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Abstract: Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that are based on building
and sampling a probability model. Copula theory provides methods that simplify the estimation of a probabil-
ity model. An island-based version of copula-based EDA with probabilistic model migration (mCEDA) was
tested on a set of well-known standard optimization benchmarks in the continuous domain. We investigated
two families of copulas – Archimedean and elliptical. Experimental results confirm that this concept of model
migration (mCEDA) yields better convergence as compared with the sequential version (sCEDA) and other
recently published copula-based EDAs.

1 INTRODUCTION

Estimation of distribution algorithms (EDAs) belong
to a new class of evolutionary optimization meth-
ods that explore the search space by estimating and
sampling an explicit probabilistic model of promis-
ing solutions. EDAs applied to discrete problems
are described in the well-known papers UMDA (Pe-
likan and Mühlenbein, 1999b), BMDA (Pelikan and
Mühlenbein, 1999a), MIMIC (De Bonet et al., 1997),
and BOA (Pelikan et al., 1999). Solutions of the op-
timization problems in the real value domain can be
found in (Larrañaga and Lozano, 2001). A very mod-
ern and accessible survey of the EDAs algorithm is
presented in (Hauschild and Pelikan, 2011).

The main advantage of EDAs is its capacity to dis-
cover those variable linkages that yield a solution to a
complex optimization problem. On the one hand this
probability model-based approach has allowed EDAs
to be applied to large and complex problems. On
the other hand explicit probabilistic models are very
time consuming. That was the reason for implement-
ing various advanced EDAs to solve this problem.
The well-known enhancement approaches include the
parallelization of model building and sporadic model
building (Hauschild and Pelikan, 2011).

In the last ten years a new approach has appeared
to building an efficient probabilistic model that is
based on copula theory (Mai and Scherer, 2012).
Copulas are special probability distribution functions.

Due to their properties it is possible to use them
to model correlations within multivariate problems –
the joint distribution is separated into the univariate
marginal distributions and into the correlation struc-
ture that is expressed by the copula function. Cop-
ula theory has very often been used in finance and
statistics works (Nelsen, 2006; Cherubini et al., 2004;
Aas et al., 2009) (e.g. modeling health insurance data
(Zimmer and Trivedi, 2006)).

Recently copulas have been utilized in the field of
the machine learning (Rey and Roth, 2012; Póczos
et al., 2012). More recently the copula theory has
been applied to EDA probability models. The sim-
plest case is the application with bivariate (2D) copu-
las: (Wang et al., 2009) – 2D Gaussian copula EDA,
(Wang et al., 2010b) – 2D Clayton copula EDA,
(Wang et al., 2010a) – 2D Gumbel copula EDA.

In the case of multivariate models bivariate cop-
ulas are used as local building blocks in vari-
ous graph dependence structures: (Salinas-Gutiérrez
et al., 2009) – MIMIC + Frank and Gaussian copula),
(Méndez and Landa, 2012) – Bayesian network +
Archimedean copulas, (Salinas-Gutiérrez et al., 2011)
– D-vine + copulas, (Soto et al., 2012) – C-vine, D-
vine + copulas.

The copula-based EDA starts with an estimation
of the marginal distribution of each variable, then us-
ing a proper copula, the joint distribution is estab-
lished. Given the margins and a copula, it is then pos-
sible to generate new solutions.
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This paper deals with an efficient parallelization
of island-based mCEDA with the goal to increase
the convergence speed. After some experiments we
chose the island-based structure with bidirectional
ring topology. Instead of the often used migration of
individuals we instantiated the migration of probabil-
ity models. Note that the first experiments with this
new concept were published in (delaOssa et al., 2004;
Schwarz and Jaroš, 2008) for the optimization in the
discrete domain, the chief obstacle being an efficient
combination of the probabilistic models, especially
those having the dependence structure expressed by
a graph. That is why we focused on the migration of
probabilistic model parameters only.

The paper is organized as follows. In Section 2,
the basis of copula theory is given. In Section 3, the
utilization of copulas in EDA is described, and sam-
pling algorithms for copulas are presented. In Sec-
tion 4, the island-based model of evolution algorithm
with copula-model migration is described. Our exper-
iments are discussed in Section 5. The conclusions
are given in Section 6.

