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Abstract: This paper presents a key-private public-key cryptosystem. More specifically, in addition to confidentiality,
it provides privacy. Informally, ciphertexts yield no information whatsoever about its recipient (beyond what
is publicly known). The presented cryptosystem also features a very fast key generation: the key generation
boils down to a mere squaring modulo an RSA modulus. Further, it comes with strong security guarantees: it
is proved to be semantically secure and key-private under the standard quadratic residuosity assumption.

1 INTRODUCTION Furthermore, in addition to security and privacy
properties, group encryption offergerifiability: a
sender can convince a verifier that the formed cipher-

In numerous scenarios, the recipient’s identity in a i
text can be decrypted by a group member. In this

transmission needs to be kept private. This allows i
users to maintain some privacy. Protecting commu- PaPer, we relax the requirements for group encryp-

nication content may be not enough, as already ob-tion. In the particular context of media broadcasting

served in a couple of papers (e.g., (Barth et al., 2006; or wireless communications, we face a different situa-
Bellare et al., 2001; Kiayias et al. '2007))' For éxam_'tion where the sender (the broadcaster or the wireless

ple, by analyzing the traffic between an antenna and emitter) can pe trustgd. This relaxa'gion is justified by
a mobile device. one can recover some information the fact that, in practical uses of the infrastructure, the

about [at least] user's position and some details aboytSender has no interest in cheating because of business

the use of her mobile device. This information leaks 2"d reputation aspects. Moreover, it is very unlikely
easily during all day: it is a common habit, indeed, to that an attacker can impersonate the sender, due to the

use a mobile phone every day and to keep it (almost) particular material infrastructure needed (expensive,
always switched on. powerful, . ..). Such an attacker should, indeed, mute

Key privacy in public-key encryption assumes E;“Fr']t s;%neali t‘?‘:df;nt;f:t%i;?grrgg;ﬁhe'gﬁg ?ankgr?,
a “homogeneous” environment. Indeed, if users pIng xisting unicat v ing

make use of different cryptosystems or of the same the attacked ones. . o
cryptosystem but with keys of different lengths, As aforemen_‘uonedk_ey-pnvate encryptions a
anonymity is likely to be lost. The notion of form. of encryption Wh'Ch a",OWS one to conceal
anonymity is therefore is restricted to users sharing the identity of the ciphertexts recipient. Known

the same cryptosystem (with different keys) and com- constructions for key—private_cryptosystems in\_/olvg
mon parameters. This implicitly defines a group of somewhat COSFIV key generations. We present in this
users paper a key-private cryptosystem enjoying a fast key

o . : . generation. In our case, the key generation boils down

Kiayias et al. introduce and model in (Ki- .

. . to a mere modular squaring. Furthermore, to our best
ayias et al., 2007) the concept gfoup encryption K led h d is th |
This is the analogue for encryption of group signa- nowledge, the presented cryptosystem Is the sole
tures (Chaum and van Heyst, 1991). Group encryp- key-private construction that is provably secure under
) yst, - N P YP~ the standard guadratic residuosity assumption, in the
tion allows one to conceal the identity of the recip-

. . : L standard model.

ient of a given ciphertext among a set of legitimate

receivers. However, in case of misuse, some author-

ity (the group manager) is capable of recovering the Outline of the Paper: The rest of this paper is or-

recipient’s identity. This paper mostly deals withil ganized as follows. In the next section, we review
anonymity anonymity cannot be revoked. some background on public-key encryption. We then
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proceed in Section 3 with the presentation of a key-

We view an adversaryd as a pair(4;, 4) of

private cryptosystem. We show its correctness and probabilistic algorithms. This corresponds to adver-

study its features. In Section 4, we prove that the

scheme is semantically secure and key-private. Fi-

nally, we conclude in Section 5.

2 PRELIMINARIES

2.1 Public-Key Encryption

In order to better capture the property that users may Yo
share some common parameters in a homogeneous

environment, the key generation algorithm is divided
in two sub-algorithms: the&ommon-key generation
algorithm and théey generatiomlgorithm.

Following the syntax of (Bellare et al., 2001) (see
also (Goldwasser and Micali, 1984)), we define a
public-key encryption schenas a tuple of four algo-
rithms (SETUP,KEYGEN, ENCRYPT, DECRYPT):

COMMON-KEY GENERATION The common-key
generation algorithmsSETUP takes as input a
security parameterland outputs some common

parameter®P & SETUP(1¥).

