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Abstract: Occupant comfort oriented Heating, Ventilation and Air Conditioning (HVAC) control rises to the challenge
of delivering comfort and reducing the energy budget. Equivalent temperature represents a more accurate
predictor for thermal comfort than air temperature in the car cabin environment, as it integrates radiant heat and
airflow. Several machine learning methods were investigated with the purpose of estimating cabin occupant
equivalent temperature from sensors throughout the cabin, namely Multiple Linear Regression, MultiLayer
Perceptron, Multivariate Adaptive Regression Splines, Radial Basis Function Network, REPTree, K-Nearest
Neighbour and Random Forest. Experimental equivalent temperature and cabin data at 25 points was gathered
in a variety of environmental conditions. A total of 30 experimental hours were used for training and evaluating
the estimators’ performance. Most machine learning tehniques provided a Root Mean Square Error (RMSE)
between 1.51 °C and 1.85 °C, while the Radial Basis Function Network performed the worst, with an average
RMSE of 3.37 °C. The Multiple Linear Regression had an average RMSE of 1.60 °C over the eight body
part equivalent temperatures and also had the fastest processing time, enabling a straightforward real-time
implementation in a car’s engine control unit.

1 INTRODUCTION

Vehicle HVAC systems aim to ensure that passengers
are thermally comfortable. However, thermal comfort
is influenced by a large number of environmental vari-
ables and, furthermore, thermal preferences can vary
greatly between individuals due to physiological, be-
havioural and cultural factors.

Nilsson’s equivalent temperature-based model
was shown to provide the highest correlation scores
with subjective occupant comfort data in Hintea et.
al (Hintea et al., 2014). Although equivalent temper-
ature is shown to be necessary for estimating ther-
mal comfort, it cannot feasibly be measured in real-
time in a manufactured vehicle. A solution to this is
virtual sensing. Virtual sensing is applied in a vari-
ety of domains (Wenzel et al., 2007; Way and Sri-
vastava, 2006; Srivastava et al., 2005) and the idea
behind the concept of vehicular virtual thermal com-
fort sensing is that, based on data from a set of cabin
environmental sensors, readings from virtual sensors
(equivalent temperature sensors in this case) are in-
ferred. Therefore, a method that estimates occupant
body part equivalent temperatures from a minimalis-
tic set of inexpensive cabin environmental sensors is

proposed, consisting of two stages. First, using a mu-
tual information-based approach, the set of cabin en-
vironmental sensors that correlate well with the body
part equivalent temperatures is selected. Second, a
machine learning approach is applied to infer the oc-
cupant body part equivalent temperatures from the
previously selected cabin environmental sensors.

The purpose of this paper is to establish, based
on empirical data, which of seven different ma-
chine learning methods (Multiple Linear Regression
(MLR), MultiLayer Perceptron (MLP), Multivariate
Adaptive Regression Splines (MARS), Radial Ba-
sis Function Network (RBF), REPTree, K-Nearest
Neighbor (KNN) and Random Forest (RF)) is the
most suitable for cabin occupant equivalent tempera-
ture estimation based on the estimation accuracy pro-
vided and the processing time required for the estima-
tion.

The paper is structured as follows: Section 2 re-
views the machine learning techniques used for es-
timating occupant equivalent temperature. Section 3
presents the experimental data sets gathered for eval-
uation purposes, while Section 4 presents the results
obtained through training and testing of the presented
estimators and a comparison of their performance. Fi-
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nally, Section 5 concludes the paper.

2 MACHINE LEARNING
ALGORITHMS

Several machine learning methods were implemented
and evaluated for estimating equivalent temperature,
namely MLR, MLP, MARS, RBF, REPTree, KNN
and RF. They are presented in the following subsec-
tions.

2.1 Multiple Linear Regression

MLR (Draper and Smith, 1981) models the relation-
ship between a response variable (the variable we
want to provide an estimate for) and two or more ex-
planatory variables (the variables from which the es-
timate is performed) by fitting a linear equation to the
observed data. MLR was implemented in Python.

2.2 Multilayer Perceptron

MLP (Haykin, 1998) is a feed-forward artificial neu-
ral network model that consists of multiple layers of
nodes and maps the input data onto an appropriate
output. The back-propagation technique is used for
training the network. The estimator was implemented
in Python using WEKA libraries.

