 
examples) is obtained. The next section discusses 
our experimental setup and results. 

3 EXPERIMENTATION 

We implemented our SCUT algorithm by extending 
WEKA, an open source data mining tool that was 
developed at the University of Waikato. For 
classification, the WEKA implementations of four 
classifiers, namely J48 (decision tree), SMO 
(support vector machine), Naïve Bayes and IBk 
(Nearest Neighbour), were used. For IBk, the 
number of nearest neighbours (k) was set to five (5), 
by inspection. Default values for the other 
parameters were used. 

A ten-fold cross validation approach was used 
for testing and training. Ten-fold cross validation 
has been shown to be an effective testing 
methodology when datasets are not too small, since 

each fold is a good representation of the entire 
dataset (Japkowicz, 2001).  

3.1 Benchmarking Datasets 

Seven multi-class datasets from the KEEL 
repository (Alcalá-Fdez et al., 2011) and the Wine 
Quality dataset from the UCI repository (Lichman, 
2013) (Cortez et al., 2009) were used in the 
experiments. The details of these datasets are 
summarized in Table 1. The table shows that the 
number of classes in the datasets varies from three 
(3) to ten (10) and the number of training examples 
range from 148 to 6497. Here, the levels of 
imbalance and numbers of classes with majority and 
minority instances vary considerably. 

The WEKA implementation of the EM cluster 
analysis algorithm was used. Recall that the EM 
approach employs probabilistic models which imply 
that the number of clusters does not have to be 
specified in advance. Therefore, a major strength of 
EM is that it determines the number of clusters that 
must be created by cross validation. In order to 
determine the number of clusters, cross validation is 
performed as follows:  

1. Initially, the number of clusters is set to one (1). 
2. The training set is split randomly into ten (10) 

folds. The number of folds is set to ten, as long 
as the number of instances in the training set is 
not smaller ten. If this is the case, the number of 
folds is set equal to the number of instances. 

3. EM is performed ten (10) times using the ten 
(10) folds. 

4. The logarithm of the likelihood is averaged over 
all ten (10) results. If logarithm of the likelihood 
increases, the number of clusters is increased by 
one (1) and the algorithm resumes from step 2.  

Table 1: Datasets. 

Datasets Size # Class Class distribution
Thyroid 720 3 17, 37, 666 

Lymphography 148 4 2, 81, 61, 4 
Pageblocks 548 5 492, 33, 8, 12, 3 

Dermatology 366 6 
112, 61, 72, 49, 

52, 20 

Autos 159 6 
3, 20, 48, 46, 29, 

13 

Ecoli 336 8 
143, 77, 52, 35, 

20, 5, 2, 2 

Wine Quality 6497 7 
30, 216, 2138, 

2836, 1079, 193, 5

Yeast 1484 10 
244, 429, 463, 44, 

51, 163, 35, 30, 
20, 5 
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The G-mean, F-measure and AUC (Area Under 
the Curve) measures were used for evaluating the 
results. For imbalanced datasets, the G-mean 
measure has been found to be highly representative 
of an algorithm’s performance (Sobhani et. al., 
2014). We compared our SCUT method with three 
other techniques, namely the original SMOTE 
algorithm, Random Undersampling (RU) and an 
implementation called CUT, which uses SCUT 
without using SMOTE. We also consider the 
scenario in which no sampling is performed, which 
is denoted by Original, in order to determine 
whether any form of sampling is actually beneficial 
or not. 

3.2 Results  

In this section, we discuss the results we have 
obtained against the eight datasets. Tables 2, 3, 4 
and 5 show the G-mean values when the J48, Naïve 
Bayes, SMO and IBk classifiers are used, 
respectively. Tables 6, 7, 8 and 9 display the results 
of the F-measure values, while Tables 10, 11, 12 and 
13 depict the AUC values. The tables indicate that 
the SCUT and SMOTE algorithms consistently 
produced the best results, in terms of the three 
measures, when applied to these benchmarking 
datasets. 

Table 2: G-mean values for J48. 

Datasets SCUT SMOTE CUT RU Orig. 
Thyroid 0.980 0.989 0.968 0.986 0.984 
Lympho. 0.936 0.909 0.817 0.804 0.822 
Pageblock 0.975 0.975 0.873 0.910 0.859 
Derma. 0.977 0.971 0.976 0.980 0.962 
Autos 0.763 0.893 0.797 0.818 0.853 
Ecoli 0.907 0.921 0.862 0.864 0.899 
Wine 0.800 0.762 0.698 0.728 0.682 
Yeast 0.828 0.766 0.763 0.749 0.691 

Table 3: G-mean values for Naïve Bayes. 

