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Abstract: The design of high quality electron generators is important for a variety of applications including materials 
processing systems (including welding, cutting and additive manufacture), X-ray tubes for medical, 
scientific and industrial applications, microscopy, and lithography for integrated circuit manufacture. The 
many variants of electron gun required, and the increasing demands for highly optimised beam qualities, 
demands more systematic optimisation methods than offered by trial and error design approaches. This 
article describes the development of evolutionary algorithms to enable the automatic optimisation of the 
design of vacuum electron guns. The gun design usually is required to meet specified beam requirements for 
the applications of interest, so within this work, beam characteristics from the calculated electron 
trajectories, for example brightness, intensity at focus and beam angle, were derived and used as a measure 
of the design fitness-for-purpose. Evolutionary parameters were assessed against the efficiency and efficacy 
of the optimisation process using an analogous design problem. This novel approach offers great potential 
for producing the next generation of electron guns. 

1 INTRODUCTION 

The design of electron guns is typically carried out 
with analysis software tools to test whether 
prospective designs will meet the design 
requirements. As such, the design of guns is at best 
an informed trial-and-error process. Using present 
techniques, the final design settled upon may not be 
the best available, and may just be a local optimum 
for the feature and dimension changes attempted. 
Confidence that the best design has been found can 
be increased by carrying out further analysis of 
different designs, but this can be time consuming 
and ultimately not satisfactory. 

Requirements for electron guns are generally 
specified as beam parameters suitable for the 
application (ISO 2008). Typically, this would be a 
required intensity at a certain working distance from 
the end of the gun column, or a range of required 
values – but the beam angle may also be important 
too. For example, lower angles are specified for 
thick section welding applications so that the beam 
is intense through the thickness of the weld, whereas 
for thin section welding the beam angle can be 
higher, as a more shallow depth of focus can be 

tolerated. Normally an electron gun will be designed 
to be suitable for a range of applications, so the 
beam requirements may be stated as a list of 
intensity and power at a working distance. The 
accelerating potential is influential on the beam 
characteristics but usually this parameter has a fixed 
maximum for a particular application, constrained 
by the specification of high voltage components and 
X-ray shielding. In design optimisation terminology, 
electron guns have many variables of geometry and 
electrical operation, and are likely to have multiple 
objectives in all but the simplest of cases. 

The primary challenge addressed by this work is 
to assess how automated design evolution 
methodologies can be successfully applied to 
electron gun designs.  

Within this work, techniques have been 
developed for quantifying the electron optical 
properties of beams produced by analytical 
simulations of prospective gun designs. A 
methodology has been developed to automatically 
generate electron gun models, which give accurate 
prediction of electron trajectories. Methods for 
encoding the design have been developed and tested 
– potentially allowing a variety of optimisation 
techniques to be applied. 
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The focus of this work was upon an evolutionary 
method for optimisation of designs to enable 
automatic design of electron guns to meet specified 
requirements within defined geometric and electrical 
constraints. The aim was to develop a method 
whereby a designer can identify beam requirements 
and system constraints, which are then used to find 
an optimum electron gun geometry. 

The aims of the work were as follows. 
• To investigate the best way of assessing and 

quantifying the beam quality over the operational 
range of the gun.  

• To develop an optimisation methodology for 
design of electron guns – in particular the use of an 
evolutionary design technique that will use the 
quantified beam characteristics as a quality factor 

• To carry out a case study where the 
methodology will be applied to an electron gun 
design with the aim of demonstrating the viability of 
the design process. 