2.3 K-Nearest Neighbour

KNN (Cover and Hart, 1967) represents an instance-
based lazy learning method considering the closest
training examples in the feature space. The method
relies in classifying an object by the majority vote
of its neighbours. The object is assigned to the most
common class amongst its k nearest neighbours, with
k being a positive (typically small) integer. In the case
of k = 1, the object is assigned to the class of the
single nearest neighbour. The estimator was imple-
mented in Python using the Orange software libraries.

2.4 Multivariate Adaptive Regression
Splines

MARS (Friedman, 1991; Hastie et al., 2009) is a
non-parametric regression technique that models non-
linearities and interactions between variables. The
basis functions, together with the model parameters
(estimated with the least squares estimation method),
are combined to predict the inputs. The estimator was
implemented in Python using the Orange software li-
braries.

2.5 Radial Basis Function Network

RBF (Haykin, 1998) is an Artificial Neural Network
that uses radial basis functions as activation functions.
A RBF network consists of inputs, a hidden layer of
basis functions and outputs. At the input of each neu-
ron, the distance between the neuron centre and the
input vector is calculated. The output of the neu-
ron is then formed by applying the basis function to
this distance. The RBF network output is formed by
a weighted sum of the neuron outputs and the unity
bias. Usually, RBF networks are complemented with
a linear part. This corresponds to additional direct
connections from the inputs to the output neuron. The
estimator was implemented in Python using WEKA
libraries.

2.6 Reduced Error Pruning Tree

REPTree (Witten and Frank, 2005; Quinlan, 1986) is
a fast decision tree learner that builds a regression tree
using information gain reduction and pruning. REP-
Tree yields a sub-optimal tree under the restriction
that a sub-tree can only be pruned if it does not con-
tain a sub-tree with a lower classification error than it-
self. More accurate performance can be obtained at a
higher computational cost. The estimator was imple-
mented in Python using WEKA libraries. REPTree
is usually used as a classifier, however it allows the
selection of numerical outputs and, therefore, be used
as an estimator.

2.7 Random Forest

RF (Breiman, 2001) is an ensemble classifier that con-
sists of multiple decision trees and outputs the class
produced by the largest number of individual trees.
The estimator was implemented in Python using the
Orange software libraries.

3 EXPERIMENTAL DATA SETS
GATHERING

The test car used for the experimental data gather-
ing was a Jaguar XJ (2010 model year). The IN-
NOVA Flatman support manikin1 was placed in the
front passenger seat. Throughout the experimental
trials, equivalent temperature was measured in real-
time at eight locations (corresponding to head, chest,

1LumaSense Technologies The INNOVA "Flatman"
Manikin: http://www.lumasenseinc.com/EN/products/
thermal-comfort/flatman/the-manikin-innova-flatman.html

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

630



left lower arm, right lower arm, left upper arm, right
upper arm, thigh and calf) using dry heat loss sensors
attached to the Flatman and connected to an INNOVA
thermal comfort data logger.

For the development and evaluation of the estima-
tion methods, cabin environmental parameters were
also measured, as follows:

1. Air temperature and relative humidity at six points
(head, chest and feet level of the occupants, both
on the left and right side) using type T thermo-
couples and Honeywell S&C HIH-5031 humidity
sensors2.

2. Solar loading at the driver sunroof using automo-
tive solar sensors.

3. Cabin air and surface temperatures at 19 cabin
points using type K thermocouples.

4. Driver centre and outboard face vent air tempera-
tures using type K thermocouples.

Three types of trials (a total of 70 individual trials)
were performed, as described below.

3.1 Variable Cabin Temperatures with
Steady State External Conditions

The trials were performed within an enclosed space,
characterised by stable ambient air temperature, in or-
der to avoid the effects of wind and sun. The sub-
jects were pre-conditioned to 22 °C in a separate
room for 20 minutes. The test car cabin was also
pre-conditioned to 22 °C. The subject entered the car
and remained in static conditions (HVAC set-point of
22 °C and air flow set on medium or high as per trial)
for 10 minutes. The HVAC set-point temperature was
then increased by 1 °C every 3 minutes until it reached
28 °C.