Datasets SCUT SMOTE CUT RU Orig. 
Thyroid 0.841 0.762 0.696 0.734 0.667 
Lympho. 0.946 0.924 0.859 0.906 0.837 
Pageblock 0.920 0.928 0.850 0.898 0.848 
Derma. 0.988 0.988 0.982 0.980 0.984 
Autos 0.814 0.797 0.737 0.687 0.734 
Ecoli 0.936 0.941 0.860 0.910 0.907 
Wine 0.639 0.591 0.565 0.583 0.574 
Yeast 0.753 0.724 0.700 0.711 0.705 

 

Table 4: G-mean values for SMO. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.849 0.740 0.404 0.419 0.292 

Lympho. 0.954 0.926 0.872 0.897 0.904 

Pageblocks 0.952 0.948 0.737 0.763 0.599 

Derma. 0.982 0.982 0.970 0.970 0.972 

Autos 0.874 0.862 0.803 0.787 0.811 

Ecoli 0.904 0.919 0.898 0.909 0.894 

Wine 0.675 0.620 0.633 0.632 0.601 

Yeast 0.762 0.727 0.710 0.730 0.692 

Table 5: G-mean values for IBk. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.876 0.883 0.501 0.512 0.318 

Lympho. 0.946 0.929 0.802 0.808 0.844 

Pageblocks 0.951 0.969 0.794 0.809 0.750 

Derma 0.978 0.979 0.978 0.978 0.974 

Autos 0.818 0.824 0.718 0.744 0.766 

Ecoli 0.920 0.933 0.860 0.898 0.910 

Wine 0.792 0.745 0.657 0.649 0.645 

Yeast 0.835 0.774 0.738 0.728 0.667 

Table 6: F-measure values for J48. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.974 0.987 0.970 0.977 0.986 

Lympho. 0.905 0.875 0.787 0.786 0.804 

Pageblocks 0.960 0.967 0.873 0.897 0.947 

Derma. 0.962 0.953 0.960 0.967 0.940 

Autos 0.792 0.828 0.688 0.722 0.778 

Ecoli 0.841 0.870 0.777 0.780 0.836 

Wine 0.676 0.640 0.568 0.605 0.586 

Yeast 0.708 0.631 0.616 0.595 0.552 

Table 7: F-measure values for Naïve Bayes. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.779 0.650 0.765 0.841 0.940 

Lympho. 0.918 0.897 0.832 0.898 0.835 

Pageblk 0.871 0.919 0.844 0.882 0.930 

Derma. 0.981 0.979 0.971 0.968 0.973 

Autos 0.692 0.674 0.588 0.523 0.602 

Ecoli 0.887 0.902 0.769 0.852 0.854 

Wine 0.417 0.383 0.374 0.409 0.439 

Yeast 0.595 0.573 0.521 0.542 0.566 
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Table 8: F-measure values for SMO. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.781 0.693 0.742 0.746 0.892 

Lympho. 0.933 0.903 0.861 0.903 0.905 

Pageblocks 0.923 0.938 0.731 0.759 0.897 

Derma. 0.970 0.969 0.950 0.950 0.954 

Autos 0.801 0.785 0.695 0.671 0.718 

Ecoli 0.834 0.863 0.829 0.845 0.823 

Wine 0.480 0.403 0.448 0.448 0.461 

Yeast 0.606 0.556 0.537 0.571 0.550 

Table 9: F-measure values for IBk. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.831 0.864 0.754 0.777 0.893 

Lympho. 0.919 0.907 0.756 0.817 0.827 

Pageblocks 0.943 0.959 0.817 0.827 0.931 

Derma. 0.964 0.965 0.964 0.964 0.957 

Autos 0.702 0.721 0.578 0.605 0.655 

Ecoli 0.859 0.885 0.767 0.829 0.853 

Wine 0.658 0.612 0.509 0.497 0.543 

Yeast 0.713 0.639 0.576 0.568 0.522 

Table 10: AUC values for J48. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.982 0.993 0.968 0.981 0.885 

Lympho. 0.943 0.908 0.809 0.815 0.828 

Pageblocks 0.977 0.981 0.854 0.923 0.845 

Derma 0.984 0.985 0.980 0.985 0.977 

Autos 0.903 0.932 0.869 0.872 0.894 

Ecoli 0.938 0.941 0.874 0.882 0.920 

Wine 0.834 0.803 0.744 0.769 0.722 

Yeast 0.881 0.817 0.806 0.779 0.733 

Table 11: AUC values for Naïve Bayes. 