KEY GENERATION The key generation algorithm
KEYGEN is a randomized algorithm that takes on
input PP and returns a matching pair of public

key and secret key for some uséupk, usk) &
KEYGEN(PP).

ENCRYPTION Let M denote the message space. The
encryption algorithmENCRYPT is a randomized
algorithm that takes in a public keypk and a
plaintextm € M, and returns a ciphertegt We
write C <— ENCRYPTpk(M).

DECRYPTION The decryption algorithnDECRYPT
takes in secret keysk (matchingupk) and cipher-
text C and returns the corresponding plaintext
or a special symbal indicating that the cipher-
text is invalid. We writem < DECRYPT,(C) if C
is a valid ciphertext and. «+ DECRYPT,(C) if it
is not.

We require thaDECRYPT, (ENCRYPT, k(M) =
mfor all messageme M.

2.2 Security Notions

Indistinguishability of Encryptions: The notion

of indistinguishability of encryptiongGoldwasser
and Micali, 1984) captures a strong notion of data-
privacy: The adversary should not learn any informa-
tion whatsoever about a plaintext given its encryption
beyond the length of the plaintext.

sary 4 running in two stages. In the “find” stage, al-
gorithm A4, on input public parametePP and a pub-
lic key upk, outputs two (different) equal-size mes-
sagesny andmy € M and some state informatian
In the “guess” stage, algorithmA, receives a chal-
lenge ciphertex€ which is the encryption ofy, un-
der upk and whereb is chosen at random if0,1}.
The goal of 4, is to recover the value db from s
andC.

A public-key encryption scheme is sasg¢manti-
ly securgor indistinguishablif

PP & SETUPR(1X),
¢ | (upk, usk) < KEYGEN(PP),
(mg, My, S) < A1(PP, upk),
b & {0,1},C < ENCRYPT,p(My)

1

A>(s,C)=b 5
is negligible in the security parameter for any
polynomial-time adversarg; the probability is taken
over the random coins of the experiment according to
the distribution induced bgETUP and KEYGEN and
over the random coins of the adversary.

As we are in the public-key setting, the adversary
A4 = (41, 4,) is given the public keyipk and so can
encrypt any message of its choice. In other words, the
adversary can mount chosen-plaintext attack3X).
Hence, we writdE-CPA the security notion achieved
by a semantically secure encryption schéme.

Indistinguishability of Keys:  Analogously, the no-
tion of indistinguishability of keygaptures a strong
requirement about key privacy: The adversary should
not be able to link whatsoever a ciphertext with its
underlying encryption key.

As before, we view an adversarg as a pair
(41, 4,) of probabilistic algorithms. In the “find”
stage, algorithn¥d;, on input two public keysipkg
andupk4, outputs a message and some state infor-
mations. Then in the “guess” stage, algorithsp
receives a challenge cipherté&thich is the encryp-
tion of munderupk, whereb is chosen at random in
{0,1}. The goal of4, is to recover the value df
from sandC.

More formally, a public-key encryption scheme is

1\We deviate from the usual notationIdfD-CPA to empha-
size the fact that indistinguishability is about encryptio
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saidanonymousgor key-private if 3 AKEY-PRIVATE
" CRYPTOSYSTEM
PP <~ SETUP(1¥)
(upko, usko) % KEYGEN(PP), 3.1 Description
Pr| (upky,uski) < KEYGEN(PP),
(ms) <— A1 (PP, upkg, upky), Using the syntax introduced in Section 2.1, the cryp-
b & {0,1},C < ENCRYPT, 5, (M) tosystem is defined as follows.
1 SETUP(1¥) Given as input security parametef,1
25(s,C)=b| — > SETUP generates an RSA modulds= pgwhere

p andq are prime ang = —qg (mod 4. The fac-
is negligible in the security parameter for any torization ofN is erased. The public parameters

polynomial-time adversary; the probability is taken arePP = {N}. . . .
over the random coins of the experiment according to KEYGEN(PP) For usei, the key generation algorithm