The subject then left the car and was again pre-
conditioned to 22 °C, as was the car cabin. The sub-
ject entered the car, again remaining in static condi-
tions (HVAC set-point of 22 °C) for 10 minutes. The
HVAC set-point temperature was decreased by 1 °C
every three minutes until it reached 16 °C. This proce-
dure was performed four times per subject, with each
combination of medium and high air flow and with
and without solar loading on the driver side of the car.

3.2 User Control with Steady State
External Conditions

The purpose of these trials was to gain knowledge of

2Sensirion SHT75 - Digital Humidity Sensor (RH&T):
http://www.sensirion.com/en/01_humidity_sensors/
06_humidity_sensor_sht75.html

the HVAC inputs performed by the subjects in order
to reach a comfortable temperature, starting with sev-
eral pre-conditioning temperatures. These trials were
also performed with the vehicle in an enclosed space,
characterised by stable ambient air temperature and
shielded from the wind and sun. The car cabin and
the subjects were pre-conditioned to a neutral (22 °C),
hot (28 °C), or cold (16 °C) temperature for 20 min-
utes prior to the trial. The subject entered the car and
remained inside for 15 minutes, during which they
were permitted to adjust the air conditioning at will
in order to make themselves comfortable. The control
adjustments performed were logged by the observer.
These trials were performed both with and without
simulated solar loading on the driver side of the car,
with each condition tested once per subject.

3.3 User Control During Short Journeys

The trials consisted of subjects driving the test car
on private roads. The car and the subjects were pre-
conditioned to a neutral (22 °C), hot (28 °C), or cold
(16 °C) temperature. The subjects entered the car and
drove for 15 minutes, during which they were per-
mitted to adjust the air conditioning at will in order
to make themselves comfortable. The subjects were
required to turn and change speed at frequent inter-
vals in order to simulate daily driving routines. The
hot and cold tests were performed twice per subject,
while the neutral tests were performed once. The ad-
justments made to the HVAC inputs were also logged
by the observer.

4 EQUIVALENT TEMPERATURE
ESTIMATION PERFORMANCE
EVALUATION

To implement the machine learning methods the au-
thor used Python (van Rossum and Drake, 2001), the
WEKA software libraries (Hall et al., 2009) and the
open-source Orange software libraries (Demsar et al.,
2013). As a result of an empirical investigation, the
parameters corresponding to each machine learning
method were set as follows: for MLP – the number
of hidden layers is 2, the learning rate is 0.2, the mo-
mentum is 0.2 and the training time corresponds to
500 epochs; for KNN – k is 5; for MARS – the max-
imum degree of the terms in the model is 2 and the
maximum number of terms in the forward pass is 10;
for RBF – the minimum standard deviation for the
clusters is 0.1, the learning rate is 0.2 and the num-
ber of clusters for K-Means corresponds to 2 epochs;
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for REPTree there is no restriction on the maximum
depth, the minimum total weight of the instances in a
leaf is 2 and the number of data folds used for pruning
is 3 and for RF – the number of trees in the forest is
100.

Cross Validation (CV) was used to evaluate each
estimator’s performance on the full set of experimen-
tal data, indicating how well the algorithm gener-
alised to unseen data. Both K-fold CV (presented in
Algorithm 1) (with k = 10) and Leave One Out Cross
Validation (LOTOCV) (presented in Algorithm 2)
were applied. The author also used LOTOCV, not
just 10-fold CV, to better cope with the tendency of
autocorrelation for time series data and, also, with
the existing trial-to-trial variation. The outputs of the
estimators were compared to the original measured
equivalent temperature and Root Mean Square Error
(RMSE) was used as an accuracy measure. The esti-
mation was performed using the best two cabin sen-
sors selected as described by Hintea et. al (Hintea
et al., 2011)

Algorithm 1: K-fold Cross-Validation process.

1. The whole dataset is randomly partitioned into k
samples of equal size.

2. One sample out of the k is selected as the valida-
tion data.

3. The remaining k � 1 samples are used as training
data.

4. The process is repeated k times, with each sample
set used once as validation data.

5. The k results are averaged to provide a mean error
over the individual cross-validation processes.

Algorithm 2: Leave-One-Trial-Out-Cross-Validation pro-
cess.