2 COPULA THEORY

The copula concept was introduced by (Sklar, 1959)
in order to separate the effect of dependence of vari-
ables from the effect of marginal distributions in a
joint distribution. A copula is a function which joins
the univariate distribution function and creates mul-
tivariate distribution functions. This approach allows
us to transform multivariate statistic problems into the
univariate problems with the relation represented by
just the copula.

Definition. A copula C is a multivariate probability
distribution function for which the marginal probabil-
ity distribution of each variable is uniform in [0;1].

Definition. A copula is a function C : [0;1]d → [0;1]
with the following properties:

1. C(u1,u2, . . . ,ud) = 0 for at least one ui = 0
2. C(1,1, . . . ,1,ui,1, . . . ,1) = ui for all i = 1,2, . . . ,d
3. C(u1,u2, . . . ,ud) is d-increasing (see lit. for de-

tails)

Theorem. Sklar’s theorem: Let F be a d-dimensional
distribution function with margins F1, . . . ,Fd . Then
there exists a d-dimensional copula C such that for
all (x1, . . . ,xd) ∈ Rd it holds that

F(x1, . . . ,xd) =C (F1(x1), . . . ,Fd(xd)) (1)

If F1, . . . ,Fd are continuous, then C is unique. Con-
versely, if C is a d-dimensional copula and F1, . . . ,Fd

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

Figure 1: Scatterplots of bivariate Archimedean copulas:
Clayton (left), Gumbel (middle) and Frank (right) with de-
pendence strengths 0.9 (top) and 0.3 (bottom).
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Figure 2: Scatterplots of bivariate eliptical copulas: Gaus-
sian (top) and Student, ν = 2 (bottom), with dependence
strengths −0.5 (left), 0.3 (middle) and 0.9 (right).

are univariate distribution functions, then the func-
tion F defined via (1) is a d-dimensional distribution
function.

In this paper we focus on two big copula families
– Archimedean and elliptic.

Archimedean copulas are capable of capturing
wide ranges of dependence. The definition of the
Archimedean copula is based on the generator func-
tion. There are many existing Archimedean copulas
and many more that could be created. The three cop-
ulas, i.e. Clayton, Gumbel and Frank appear regu-
larly in statistics literature, they are popular because
they model different patterns of dependence and have
a relatively simple functional form. Fig. 1 shows scat-
terplots of these copulas.

The elliptical copulas are derived from the related
elliptical distribution. The first example of elliptical
copula is the Gaussian copula, which belongs to the
normal distribution, the second example is the Stu-
dent copula, which belongs to the t-distribution (see
Fig. 2).
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3 COPULA-BASED ESTIMATION
OF DISTRIBUTION
ALGORITHM

Estimation of distribution algorithms belongs to the
advanced evolutionary algorithms. Solving the nu-
merical optimization problem, vector x = (x1, . . . ,xd)
of the optimal solution is searched out.

The core of the canonical EDA consists of three
main steps, see Algorithm 1.

Algorithm 1: The pseudocode of canonical EDA.

Generate initial population.
WHILE (termination criteria is false):

1. Select promising solutions into subpopulation
from the current population.

2. Create the probability model from the selected
subpopulation.

3. Sample the probability model and generate the
new population.

Step 1 is quite straightforward, the promising so-
lutions are stated using the standard selection trunca-
tion. In the case of copula-based EDA it is neces-
sary to choose the proper type of copula and derive
the copula parameters and the marginal distribution
parameters.

The principle of sampling schema for generating
the new individuals using the copula model is de-
scribed in Algorithm 2:

Algorithm 2: Sampling the copula and generating the new
individuals.

1. Obtain the random copula sample (u1, . . . ,ud) ∼
C, where ui ∈ [0;1].

2. Derive the vector x of the searched solution using
inverse marginal distributions, xi = F−1

i (ui).

3.1 Identification of Copula Probability
Model

The copula-based probability model includes two
parts: univariate marginal distributions and the cop-
ula function. Marginal distributions can be identified
separately for each variable and the copula includes
the correlation between variables.

For marginal distribution in each dimension i =
1, . . . ,d we used normal distribution, which is param-
eterized by the mean value µi and standard deviation
σi.

For assessing the parameters of the copula we
used the Kendall τ correlation coefficient.

In the case of Archimedean copulas the following
relations hold for the parameter θ (in the case of d-
variate copulas, d ≥ 3, we use average τ̄; for d = 2
the standard pairwise τ is used):

• for the Clayton copula θClayton =
2τ

1−τ .