2 BACKGROUND 

2.1 Meta-heuristic Optimisation 
Methods 

There are many variants of optimisation techniques 
that have been applied to engineering design 
(Sykulski, 2008). Design problems typically may be 
characterised as having multiple input variables 
where no assumptions can be made about their 
relationship to the solution, i.e. the solution function 
cannot be assumed be of any type, and cannot be 
assumed to be continuous. In addition, many 
problems will have local optima. The solution is 
often found by using computer modelling to 
simulate the candidate solution, with quantified 
outputs being derived from the model to assess its 
suitability. Where no assumptions can be made 
regarding the solution function, meta-heuristic 
methods are used. Many of these have been 
modified to explore the input variables’ ranges more 
widely to avoid being ‘trapped’ in local optima. 
Optimisation methods include simulated annealing 
(Kirkpatrick et al., 1983), particle swarm 
optimisation (Clerc, 1999) and ant colony 
optimisation (Dorigo et al., 1999).  

Where there are multiple objectives (measures of 
fitness) it is likely that no one solution will optimise 
all of these. Consequently, there are a set of optimal 
solutions that are equally weighted. If a 
representative sub-set of these is plotted in objective 
space, a Pareto front is displayed (Hawe and 

Sykulski, 2007). All solutions on the front are 
equally optimal and none of them could be improved 
in one objective without another objective being 
diminished. Selecting one of the solutions can then 
only be carried out by applying another measure of 
fitness, or by a subjective choice. 

Evolutionary algorithms (Denies et al., 2013) use 
processes of selection, mutation and reproduction to 
attempt to find an optimal design. Variables for the 
candidate solutions must be encoded in a set of 
genes. The solutions are analysed, scored according 
to the design requirements and a sub-set of the best 
designs is selected. The processes of inheritance, 
genetic cross-over, and mutation are applied to 
generate a new population of candidate solutions. 
Normally, the population is generated initially as a 
random set of solutions and then with each 
generation the fittest are selected to parent the next 
generation. The process continues until a satisfactory 
solution is generated. 

For the reported work evolutionary algorithms 
were investigated for electron gun design for the 
first time. The optimisation process can be formally 
stated as follows. Tentative designs are fully 
described genetically. The function: ݂(ݔ):	Φ௚ → ℝ 

assigns real values to genes, see section 3.2, 
where Φ௚represents the genotypic search space. The 
optimal solution ݔො is found from ݔො = 	 max௫	∈஍೒  (ݔ)݂

where ݂(ݔ) is the objective function to be 
maximised (Franz 2006). 

In the case of electron guns this is a non-
continuous function with many local maxima. In this 
work the objective function is derived from electron 
optical characteristics of the beam produced by the 
design, and these are calculated by modelling the 
tentative solution x in finite element software to find 
field and charge distributions, ray tracing and then 
electron optical calculation, see section 3.1. 

2.2 Electron Gun Design 

Successful gun design requires calculation of 
electron emission and the focusing of electron beams 
that can be achieved as they are accelerated. High 
voltage and high power electron beams for material 
processing applications were first demonstrated 
during the late 1940s and 1950s by Steigerwald in 
Germany, Stohr in France and Wyman in the USA 
prior to the availability of computer modelling 
software. 
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The higher current beams required new design 
approaches to avoid beam aberration due to the 
mutual repulsion of the electrons, particularly as 
they are first emitted from the cathode. In particular, 
the Pierce gun geometry was developed that used 
focusing electrostatic fields to overcome the beam 
spreading caused by space charge (Pierce, 1954). 

As computing power became available, the first 
electron optical software for the design of guns and 
optics was developed initially for accelerator 
experiments – notably at Stanford University in 
USA (SLAC) (Herrmannsfeldt, 1988) and 
Rutherford Appleton Laboratories (RAL) 
(Biddlecombe and Simkin, 1983). Computer 
analysis of electron gun designs allowed production 
of higher beam powers. Highlights included 
developments during the 1970’s and 1980’s at 
Steigerwald, Sciaky and TWI. 