1. The whole dataset is partitioned into n individual
experimental trials.

2. One trial out of the n is selected as the validation
data.

3. The remaining n � 1 trials are used as training
data.

4. The process is repeated n times, with each trial set
used once as validation data.

5. The n results are averaged to provide a mean error
over the individual cross-validation processes.

Tables 1 and 2 present the estimation errors
(RMSE) using both LOTOCV and 10-fold CV for all
seven different machine learning methods.

For KNN, the results of the evaluation show that
the RMSE varied between 1.52 °C and 2.15 °C (for
chest and head, respectively) when LOTOCV was ap-
plied and between 0.42 °C and 0.71 °C (for thigh
and head, respectively) when 10-fold CV was ap-
plied. The results of the 10-fold CV are more accurate
than the ones corresponding to LOTOCV due to over-
fitting (results are not representative for unseen data)
the model.

For MARS, the RMSE varied between 1.27 °C
and 1.70 °C (for thigh and head, respectively) when
LOTOCV was applied and between 1.07 °C and
1.55 °C (for thigh and head, respectively) when 10-
fold CV was applied.

For MLP, the results of the evaluation show that
the RMSE varied between 1.40 °C and 1.87 °C (for
chest and head, respectively) when LOTOCV was ap-
plied and between 1.76 °C and 2.98 °C (for thigh and
head, respectively) when 10-fold CV was applied.

For MLR, the RMSE varied between 1.30 °C and
1.91 °C (for thigh and head, respectively) when LO-
TOCV was applied and between 1.33 °C and 1.81 °C
(for thigh and head, respectively) when 10-fold CV
was applied.

For RBF, the results of the evaluation show that
the RMSE varied between 2.93 °C and 4.47 °C (for
chest and head, respectively) when LOTOCV was ap-
plied and between 3.09 °C and 4.54 °C (for thigh
and head, respectively) when 10-fold CV was applied.
These results are worse than the ones produced by all
other learning-based approaches.

For REPTree, the RMSE varied between 1.47 °C
and 2.09 °C (for chest and head, respectively) when
LOTOCV was applied and between 0.99 °C and
1.91 °C (for calf and head, respectively) when 10-
fold CV was applied. The results of the 10-fold CV
are significantly better than the ones corresponding to
LOTOCV because of over-fitting (results are not rep-
resentative for unseen data).

For RF, the results of the evaluation show that the
RMSE varied between 0.95 °C and 1.45 °C (for thigh
and head, respectively) when LOTOCV was applied
and between 1.40 °C and 1.96 °C (for thigh and head,
respectively) when 10-fold CV was applied. The re-
sults of the 10-fold CV are significantly better than
the ones corresponding to LOTOCV because of over-
fitting (results are not representative for unseen data).

P-values were generated through paired t-tests for
each combination of models in order to establish the
significance of these results. MLR is significantly bet-
ter than KNN (p-value of 3.12e-023), RBF (p-value
of 5.10e-009), REPTree (p-value of 6.82e-012) and
RF (p-value of 4.89e-078). The models MLP and
MARS perform better than MLR with low confidence
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Table 1: Equivalent temperature estimation results (RMSE) using Leave One Trial Out Cross Validation (LOTOCV) using
different machine learning methods.

Equivalent Temperature Estimation
Target KNN MARS MLP MLR RBF REPTree RF
Head 2.15 °C 1.70 °C 1.87 °C 1.91 °C 4.47 °C 2.09 °C 1.96 °C
Chest 1.52 °C 1.37 °C 1.40 °C 1.41 °C 2.93 °C 1.47 °C 1.42 °C

Lower arm left 2.08 °C 1.57 °C 1.56 °C 1.85 °C 3.15 °C 1.97 °C 1.79 °C
Lower arm right 1.87 °C 1.54 °C 1.59 °C 1.59 °C 3.31 °C 2.01 °C 1.78 °C
Upper arm left 1.76 °C 1.56 °C 1.48 °C 1.65 °C 3.26 °C 1.73 °C 1.67 °C