• for the Gumbel copula θGumbel =
1

1−τ .

• for the Frank copula (approximation) θFrank
.
=

(10arcsin(τ)−1)e.

Elliptical copulas are parameterized by correlation
matrix R. Elements Ri j are adapted from Kendall’s τ
for each pair of dimensions i, j using formula Ri j =

sin 1
2 πτi j.

3.2 Copula Sampling Algorithms

Now we specify step 1 from Alg. 2 for each type of
copulas in more details.

The algorithm for sampling Archimedean copu-
las uses a random value J, which is obtained from the
distribution given by the inverse of Laplace transform
L−1 of generator (Mai and Scherer, 2012; Aas, 2004;
Melchiori, 2006), see Alg. 3.

Algorithm 3: Archimedean copula sampling.

1. generate value J ∼ L−1[ϕ(t)]
2. generate uniformly distributed random numbers

zi ∼U(0,1) (for i = 1, . . . ,d)

3. return ui = ϕ
(
− log(zi)

J

)
(for i = 1, . . . ,d)

According to (Aas, 2004; Melchiori, 2006) the
value of J can be derived:

• for the Clayton copula by Gamma distribution J∼
Gamma

( 1
θ ,θ
)
.

• for the Gumbel copula by Levy skew alpha-Stable
distribution J ∼ Stable

(
1
θ ,1,

(
cos π

2θ
)θ

,0
)

.

• for the Frank copula by logarithmic series distri-
bution J ∼ Logarithmic

(
1− e−θ).

The sampling scheme for Gaussian and Student
copulas (Mai and Scherer, 2012) (see Alg. 4, 5) uses
the Cholesky decomposition of the given correlation
matrix R to obtain the lower triangular matrix L, such
that LLT = R. The Student copula is further specified
by degrees of freedom, we use ν = (N− 1)d (where
N is population size and d number of dimensions).
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Algorithm 4: Gaussian copula sampling.

1. compute L

2. generate random numbers zi ∼No(0,1) with stan-
dard normal distribution (for i = 1, . . . ,d)

3. calculate si = ∑i
j=1 Li, jz j (for i = 1, . . . ,d)

4. return ui = Φ(si) (for i = 1, . . . ,d)

Algorithm 5: Student copula sampling.

1. compute L

2. generate V ∼ χ2(ν)
3. generate random numbers zi ∼No(0,1) with stan-

dard normal distribution (for i = 1, . . . ,d)

4. calculate si =
√

ν
V ∑i

j=1 Li, jz j (for i = 1, . . . ,d)

5. return ui = tν(si) (for i = 1, . . . ,d)

4 ISLAND-BASED COPULA-EDA

The principal motivation for the proposal of a concept
of copula-based EDA parallelization is to discover the
efficiency of the transfer of probabilistic parameters
instead of the traditional transfer of individuals. The
main goal is to improve algorithm convergence. In the
case of EDAs only a few papers deal with the discrete
probability model migration (delaOssa et al., 2004;
delaOssa et al., 2005) and (Hyrš and Schwarz, 2014)
in the case of copula-based EDA.

4.1 EDA with Migration

With the concordance of experimental work done in
(Schwarz and Jaroš, 2008), and according to our ex-
perimental results, we used the island-based commu-
nication model with bidirectional ring topology. This
topology provides good local interaction and in a few
steps allows the propagation of information along the
ring.

The evolution process on every island runs inde-
pendently. When the migration condition is met the
communication (transfer of model parameters) is ac-
tivated, see Alg. 6.

4.2 Model Combination

According to the island-based topology we have de-
composed the migration process into pairwise inter-
actions of two islands – one of them is the resident
island specified by resident probabilistic model MR

Algorithm 6 : The pseudocode of canonical EDA with
model migration.

1. Generate initial populations.

2. FOR each island DO IN PARALLEL:

3. WHILE (termination criteria is false):

4. Select promising individuals

5. Create probability model (see Sec. 3)

6. IF (sending condition):

7. Send model

8. WHILE (immigrant model received):

9. Combine models (see Sec. 4.2)

10. Sample new population from probability model

and the other one is the immigrant island whose prob-
abilistic model MI is transferred to a new resident
model.