Datasets SCUT SMOTE CUT RU Orig. 
Thyroid 0.916 0.932 0.819 0.830 0.872 
Lympho. 0.982 0.961 0.930 0.947 0.920 
Pageblocks 0.982 0.981 0.893 0.934 0.916 
Derma 0.999 0.999 0.999 0.999 0.999 
Autos 0.910 0.899 0.832 0.811 0.828 
Ecoli 0.974 0.979 0.928 0.945 0.960 
Wine 0.801 0.748 0.684 0.692 0.658 
Yeast 0.912 0.874 0.858 0.848 0.816 

Tables 14, 15 and 16 show the summaries for the G-
mean, F-measure and AUC values, respectively, 
when the results are ranked. For each dataset, the 
five methods are ranked from 1 to 5. Here, 1 
corresponds to the highest rank (for highest value) 
while 5 denotes the lowest rank. If there is a tie, then  

Table 12: AUC values for SMO. 

Datasets SCUT SMOTE CUT RU Orig. 

Thyroid 0.892 0.770 0.522 0.536 0.512 

Lympho. 0.971 0.937 0.895 0.904 0.907 

Pageblocks 0.973 0.964 0.792 0.818 0.673 

Derma. 0.989 0.989 0.980 0.980 0.984 

Autos 0.927 0.925 0.899 0.866 0.896 

Ecoli 0.963 0.970 0.938 0.949 0.944 

Wine 0.808 0.759 0.706 0.705 0.678 

Yeast 0.887 0.846 0.823 0.828 0.781 

Table 13: AUC values for IBk. 

Datasets SCUT SMOTE CUT RU Orig. 
Thyroid 0.939 0.948 0.631 0.673 0.591 
Lympho. 0.986 0.965 0.932 0.957 0.923 
Pageblocks 0.981 0.986 0.885 0.933 0.925 
Derma. 0.998 0.998 0.997 0.995 0.997 
Autos 0.929 0.933 0.873 0.876 0.903 
Ecoli 0.958 0.965 0.913 0.939 0.951 
Wine 0.898 0.857 0.764 0.769 0.745 
Yeast 0.927 0.897 0.843 0.840 0.685 

while 5 denotes the lowest rank. If there is a tie, then 
the same rank is assigned to both. For each method, 
all the ranks are added, and the method with the 
smallest rank sum is assigned the highest rank (1) 
while the method with the largest rank sum is 
attributed the lowest rank (5).  

Table 14: Ranks for different methods for G-mean values. 

Classifier SCUT SMOTE CUT RU Orig. 
J48 2 1 5 3 4 
NaiveBayes 1 2 4 3 4 
SMO 1 2 4 3 5 
IBk 2 1 4 3 5 

Table 15: Ranks for different methods for F-measure. 

Classifier SCUT SMOTE CUT RU Orig. 
J48 2 1 4 3 3 
NaiveBayes 1 3 5 4 2 
SMO 1 2 5 4 3 
IBk 2 1 5 4 3 

Table 16: Ranks for different methods for AUC values. 

Classifier SCUT SMOTE CUT RU Orig. 
J48 2 1 5 3 4 
NaiveBayes 1 2 4 3 4 
SMO 1 2 4 3 5 
IBk 2 1 4 3 4 
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For the Naïve Bayes and SMO classifiers, our 
SCUT method obtains the highest overall rank, 
while SMOTE ranks second or third. On the other 
hand, when using the J48 and IBk classifiers, 
SMOTE achieves the highest rank while SCUT 
comes second. The RU technique scores third, in 
terms of the G-means and AUC values, while the 
Original and CUT methods rank either fourth or 
fifth. For the F-measure, the Original dataset 
outperforms the undersampling techniques. This 
result suggests that the undersampling-only 
techniques do not work well in multi-class settings.  

The results from Tables 14, 15 and 16 indicate 
that our SCUT method is most suitable in scenario 
where the Naïve Bayes and SMO classifiers are 
employed. When the J48 and IBk classifiers are 
used, SMOTE on its own provides the best results 
against the datasets under consideration. 
Furthermore, when the datasets are highly 
imbalanced with some classes having very few 
instances, CUT and RU consistently perform poorly. 
This observation is also true for the Original dataset 
in which sampling is absent. This confirms our 
initial hypothesis that oversampling is required in 
order to improve the performance in such a multi-
class scenario.  