Upper arm right 2.00 °C 1.56 °C 1.74 °C 1.77 °C 3.76 °C 1.67 °C 1.78 °C
Thigh 1.58 °C 1.27 °C 1.18 °C 1.30 °C 3.01 °C 1.48 °C 1.40 °C
Calf 1.88 °C 1.49 °C 1.48 °C 1.81 °C 3.08 °C 1.82 °C 1.39 °C

Average 1.85 °C 1.51 °C 1.53 °C 1.66 °C 3.37 °C 1.78 °C 1.64 °C

Table 2: Equivalent temperature estimation results (RMSE) using 10-fold Cross Validation (10-fold CV) using different
machine learning methods.

Equivalent Temperature Estimation
Target KNN MARS MLP MLR RBF REPTree RF
Head 0.71 °C 1.55 °C 2.98 °C 1.81 °C 4.54 °C 1.91 °C 1.45 °C
Chest 0.46 °C 1.20 °C 1.87 °C 1.42 °C 3.13 °C 1.03 °C 1.06 °C

Lower arm left 0.59 °C 1.48 °C 2.23 °C 1.78 °C 3.36 °C 1.07 °C 1.20 °C
Lower arm right 0.64 °C 1.41 °C 2.25 °C 1.49 °C 3.36 °C 1.43 °C 1.23 °C
Upper arm left 0.46 °C 1.31 °C 2.08 °C 1.61 °C 3.22 °C 1.07 °C 1.12 °C

Upper arm right 0.63 °C 1.47 °C 2.62 °C 1.70 °C 3.74 °C 1.61 °C 1.25 °C
Thigh 0.42 °C 1.07 °C 1.76 °C 1.33 °C 3.09 °C 1.00 °C 0.95 °C
Calf 0.58 °C 1.31 °C 2.48 °C 1.91 °C 3.48 °C 0.99 °C 1.20 °C

Average 0.56 °C 1.35 °C 2.28 °C 1.63 °C 3.49 °C 1.26 °C 1.18 °C

Table 3: Classification time for all equivalent temperature estimators using LOCOTV.

Method MARS MLP MLR REPTree KNN RF RBF
Classification time (seconds) 3.06 18.16 0.23 7.45 64.34 59.11 4.12

(p-values of 0.08 and 0.09, respectively). However,
the improvement of these models over MLR is of only
0.13 °C average RMSE.

At this stage, another factor to be taken into con-
sideration is the processing time, the time required to
perform the estimation on an unseen data set. This is
an important factor to consider prior to integrating the
estimation method within a control unit. Table 3 pro-
vides a summary of the processing time required by
the machine learning approaches.

MLR provided the fastest processing time, of
0.23 seconds, outperforming all other methods (sig-
nificance: p-value of 2e-021 when combined with any
of the other models). The MLR processing time was,
therefore, the fastest for each individual trial. The
classification time for MLR was lower than for all
other estimation techniques, while the estimation er-
ror obtained was outperformed by two models, the
MLP and MARS. The improvement in accuracy of
the latter two methods is not significant, therefore the

MLR approach is concluded to be the most suitable
estimation approach.

5 CONCLUSIONS

This paper studied several machine learning methods
for estimating cabin occupant equivalent temperature
from a minimalistic set of inexpensive cabin envi-
ronmental sensors. Seven different machine learning
approaches were implemented and evaluated: Multi-
ple Linear Regression (MLR), MultipleLayer Percep-
tron (MLP), K-Nearest Nighbour (KNN), Multivari-
ate Adaptive Regression Splines (MARS), Radial Ba-
sis Function Network (RBF), REPTree and Random
Forest (RF).

Most learning tehniques provided a RMSE be-
tween 1.51 °C (for MARS) and 1.85 °C (for KNN).
RBF performed the worst, with an average RMSE of
3.37 °C. MLR had an average RMSE of 1.60 °C over
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the eight body part equivalent temperatures. MLR
outperformed all other estimation techniques with re-
gard to fast processing time (of 0.23 seconds). These
two factors combined would enable a straightforward
real-time implementation in a car’s engine control
unit in comparison to the other machine learning tech-
niques evaluated.
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