The design of electron guns, lenses and 
deflection systems has advanced significantly since 
the introduction of computer modelling of 
electrostatic and electromagnetic systems. In 
particular, development of high power guns used for 
welding and melting, where space charge plays a 
significant role in determining the beam qualities, 
has depended upon accurate modelling. The 
programs from SLAC and RAL have been 
developed further in scope and capacity, taking 
advantage of computer hardware developments, and 
are now available as EGUN and the Opera software 
package respectively. There are now many other 
electron gun analysis programs available. An 
example of a 2D model solution is given in figure 1. 
As the model is axisymmetric, only the right half is 
shown. The cathode is positioned at Z=0 and the 
beam emerges from the anode at Z=-50. In essence, 
the software packages take as inputs the geometry, 
the cathode electron emission characteristics and 
applied potentials, and produce a set of electron 
beamlet trajectories. These trajectories can be 
analysed further to derive electron optical properties 
of the beam – see section 3.  

Mathematical analysis techniques have been 
applied to optimise the curvature of cathodes in 
electron guns (Lewis et al., 2004), and these have 
been shown to be effective. It may be possible to 
develop further these techniques to look at the 
combined shape of the gun electrodes and cathode, 
however the complexity of the problem space, and 
the number of possible combinations, may extend 
computing times beyond reasonable durations. 

 

 
Figure 1: Example of a 2D solution of an electron gun 
showing the geometry in cross section and the electron 
beamlet trajectories. 

For highly constrained variables, response 
surface modelling techniques such as kriging (Hawe 
and Sykulski, 2007), (Lebensztajn et al., 2004) have 
been deployed. Kriging is a method originally 
developed for geo-statistical modelling. It has been 
applied to electromagnetic problems to interpolate 
between known values in order to find an optimum 
value – for example to optimise the pole piece 
profile to produce a required magnetic field 
distribution.  

This approach is most suitable for investigating 
minor changes to geometry, where the variation is 
reasonably constrained and where a continuously 
variable optimisation function is experienced. 
Evolutionary algorithms, by comparison, are far 
more flexible in dealing with a more complicated 
solution space, and far more capable of searching 
across several local maxima for an optimal solution. 

Very recently published work has looked at 
shape optimisation using evolutionary algorithms for 
a magnetron injection gun (Jiang et al., 2015). In this 
work the objective function optimised the electron 
velocity spread. The reported work differs in using 
processing beam characteristics for the objective 
function, which takes into account the electron 
optics and processing requirements rather than direct 
use of the output from an electron gun model. 

In summary, many different optimization 
techniques are available. Prior to this work, only 
kriging has been applied to processing electron gun 
design, and this in a limited fashion. 
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3 AN OPTIMISATION METHOD 
FOR ELECTRON GUN DESIGN 

3.1 Beam Quality Metrics 

Any optimisation method will require a quantified 
measure of the suitability of the design to meet the 
specified requirements. In the case of electron gun 
design, it is important therefore to derive beam 
quality metrics as a gauge for the design fitness. 
Within this work a space charge solver and electron 
trajectory plotting software package has been used to 
analyse designs. It was then necessary to derive the 
beam characteristics from the electron trajectories 
from the analysis. These were required to be in a 
form that could then be gauged against 
requirements. 

It was necessary to analyse any one design over a 
number of different operating conditions, e.g. 
varying cathode emissivity and accelerating 
potentials, to ensure that the design requirements 
were met over the working range of the gun. The 
scoring system was required to combine assessment 
of the operation at all the different conditions. 

For materials processing applications there are a 
number beam characteristics of particular relevance. 
For example, in electron beam welding, where the 
beam penetrates into material thicknesses that can be 
up to several hundred millimetres, the ability of the 
beam to form a vapour filled deep cavity (referred to 
as a keyhole) is dependent upon its intensity. In 
addition, the depth of focus of the beam, which is 
related to the beam angle, typically will be of greater 
importance for thicker section welding. Brightness is 
an inherent quality of an electron beam, and is 
defined as the ratio of the focused spot intensity to 
the beam solid angle. High brightness indicates that 
an intense and near parallel beam could be formed 
by the right electron optical elements. It also 
indicates that a very intense spot could be formed for 
a high angle beam. 