the distribution induced bgETUP and KEYGEN and KEYGEN picks a random element g Z/NZ and
over the random coins of the adversary. setsR = ri? modN. It outputs the public key
This definition of anonymity gives rise to the se- upk; = {R } and matching private keyskj = {r; }.
curity notion oflK-CPA or indistinguishability of keys ENCRYPT,k (M) To encrypta messagec {0,1} for
under chosen-plaintext attacks useri, ENCRYPT chooses at randomer Z/NZ
Of course, the goals of data-privacy and key- andp cg {0,1}, and sets
privacy can be combined to define extended security ot
notions. A public-key encryption scheme achieves T=(=1)" (—>
IND-CPA security(indistinguishability under chosen- N
plaintext attacks) if it is bothE-CPA andIK-CPA. and
AR odN ifp=0
2.3 Complexity Assumptions el 2 _
2Rit .
It is useful to introduce some notation. Lt= pq 2+ R modN ifp=1
be the product of two (odd) primgsandg. The Ja- The returned ciphertext 8 = {t,c}.

cobi symbol moduldN of an integera is denoted by

(F). The set of integers whose Jacobi symbol is 1

DECRYPT,s (C) Given a ciphertexC = {1,c}, the
decryption algorithnDECRYPT first computes =

H — X ay _ .

Itiedesrg:t?)? zﬁﬂa'\\lc;lrg"yic re{zgcfu(ezs/gzéerlo(tg)d (@éi CZ%R' .If 6= -1, itupdates asc « 3 modN.
QRy = {a€ (Z/NZ)" | (%) _ (%) = 1}. Note that It then returns plaintexn as

QRy is a subset ofy. 1-1. (%)

Definition 1 (Quadratic Residuosity Assumption) m=—>

LetRSAGen be a probabilistic algorithm which, given

a security parametet®, outputs primes p and q and

their product N= pg. TheQuadratic Residuosity 3.2 Correctness
(QR) assumption asserts that the success probability

defined as the distance We show that a correctly generated ciphert€xt
{t,c} decrypts to the matching plaintext
PID(x,N) = 1| x Pl QRy] — First observe that the conditign= —q (mod 4

implies that(’wl) = (%1) (%1) = —1. This in turn

implies thato = (—1)P. Indeed, there are two cases:
is negligible for any probabilistic polynomial-time 1 [B = 0] Thenc = tzga modN. Consequently, we

PHD(X,N) = 1| x & In\ QRy]

distinguisher?; the probabilities are taken over the get
experiment of runningN, p,q) < RSAGen(1¥) and 4. R21 %2R
choosing at random g QRy and x€ Jn \ QRy. -R= t+R‘4—42'R' -R
t
2-R1?
= { 2tR|] (modN) .
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2. [B=1] Thenc= é’i‘—;‘ modN. Hence, we have
4R52t2
2 _
C — | = 7 —> A — i
R=W@irir2m "
—4Rt?
=R| 77— ——=+1
R[ﬂ+R¥+z4ﬁ+]
2-R1?

and thus(%) - (%) - 1.

Wheno = —1 (or equivalently, = 1), the de-
cryption algorithm updatesasc + % mod N, which

. 2 X
givesc= "2 modN. In all cases, we then have

(5 &)

by noting that+r; = tZ%R' +ri= % =2t [”Tr']z
(mod N) sinceR, = ri2 modN; and thereby

C+Ij

) 4

2 2

=m.

3.3 Comparison

For the sake of comparison, we review below the cele-
brated Goldwasser-Micali cryptosystem (Goldwasser
and Micali, 1984) and the single-bit variant of the
BGH cryptosystem (Boneh et al., 2007) —-both rely-
ing on the quadratic residuosity, without random ora-

cles.

Goldwasser-Micali  Cryptosystem: This cryp-

tosystem does not allow multiple users to use the

same RSA modulus. There is BBTUP algorithm.

KEYGEN(1¥) Given as input security parametef,1
KEYGEN generates an RSA moduldd = piq;

wherep; andg;. It also chooses a random ele-

menty; € Jn; \ QRy;. It outputs the public key for
useri, upk; = {Ni,yi}, and the matching private
keyuski = {pi}.

ENCRYPT,p; (M) To encrypta messagec {0, 1} for

useri, ENCRYPT chooses at randomegr Z/N,Z
and sets

C=y™? modN; .

The returned ciphertext .