The combination of the immigrant model with the
model of the resident island is described in more de-
tails. In general, the modification of the resident
model by the immigrant model can be formalized by
(Schwarz and Jaroš, 2008):

Mnew
R = (1−β)MR +βMI (2)

where the coefficient β ∈ [0;1] specifies the influence
of the immigrant model.

We have proposed the following model combina-
tion rules according to (Frühwirth-Schnatter, 2006):

• Learning the mean value µi of each univariate
marginal distribution Fi(xi)

µnew
i = (1−β)µR

i +βµI
i (3)

• Learning the standard deviation σi of each uni-
variate marginal distribution Fi(xi)

σnew
i =

√
(1−β)

((
µnew

i −µR
i
)2

+
(
σR

i
)2
)
+

+β
((

µnew
i −µI

i
)2

+
(
σI

i
)2
)

(4)

• Learning the correlation matrix value Ri j

Rnew
i j = (1−β)RR

i j +βRI
i j (5)

We have chosen the coefficient β as

β =

{
f itR

f itR+ f itI f itI ≤ f itR

0.1 otherwise
(6)

where f itR or f itI represents the fitness value of the
resident or the immigrant model.
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5 EXPERIMENT AND RESULTS

We used standard benchmark problems to compare
island-based copula-EDA (mCEDA) with the sequen-
tial one (sCEDA).

5.1 Benchmarks

The shifted variants of several well-known bench-
marks from the area of numerical optimization are
used. All these functions have been adapted such that
the task is minimization with optimal fitness value 0
and with shifted optima position.

• Elliptic Function:
f (x) = ∑d

i=1(106)
i−1
d−1 x2

i , xi ∈ [−100;100]

• Rastrigin’s Function:
f (x) = ∑d

i=1
(
x2

i −10cos(2πxi)+10
)
, xi ∈ [−5;5]

• Ackley’s Function:

f (x) = −20e−0.2
√

1
d ∑d

i=1 x2
i − e

1
d ∑d

i=1 cos(2πxi) +
20+ e, xi ∈ [−32;32]

• Schwefel’s Problem 1.2:
f (x) = ∑d

i=1

(
∑i

j=1 xi

)2
, xi ∈ [−100;100]

• Rosenbrock’s Function:
f (x) = ∑d−1

i=1

(
100(x2

i − xi+1)
2 +(xi−1)2

)
,

xi ∈ [−100;100]

• Summation Cancellation:
f (x) = 105− 1

10−5+∑d
i=1 |∑i

j=1 x j |
, xi ∈ [−1;1]

We used the shifted optima position in the form
f itness(x) = f (x′), where x′i = xi − 0.25(xmax −
xmin), i = 1, . . . ,d.
We have chosen the following settings:

• Problem size: 10 variables/dimensions for all
problems.

• Population size of each island: 500.

• Selection: We used truncation selection, with a
selection proportion of 0.2, i.e. 100 individuals.

• Number of islands: 10.

• Migration rate: after every 20 generations.

• Maximum number of fitness evaluations: 500000
(i.e. 100 generations for the island-based model
and 1000 generations for the sequential variant).

• Number of independent runs: 20.

5.2 Results and Discussion

We carried out a comparison of two variants of
the copula-based EDA algorithm: sequential variant
sCEDA specified in Sec. 3 and island-based algorithm

with model migration mCEDA (Sec. 4) – both of them
with the same classes of copulas.

We used the so-called weak model of paralleliza-
tion, the population size in sCEDA is equal to the pop-
ulation of one island in mCEDA. The total population
in mCEDA is thus ten-times bigger than in sCEDA.
To retain the same computational cost, we increased
the number of generations ten-times for sCEDA ac-
cording to mCEDA, thus the total computational cost
measured by fitness evaluations is the same.

In Tables 1–6 the convergence of the proposed
sCEDA and mCEDA algorithms is presented. The
mean values related to specified evaluation epochs are
listed.

It can be seen that mCEDA performs better than
sCEDA for most benchmarks. (Only in the case of
Ackley’s benchmark the sCEDA is better, the cause is
under our investigation.) The sCEDA is able to find
a relatively good local solution quite fast but then it
loses its diversity and no further improvement is ob-
tained. The mCEDA converges slowly but it has the
capability to find near optimal solution. We suppose
that this performance is caused by the phenomenon of
the proposed model migration.