The use of beam brightness alone as a score of 
the gun design may lead to impractical designs 
where the beam produced was of such high diameter 
that the lens and deflection coils became too large. 
Consequently, the scoring system needed to combine 
a number of factors, such as brightness and beam 
width in the lens. These factors were weighted 
according to their relative importance. Some of the 
additional factors required the electron beam to be 
analysed after the focusing lens – for example to 
look at the focused beam spot size at the work piece. 

 

Within this work 2-D models of the electron gun 
were used and trajectory plotting was carried out in 
two dimensions. This is accurate for the vast 
majority of electron guns used for materials 
processing, which are axi-symmetric. The 
trajectories produced by the analysis software were 
described by a velocity vector and radial position 
when at a specified axial position beyond the anode. 
Each trajectory carries a portion of the beam current, 
and this information is also extracted. This can be 
used in current weighted average calculations of the 
beam radius and angle. The solution time for a 
single model was typically less than 1 minute. 

Although the beam could have been examined 
after the lens by modelling the complete gun 
column, this would have been computationally 
expensive, leading to extended solution times. To 
speed up the analysis, algorithms have been 
developed that allowed the beam trajectories to be 
projected forward and through the focusing lens. For 
most materials processing electron beam systems the 
lens aberration could be neglected and it was 
therefore not necessary to model the magnetic lens 
field and plots the trajectories of the beam through 
it. In addition, errors accumulate with trajectory 
plotting such that plotting overlong path lengths 
would be inaccurate. Instead, a mathematical model 
of the lens was used and the trajectories calculated 
from the gun, through the lens to their focal position 
at the work piece. Intensity plots across the focused 
beam spot were then calculated which allowed beam 
intensity metrics to be derived such as the full width 
at half maximum (FWHM), the full width at half 
power (FWHP) and the current weighted average 
(CWAD) diameter, see for example figure 2. A 
useful metric of beam quality is given by the 
brightness, defined as ܤ = 	  Ωܬ

where J is the beam spot intensity and Ω is the 
beam solid angle. This quality is invariant, in 
practical terms, for material processing type electron 
guns, as the electron lens aberration is comparatively 
insignificant. 

Consequently, a number of beam metrics were 
derived from the trajectory files, which could then 
be used subsequently as a measure of the gun design 
fitness in order to enable selection of better designs 
within a population as part of a design evolutionary 
algorithm. 
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Figure 2(a): Example of a ray diagram after projection of trajectories from the gun model through a mathematical lens to 
their focus at the work piece. 

 

Figure 2(b): Example of a beam intensity plot after projection of trajectories from the gun model through a mathematical 
lens to their focus at the work piece. 

3.2 Genetic Coding of the Design 

To apply evolutionary design techniques it is 
necessary to include the design into a genome. The 
genome is a collection of genes that describe the 
design. For an electron gun, designed in 2-D, a 

geometry was specified describing the anode, high-
voltage electrodes and the cathode. Each line within 
the geometry had a starting and stopping position 
and a degree of curvature. These parameters 
provided a means of describing the geometry as a 
series of genes. An example of the geometric 
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description is given in Table 1, which could be 
directly translated into a model by the simulation 
software. Each row in Table 1 described the next 
corner of an electrode, cathode or anode shape. The 
corner coordinates were given as real values, XP and 
YP, and the discretisation of the line, which gave 
higher mesh resolution for curved lines for example, 
was given by the parameter N. Other parameters that 
were not varied by the evolutionary algorithm were 
also defined e.g. F, which was the boundary 
condition for the model at that face. 

Table 1: Example of geometric description of part of an 
electrode in an electron gun. 