Subsequently, the Friedman statistical test was 
used in order to assert the statistical significance of 
the results. The Friedman test is a non-parametric 
statistical test. Since it ranks the values in each row, 
it is not affected by factors that equally affect all the 
values in a row. In addition, unlike other tests such 
as ANOVA and paired t-test, it does not make any 
assumptions about the data distribution. The results 
for each classifier (J48, Naïve Bayes, SMO and IBk) 
on each evaluation metric (G-mean, F-measure and 
AUC) are depicted in Tables 2 to 13. The resultant 
p-values are shown in Table 17.  

Table 17: Summary of p-values for classifiers and 
evaluation metrics. 

Evaluation 
metric 

Classifiers 

 
J48 

Naïve 
Bayes 

SMO IBk 

G-mean 0.01460 0.00038 0.00060 0.00010 

F-measure 0.00221 0.00470 0.00642 0.00029 

AUC 0.00011 0.00024 0.00004 0.00005 

Assuming that the results are statistically 
significant if p < 0.05, it may be concluded that all 
our results are valid and statistically significant.  

3.3 Discussion 

Our experimental results, based on the 
benchmarking multi-class imbalanced datasets, show 
that when the SCUT method is used, improved 
results for the Naïve Bayes and Support Vector 
Machine classifiers are obtained. This suggests that 
undersampling makes these two classifiers more 
sensitive to the minority classes, and aids them to 
correctly classify minority class instances. On the 
other hand, the SMOTE technique produces the 
highest measured values for the J48 and K-Nearest 
Neighbour classifiers. Thus, undersampling does not 
improve the results for these two algorithms. Rather, 
relying solely on oversampling the minority classes 
is sufficient in this particular case. In general, our 
results indicate that oversampling the majority 
instances is crucial in order to address multi-class 
problems. Undersampling approaches, such as RU 
and CUT, do not perform well in these conditions. 
As a matter of fact, using the Original dataset 
without any form of undersampling sometimes 
outperforms these two techniques.  

The reader should notice that the SCUT 
algorithm produced the best overall results in the 
Yeast dataset, which contains the highest number of 
classes with a wide range or cardinality. It also 
produced the best results for the Wine Quality 
dataset (in all cases except Table 7). Recall that this 
is the largest dataset with a high degree of 
imbalance. In addition, SCUT produced the most 
accurate models against the Lymphography dataset, 
where the levels of imbalance are quite high. This 
seems to indicate that our SCUT method is 
particularly suitable in such cases, since 
undersampling is required. That is, this scenario 
implies that a classifier may benefit from increased 
sensitivity to the minority classes. Indeed, consider a 
dataset in which there are majority classes that 
contain very large numbers of instances. In this 
context, solely relying on the oversampling of the 
minority classes may result in overfitting and noise. 
Once more, the SCUT method provides a remedy to 
such a situation. We plan to further investigate this 
aspect in the near future. 

4 CONCLUSIONS 

In this paper, we have proposed a hybrid sampling 
method called SCUT which combines SMOTE and 
cluster-based undersampling to improve the 
classification performance on multi-class 
imbalanced datasets. Cluster-based undersampling 
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handles within-class imbalance. Further, the 
combination of cluster-based undersampling and 
SMOTE aids to reduce between-class imbalance, 
without excessive use of sampling. 

We were not able to establish a clear superiority 
of one oversampling method over the other. 
However, we were able to determine that the SCUT 
method is a promising candidate for further 
experimentation. Our results suggest that our SCUT 
algorithm is suitable for domains where the number 
of classes is high and the levels of examples vary 
considerably. We intend to further investigate this 
issue. We also intend extending our approach to very 
large datasets with extreme levels of imbalances, 
since our early results indicate that our SCUT 
approach would potentially outperform 
undersampling-only techniques in such a setting. In 
our paper, the number of instances for each class 
was set to the mean value. Exploring the optimal 
strategy for fixing the number of instances will be 
further explored, e.g. by sampling the instances 
directly from the distribution associated with the 
mixture of Gaussians as obtained from the EM 
algorithm.   

Cost-sensitive learning is another common 
approach for dealing with the class-imbalance 
problem. Most of the existing solutions are 
applicable to binary-class problems, and cannot be 
applied directly to multi-class imbalanced datasets 
(Sun et al., 2006). Rescaling, which is a popular 
cost-sensitive learning approach for binary class 
problems can be applied directly on multi-class 
datasets to obtain good performance only when the 
costs are consistent (Zhou and Liu, 2010). In 
addition, rescaling classes based on cost information 
may not be suitable for highly imbalanced datasets. 
Designing a multi-class cost-sensitive learning 
approach for inconsistent costs without transforming 
the problem into a binary-class problem will be the 
focus of our future work. 
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