In the case of Rosenbrock’s and Summation Can-
cellation problems, only mCEDA using elliptic copu-
las is able to achieve some progress during the evo-
lution process. Neither Archimedean copulas nor
sCEDA have this capacity.

Besides the comparison of sCEDA and mCEDA
the influence of each copula type in mCEDA is worth
discussing. In the case of Rosenbrock’s and Sum-
mation Cancellation, only elliptical copulas are able
to perform well. In the case of Rastrigin’s and El-
liptic functions, Archimedean copulas perform better
than elliptic ones. In the case of Ackley’s and Schwe-
fel’s 1.2 functions, there is no significant difference
between the two copula families.

From the observations it follows that the success
rate of the both versions of mCEDA is almost iden-
tical. But in the case of Archimedean mCEDA the
drawback appears in tendency to become stuck on lo-
cal optima, see Table 3.

In Tables 7–9 we arranged a comparison (mean
fitness values) of mCEDA using the Frank copula
(mCEDA-F) and the Gaussian copula (mCEDA-G)
(as members of Archimedean and elliptic families)
with the other published algorithms that used differ-
ent versions of copulas. The comparison is done for
the same number of fitness evaluations for the same
subset of benchmarks with 10 dimensions.

In Table 7 a comparison with the algorithm using
the Copula Bayesian network (Méndez and Landa,
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Table 1: Experimental results (mean fitness) for Rastrigin’s
function.

fit. eval. Clayton Gumbel Frank Gauss Student
island based
100000 5.78e+00 1.42e-01 9.88e-02 2.47e+01 2.49e+01
200000 3.70e-05 1.04e-07 3.92e-07 1.16e+00 1.70e+00
300000 2.79e-11 2.72e-14 2.23e-13 2.41e-01 4.26e-01
400000 0.00e+00 0.00e+00 0.00e+00 5.02e-02 9.60e-02
500000 0.00e+00 0.00e+00 0.00e+00 1.71e-04 5.00e-02

sequential
100000 2.56e-01 4.65e-01 8.67e-01 2.36e+00 2.75e+00
200000 2.56e-01 4.65e-01 6.52e-01 2.36e+00 2.75e+00
300000 2.56e-01 4.65e-01 6.52e-01 2.36e+00 2.75e+00
400000 2.56e-01 4.65e-01 6.52e-01 2.36e+00 2.75e+00
500000 2.56e-01 4.65e-01 6.52e-01 2.36e+00 2.75e+00

Table 2: Experimental results (mean fitness) for Rosen-
brock’s function.

fit. eval. Clayton Gumbel Frank Gauss Student
island based
100000 8.40e+00 8.40e+00 8.57e+00 8.13e+00 8.27e+00
200000 7.83e+00 7.89e+00 8.00e+00 6.79e+00 6.59e+00
300000 7.66e+00 7.76e+00 7.86e+00 6.46e+00 6.16e+00
400000 7.53e+00 7.62e+00 7.69e+00 6.25e+00 5.86e+00
500000 7.50e+00 7.60e+00 7.66e+00 6.20e+00 5.82e+00

sequential
100000 8.27e+00 8.13e+00 8.14e+00 3.28e+04 7.63e+04
200000 8.27e+00 8.13e+00 8.14e+00 3.28e+04 7.61e+04
300000 8.27e+00 8.13e+00 8.14e+00 3.28e+04 7.61e+04
400000 8.27e+00 8.13e+00 8.14e+00 3.28e+04 7.61e+04
500000 8.27e+00 8.13e+00 8.14e+00 3.28e+04 7.61e+04

Table 3: Experimental results (mean fitness) for Summation
Cancellation function.

fit. eval. Clayton Gumbel Frank Gauss Student
island based
100000 1.00e+05 1.00e+05 1.00e+05 9.99e+04 9.98e+04
200000 9.99e+04 9.99e+04 9.99e+04 9.43e+04 9.64e+04
300000 9.99e+04 9.97e+04 9.97e+04 7.66e+04 6.89e+04
400000 9.97e+04 9.95e+04 9.92e+04 5.23e+04 4.53e+04
500000 9.97e+04 9.93e+04 9.90e+04 4.46e+04 4.40e+04

sequential
100000 1.00e+05 1.00e+05 1.00e+05 9.99e+04 1.00e+05
200000 1.00e+05 1.00e+05 1.00e+05 9.99e+04 1.00e+05
300000 1.00e+05 1.00e+05 1.00e+05 9.99e+04 1.00e+05
400000 1.00e+05 1.00e+05 1.00e+05 9.99e+04 1.00e+05
500000 1.00e+05 1.00e+05 1.00e+05 9.99e+04 1.00e+05

2012) after 100,000 evaluations is shown. For the
case of Rastrigin’s, Ackley’s and Schwefel’s 1.2 func-
tions mCEDA-F and mCEDA-G are evidently better,
for Rosenbrock’s function the results are comparable.