1 CARTESIAN  YP=-38.7  CURVATURE=0   N=17   
XP=7.95 

2 CARTESIAN  XP=100  N=93    YP=-38.7 
CURVATURE=0.0 

3 CARTESIAN  YP=-50  N=12  F=NO    XP=100.0 
CURVATURE=0.0 

4 CARTESIAN  XP=2.75   N=98    YP=-50.0 
CURVATURE=0.0 

5 FINISH N=12  F=V 
6 QUITDRAW  
7 GROUP  NAME=ANODE 

 
Each of the shapes within the gun design were 
defined in a similar manner to Table 1, and together 
these formed the complete genotype. 

The special adaptions that have been made to 
evolutionary methods to allow them to be 
implemented for electron gun designs were: 

• A change genome was constructed that 
contained only those parts of the design that can be 
changed and to which evolutionary processes can be 
applied 

• A generic genome was constructed that 
described the rest of the design, and which when 
added to the change genome described a complete 
gun design 

• The allowable range of any position or line 
curvature in the change genome was encoded within 
it to (a) constrain solutions within practical limits 
and (b) scale any mutation to that range 

• Gene splitting was only carried out between 
genes so that mutation could be controlled 
discretely. 

There were a number of constraints on the 
geometry that could be accommodated. The 
approach taken within this work to recognise these 
constraints was to take, in preparation for the design 
optimisation algorithm, two geometries which 
described the full range of design freedom. These 
two geometries were examined by an algorithm to 
produce a ‘change genome’ containing just those 

parts of the model that were different in the two 
geometries. Those parts of the model that were 
completely constrained, i.e. the same in the two 
geometries were not genetically encoded. These 
were described within a template similar to Table 1 
and recorded in a single generic genome to be used 
for all the designs.  

The change genome was used whenever a gene 
was mutated. The mutation was constrained within 
the limits for that position or line curvature and the 
scale of mutation was normalized to the range for 
that position or curvature. Combining the new 
genome with the generic genome gave a description 
of the complete gun design. 

The following steps were carried out to 
implement the design evolution process: 

i. An initial population of electron gun design 
variants was generated by producing genomes 
made from a randomised set of change 
genomes combined with the generic genome. 

ii. Each of the electron gun designs was analysed 
using a finite element space-charge solver and 
electron trajectory vectors for beamlets from 
the cathode determined as they left the gun 

iii. For each of the electron gun designs, the 
electron trajectory data was used to produce 
beam quality metrics (brightness, intensity, 
angle and beam width) through calculation of 
the trajectory path mathematically traced 
through an electron lens to the work piece 

iv. The beam quality metrics were then used to 
derive a fitness score for the design. This score 
depended upon the requirements for the gun 
e.g. maximise the beam brightness and 
minimise the beam angle 

v. Those designs with the best fitness score were 
selected to produce a ‘parent group’ 

vi. The next generation of designs was produced 
from this group by choosing two designs 
randomly and splicing a random section of one 
change genome into the other. The genome was 
only split between genes to avoid mutations 
caused by splits occurring within a gene. 
Random mutation of any one of the change 
genes was also implemented in this stage. The 
new change genomes were combined with the 
generic genome to produce the new generation 
of gun designs. 

vii. The parent group and the new generation 
formed a new population, which was then put 
through the same process until a preselected 
satisfactory fitness score was achieved. 

The process therefore was designed to have a 
number of features anticipated to be of benefit to the 
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particular challenge. A good design genome was 
promoted to the population forming the next 
generation until its fitness score ranking was not 
high enough. This ensured that each generation’s 
parent group was at least as good as the last, and is a 
process termed elitist selection. This feature has 
been investigated, as there was concern that elitism 
may allow local maxima of the optimisation function 
to dominate.  

By splicing the genes from two parents, a section 
of the design was copied to the child with the rest 
remaining the same as one of the parents. In genetic 
algorithm terminology this was a two point 
crossover function. The splicing respected the 
database structure of the genome to avoid mutation 
of the design due to corrupting the database. This 
was achieved by using ensuring that the data format 
as represented in Table 1 was maintained. However, 
some mutation was introduced to a controlled level 
to ensure that the design space was adequately 
explored. 