Table 4: Experimental results (mean fitness) for Elliptic
function.

fit. eval. Clayton Gumbel Frank Gauss Student
island based
100000 2.76e-01 3.35e-01 3.42e-01 2.78e+01 4.25e+01
200000 4.94e-08 5.78e-08 8.14e-08 5.28e+00 4.67e-01
300000 6.75e-15 1.02e-14 1.46e-14 1.94e+00 1.82e-01
400000 3.82e-17 4.27e-17 1.21e-18 1.39e+00 1.32e-01
500000 3.82e-17 4.27e-17 1.21e-18 9.63e-01 1.17e-01

sequential
100000 6.46e-16 7.23e-16 6.68e-16 1.30e+03 2.45e+03
200000 6.46e-16 7.23e-16 6.68e-16 1.30e+03 2.45e+03
300000 6.46e-16 7.23e-16 6.68e-16 1.30e+03 2.45e+03
400000 6.46e-16 7.23e-16 6.68e-16 1.30e+03 2.45e+03
500000 6.46e-16 7.23e-16 6.68e-16 1.30e+03 2.45e+03

Table 5: Experimental results (mean fitness) for Ackley’s
function.

fit. eval. Clayton Gumbel Frank Gauss Student
island based
100000 1.16e-02 1.17e-02 1.35e-02 1.27e-02 1.33e-02
200000 4.91e-06 4.39e-06 5.85e-06 5.65e-06 5.53e-06
300000 2.01e-09 2.16e-09 2.51e-09 2.36e-09 2.00e-09
400000 8.67e-13 8.40e-13 1.15e-12 8.48e-13 7.40e-13
500000 1.33e-15 1.69e-15 2.93e-15 9.77e-16 1.51e-15

sequential
100000 0.00e+00 0.00e+00 0.00e+00 3.21e-02 8.60e-02
200000 0.00e+00 0.00e+00 0.00e+00 3.21e-02 8.60e-02
300000 0.00e+00 0.00e+00 0.00e+00 3.21e-02 8.60e-02
400000 0.00e+00 0.00e+00 0.00e+00 3.21e-02 8.60e-02
500000 0.00e+00 0.00e+00 0.00e+00 3.21e-02 8.60e-02

Table 6: Experimental results (mean fitness) for Schwefel’s
1.2 function.

fit. eval. Clayton Gumbel Frank Gauss Student
island based
100000 1.78e-03 1.79e-03 2.20e-03 2.85e-03 2.54e-03
200000 1.03e-10 9.30e-11 1.11e-10 2.63e-10 2.48e-10
300000 5.09e-17 7.49e-17 1.08e-16 2.07e-16 2.85e-16
400000 5.09e-17 7.49e-17 1.08e-16 2.07e-16 2.85e-16
500000 5.09e-17 7.49e-17 1.08e-16 2.07e-16 2.85e-16

sequential
100000 6.15e-16 5.39e-16 6.00e-16 5.47e+01 2.23e+02
200000 6.15e-16 5.39e-16 6.00e-16 5.46e+01 2.23e+02
300000 6.15e-16 5.39e-16 6.00e-16 5.46e+01 2.23e+02
400000 6.15e-16 5.39e-16 6.00e-16 5.46e+01 2.23e+02
500000 6.15e-16 5.39e-16 6.00e-16 5.46e+01 2.23e+02

In Table 8 a comparison with the other suite of
algorithms (Zhao and Wang, 2012; Jia et al., 2013)
is carried out on the level of 300,000 evaluations.
In the case of Rosenbrock’s function the results are
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Table 7: Comparison (mean fitness) of mCEDA with Cop-
ula Bayesian Network (CBN) from (Méndez and Landa,
2012).

Rastr. Ack. Schw. 1.2 Rosen.
CBN 2.39e+00 3.71e-02 2.23e+01 1.05e+01

mCEDA-F 9.88e-02 1.35e-02 2.20e-03 8.57e+00
mCEDA-G 2.47e+01 1.27e-02 2.85e-03 8.13e+00

Table 8: Comparison (mean fitness) of mCEDA with: Cop-
ula EDA (cE), Copula EDA of Dynamic K-S test (cE-KS)
from (Zhao and Wang, 2012); Clayton (Cl), Gumbel (Gu),
Sn-EDA (Sn) from (Jia et al., 2013).

Ellip./sphere Rastrigin’s Rosenbrock’s
cE 4.62e-08 6.45e-08 6.52e+00

cE-KS 1.16e-08 2.60e-08 7.05e+00
Cl 1.45e-07 7.00e-08 8.36e+00
Gu 3.59e-09 5.49e-09 6.62e+00
Sn 1.22e-09 9.52e-09 6.54e+00

mCEDA-F 1.46e-14 2.23e-13 7.86e+00
mCEDA-G 1.94e+00 2.41e-01 6.46e+00

Table 9: Comparison (mean fitness) of mCEDA with
MIMICGaussian

Gaussian and TREEGaussian
Gaussian copula model from

(Salinas-Gutiérrez et al., 2011).

Schwefel’s 1.2 Elliptic
MIMIC 9.96e-01 1.15e+00
TREE 7.74e-01 3.99e-01

mCEDA-F 2.20e-03 3.42e-01
mCEDA-G 2.85e-03 2.78e+01

comparable, for Rastrigin’s and the Sphere functions
(the Sphere function is a simplified version of Ellip-
tic problem) our algorithm mCEDA-F is better, but
mCEDA-G is worse.

In Table 9 a comparison with the algorithm using
the MIMICGaussian

Gaussian and TREEGaussian
Gaussian copula models

(Salinas-Gutiérrez et al., 2011) after 100,000 evalua-
tions is shown. In the case of Schwefel’s 1.2 function
mCEDA-F and mCEDA-G achieve evidently better
behavior. In the case of the Elliptic problem mCEDA-
F is better than TREE and MIMIC versions, on the
other hand mCEDA-G is worse than the TREE and
MIMIC versions. Unfortunately (Salinas-Gutiérrez
et al., 2011) have used 12 dimensions and the vari-
able domain is narrower than in our case, so the mu-
tual comparison is only partly true.

6 CONCLUSION

In this paper we have introduced the utilization
of multivariate elliptic and Archimedean copulas

as cases of the probability model in the Estima-
tion of Distribution Algorithm with model migration
(mCEDA). We have presented the main theoretical
basis and an effective approach of constructing and
sampling both classes of copulas.

In order to illustrate the performance of the island-
based mCEDA algorithm, a few known benchmarks
of optimization were used. From the experimental re-
sults it follows:

1. mCEDA with model migration performs evi-
dently better than the sequential sCEDA.

2. mCEDA using the elliptic copulas performs better
than the Archimedean version of mCEDA.

We have also compared the performance of our
mCEDA algorithm with other published copula EDA
algorithms (Méndez and Landa, 2012; Zhao and
Wang, 2012; Jia et al., 2013; Salinas-Gutiérrez et al.,
2011). Our mCEDA algorithm is evidently better in
most cases.

Our future research will be focused on the uti-
lization of different implementations of univariate
marginal distributions and their modification during
the evolution process. An additional problem seems
to be the tuning of the whole learning process during
model combination in the migration mode.
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delaOssa, L., Gámez, J. A., and Puerta, J. M. (2005). Im-
proving model combination through local search in
parallel univariate edas. In Congress on Evolutionary
Computation, volume 2, pages 1426–1433. IEEE.
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The bayesian optimization algorithm. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence (GECCO-99), volume I, pages 525–532 also Il-
liGAL Report no. 99003.

Pelikan, M. and Mühlenbein, H. (1999a). The bivariate
marginal distribution algorithm. In Advances in Soft
Computing, pages 521–535. Springer London.

Pelikan, M. and Mühlenbein, H. (1999b). Marginal dis-
tributions in evolutionary algorithms. In In Proceed-
ings of the International Conference on Genetic Algo-
rithms Mendel 98, pages 90–95.
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