In summary, the evolutionary process was 
implemented with special adaptions to make it 
suitable for electron gun design using modelling 
software and working within practical physical 
constraints. 

3.3 Evolution Parameters 

The main parameters for the evolution process were 
the parent group size, the offspring group size, the 
probability of gene mutation and the scale of gene 
mutation. These parameters generally determine the 
efficiency of the optimisation process, i.e the time 
taken for optimisation and the exploration of the 
problem space. Although many publications quote 
the evolution parameters used, there is little 
justification for the choices taken (Karafotias et al. 
2014). Within this work, an analogous design 
problem to electron guns has been used to examine 
the effect of different parameters on the evolutionary 
optimisation process. 
The analogous problem chosen is one of shape 
fitting. The problem is to find the coordinates of the 
corners of a target shape. The fitness function is the 
inverse of the sum of the distances of mismatch 
between the potential solution corners and the target 
shape corners. 

This problem is useful for examining the effect 
of evolutionary parameters because it is dealing with 
coordinate values, as in the electron gun 
optimisation. It is also scalable in terms of 
complexity – so the effect of increasing the number 
of corners in the target shape can be examined. 

This problem differs from electron gun design 
optimisation in that the fitness function has a single 
solution and varies smoothly, which would not be 
expected for an electron gun being scored on the 
electron beam optical qualities. However, tests 
carried out with this problem, described in section 4, 
give an insight into identifying the best evolutionary 
parameters for optimisation. 

4 DESIGN TRIALS 

4.1 Shape Evolution 

The objective of this trial was to determine the most 
efficient settings of the evolutionary parameters for 
solving a shape fitting optimisation. This has been 
carried out for 3, 5, 8 and 10 cornered shapes. For 13 
cornered shapes, the individual optimisations were 
taking too long to allow practical trials over a wide 
range of evolutionary parameters. Efficiency was 
measured by recording the total number of calls to 
the scoring function for each optimisation – this 
must be done for the initial parent group and each 
generation of offspring. In the analogous electron 
gun design optimisation, a call to the scoring 
function would require a model solution and 
trajectory analysis, taking up to 1 minute. In this 
case, a call to the scoring function took under 1msec, 
allowing a large number of trials to be carried out. 

For the 3 to 10 cornered shapes, the number of 
offspring has been varied from 2 to 100, the parent 
group from 2 to 30, the mutation scale from 0.05 to 
1 (5% to 100%) and the mutation rate from 0.01 to 
0.1 (1% to 10%). In total, the different combination 
of parameters led to 42,000 optimisations being 
executed for each shape. Each optimisation required 
from 338 (fastest 3 cornered) to over 200,000 calls 
(slowest 10 cornered) to the scoring function. 

The results were analysed by plotting the number 
of calls as a function of the number of offspring and 
number in the parent group, see figure 3(a) and the 
mutation rate and mutation scale, see figure 3(b), 
both for 10 cornered shape evolution. Also, 
sampling was carried out of the most efficient 1% of 
optimisations for each shape and the modal 
evolutionary parameter settings were extracted – see 
figures 4(a) and (b).  

The results show that a small parent group of 2 
or 4 is most efficient over all the range of shapes. It 
is also clear that as the number of corners increases 
the optimum values for mutation rate decreases. For 
3 and 5 cornered shapes the optimum mutation scale 
is 0.15 dropping to 0.1 for 8 and 10 cornered shapes. 
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Figure 3(a): The number of score function calls as a 
function of the parent group and offspring group sizes. 

 

Figure 3(b): The number of score function calls as a 
function of the mutation scale and mutation rate. 

For 3 cornered shapes the optimum mutation rate is 
0.1, decreasing to 0.06 for 8 cornered shapes and 
0.05 for 10 cornered shapes. This is shown in figures 
4(a) and (b).  

In summary, this trial has shown that as problem 
complexity increases the optimum mutation rate and 
scale for rapid optimisation will be lower. It  
 

 

Figure 4(a): Histogram of the top 1% optimisations 
showing decreasing mutation rate with increasing problem 
complexity.  

 
Figure 4(b): Modal values of mutation scale and mutation 
rate of the top 1% efficient optimisations. 

indicates that values of mutation rate and scale 
should be used of less than 0.05 and 0.1 
respectively. Regardless of problem complexity, 
parent groups of 2 or 4 are the most efficient, as are 
offspring numbers of 10 or less. 

These results were then used to determine the 
evolutionary parameters for an electron gun design 
problem. 

4.2 Anode Shape Evolution 

The electron gun evolutionary design process was 
applied to a novel radio frequency (RF) excited 
plasma cathode gun design (del Pozo et al., 2014; 
Ribton and Sanderson, 2012). This type of gun 
design is a diode having a high-voltage electrode 
and cathode at the same potential. The cathode is a 
plasma, but for simulation purposes the cathode 
surface has been modelled as a lanthanum 
hexaboride thermionic emitter over a range of 
temperatures and therefore emissivities, producing 
electrons with no thermal energy. 

The gun design was required to produce an 
intense electron beam at focus, therefore of high 
brightness, and produce a reasonably low angle 
beam so that it could pass through an existing gun 
column with a constriction at the electron lens. 
However, too low an angle beam would give poor 
electron optic magnification so an optimum beam 
diameter of 4mm at the lens position (150mm from 
the cathode) was chosen. These requirements are 
summarised in Table 2. 

Table 2: RF plasma gun beam requirements. 

Metric Requirement 
Diameter at 150mm from cathode Ideally 4mm 
Brightness > 5000 Amm-2sr-1

 
Weighting factors were used for each of the metrics 
as the design fitness test needed to look at more than 
one requirement in order to allow ranking of the 
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design variants in the population. The scoring 
function is described in the following pseudo-code: 

 

Over the cathode temperature range 
1450 – 1600K and for 30kV and 60kV 
accelerating potentials: 

score = add Log(brightness)*beam 
current 

If beam current <20mA 
If 1/(beam diameter 150mm from 

cathode – 4) >10 
Add 10 
Else  
add abs(1/(beam diameter 150mm from 

cathode – 4)) 
 
The evolution parameters used in this trial are 
presented in Table 3. 

Table 3: Evolutionary algorithm parameters. 

Parameter Value 
Parent group size 4 
Offspring group size 6 
Mutation scale 0.1 
Mutation probability 0.07 

Table 4(a): 1st Generation population ranked scores. 

Model Score 
Gen_0_Pop_1 2.37 
Gen_1_Pop_6 2.10 
Gen_1_Pop_4 2.10 
Gen_0_Pop_3 2.09 
Gen_1_Pop_5 2.09 
Gen_0_Pop_0 2.03 
Gen_1_Pop_7 2.02 
Gen_1_Pop_8 2.02 
Gen_0_Pop_2 2.01 
Gen_1_Pop_9 2.01 

Table 4(b): 10th Generation population ranked scores. 

Model Score 
Gen_10_Pop_4 11.59 
Gen_6_Pop_4 3.57 
Gen_8_Pop_6 3.57 
Gen_9_Pop_5 3.57 

Gen_10_Pop_6 3.57 
Gen_10_Pop_7 3.57 
Gen_9_Pop_7 3.23 

Gen_10_Pop_5 3.03 
Gen_10_Pop_8 2.89 
Gen_10_Pop_9 2.65 

 
The designs were labelled with a generation number 
and a population number, e.g. Gen_1_Pop_5 was the 
5th offspring produced in the first generation. A log 
was kept of the scoring – this is shown for the 1st 

generation in Table 4 (a) and for the 10th generation 
in Table 4 (b). 

The progress of the automatic design algorithm 
was monitored through the plotting the best fitness 
score of each generation. This is presented in Fig 5.  

 

Figure 5: The best fitness score in successive generations. 

The use of an evolutionary algorithm for the 
electrode optimisation allowed designs meeting the 
requirements to be found within 2 to 3 hours of 
computing time without human expert intervention. 
This compares well with normal trial and error 
design requiring frequent expert intervention over a 
period of 10 to 15 hours. The ability to template 
constrained parts of the design was useful in 
ensuring that the algorithm only explored 
mechanically viable designs making it more 
efficient. Further comparison with other 
optimisation methods will be carried out in the 
future as details of solution times for electron gun 
optimisation methods are not published at this time 

5 CONCLUDING REMARKS 

Electron beam gun design is at best a trial and error 
process. An evolutionary design algorithm has been 
implemented which enables the automatic design of 
an electron beam gun to produce electron beam with 
characteristics to meet specified requirements. This 
algorithm has been trialled on a novel RF excited 
plasma cathode gun design and shows promising 
results. 

Analysing electron guns and deriving electron 
beam characteristics is necessary within any 
automatic design process in order to assess the 
suitability of the design to meet requirements. 
However, this is a process that uses substantial 
computing resource. Until recently, the solution 
times required meant that solving the large number 
of designs that necessarily make up a population was 
impractical on normal desktop computers and was 
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expensive if implemented on multicore 
supercomputers. Current analysis software for 
analysing electron beam guns in 2-D are relatively 
fast. For example, a 10,000 element model of an 
electron gun will converge to a solution, taking into 
account the space charge of the electron beam, in a 
time of less than 1 minute running on a desktop PC. 
These recent advances in software implementation 
and computing hardware have made the 
implementation of automatic design algorithms 
possible. 

There are two key steps in implementing and 
evolutionary algorithm for design: the design 
features to be evolved must be encoded in a genome, 
and the suitability of the design must be able to be 
quantified in a fitness score. As such the 
implementation of evolutionary algorithms for 
design could be applied to a very wide range of 
design challenges. 

Within this work an evolutionary design 
algorithm for electron guns was developed and 
tested. As a single optimisation can take several 
hours, the evolutionary parameters have been 
estimated from an analogous problem of shape 
fitting, where many thousands of solutions could be 
analysed. In future work, more exploration of tuning 
of evolutionary parameters will be carried out, and 
automatic adjustment of the parameters at different 
stages of the optimisation will be explored. 

Monitoring of the score function for the best of 
each generation shows incremental improvements 
and on one occasion a significant jump going from 
one generation to the next. In this work, the 
optimisation process has been run several times and 
this usually occurs, corresponding to a mutation or 
gene spliced combination of features that gives a 
near optimum diameter of beam in the lens and a 
high brightness.  

There are, however, a wide range of meta-
heuristic methods for design optimisation which 
could be applied. At this time one of the most 
popular and most promising methods is particle 
swarm optimisation. The work carried out on 
including the design and the software 
implementation of an automatic design method will 
in the near future be applied using alternative 
optimisation techniques. It is also intended to 
monitor the design optimisation convergence and 
adjust the applied technique to converge at the 
highest rate. This offers the tantalising possibility of 
being able to optimise the optimisation method, for 
example, the evolutionary process could itself 
evolve to become ever more efficient. 

From the work reported the following 
conclusions can be drawn 

• A technique has been developed to allow 
electron gun designs to be automatically optimised 

• Assessment of a gun design against required 
electron beam characteristics has been quantified by 
deriving key beam qualities from field analysis and 
trajectory plotting 

• An evolutionary design optimisation method 
has been tested 

• The design method has been applied to a novel 
plasma cathode electron gun. 
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