A Key-private Cryptosystem from the Quadratic Residuosity

DECRYPT,q (C) Given a ciphertext, the decryption

algorithm DECRYPT first computess = (2) It

pi
then returns plaintext as
~l-o0

2

Single-bit BGH Cryptosystem: In the public-key
setting, the BGH cryptosystem requires a publicly
available oracle) taking as input an RSA moduldé
and two quadratic residu€sSe QRy and outputting
two polynomialsf,g € (Z/NZ)[X] such that

o f(r)g(s) € QR for all square roots of R ands
of S
e f(r)f(—r) € QRy for all square roots of R.

This can be achieved by deterministically con-
structing a solutiorix,y) € (Z/NZ)? to the equation

RX+Sy=1
and returning
f(X)=xX+1 and g(X)=2yX+2 .

Following (Boneh et al., 2007), it is readily veri-
fied thatf (r)g(s) = 2(xr +1)(ys+1) = (R + Sy —
1) +2(xr +1)(ys+ 1) = (rx +sy+1)? € QRy and
f(r)f(—r)=(xr+1)(—xr+1)=-R¥X+1=Sy¢c
QRy-
SETUP(1¥) Given as input security parametef,1

SETUP generates an RSA modultds= pgwhere

p and q are prime. The factorization dfl is
erased. The public parameters Bie= {N}.

KEYGEN(PP) For usei, the key generation algorithm
KEYGEN picks a random element €g Z/NZ and
setsR = r;i2 modN. It outputs the public key
upk; = {R} and matching private keysk; = {r; }.

ENCRYPT,; (M) To encrypta messagec {0,1} for
useri, ENCRYPT chooses at randomer Z/NZ
and setS= s> modN. It calls oracleQ,

(f.9) < QUN,R.,S),
and computes

c= (—1)’“(%) :

The returned ciphertext 8 = {S,c}.

DECRYPT, (C) Given a ciphertexC = {S,c}, the
decryption algorithnbECRYPT first callsQ to ob-
tain

(f.9) < QIN,R;,S)

f(r

and computes = (—=). It then returns plaintext

mas
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The BGH cryptosystem requires finding a solu- Proof. Assume there exists diz-CPA adversary4
tion (x,y) € (Z/NZ)? to the equatiomR x>+ Sy = 1, that can break the scheme with probabitityVe will
which constitutes a real bottleneck. Indeed, the bestuse4 to decide whether a random eleme&nin Jy is
method currently available is of quartic complexity. a quadratic residue moduldor not.

This in turn incurs rather long encryption and decryp- Consider the following distinguishe®(w,N) for
tion times. The main advantage of the BGH system solving theQR problem:

resides in the bandwidth saved when large cipher-
texts (i.e., multi-bit ciphertexts) are processed. As
this paper is concerned with speed-efficient (and not
bandwidth-efficient) key-private cryptosystems, the
BGH cryptosystem will not be included in the com-

1. DefineR; = w, setupk; = {R}, and give
(N, upk;) to 4;

2. Choose a random Hiteg {0,1} and com-
pute the encryption ob under public key
upk; asCy = {Tp, Cp} Wheret, = (—1)°(2)

parison. N
and

Key Privacy: The Goldwasser-Micali cryptosys- tz%a modN if B=0

tem is semantically secure under the quadratic resid- Co = Rt modN if B=1

uosity assumption in the standard model. Unfortu- 4R, N

nately, it isnot key-private. As already noticed for some random elememteg Z/NZ and bit

the RSA cryptosystem in (Bellare et al., 2001), one Ber{0,1};

problem is that the value of the ciphertext leaks some 3. GiveC, = {Tp,Cp} to 4 and obtain its guess
information about the modulus.” € > Nj then we -
know for sure that usef (j.g., the user.with public 4. 1f b/ = breturn 1; otherwise return 0.
key {N;j,y;}) is not the recipient of the cipherte&t i
This issue is easily mitigated in the case of RSA There are two cases to distinguish.

by adding a carefully chosen multiple of the modulus 456 1: Suppose first thaw is a quadratic residue
to the ciphertext. But this simple fix does not apply moduloN. Clearly, D returns 1 exactly when

here. Indeed, given a cipherteRtfor an unknown 4 wins in the [E-CPA game. We thus have
recipient, we can always compute PID(W,N) = 1| w € QRy] = &.
C Case 2: Suppose now thaw € Jy \ QRy. Itis im-
1= WJ ‘ portant to see that if (mod{p,q}) is replaced

. with % (mod {p,q}) in the computation oy,
If 1j # 1 then we can deduce that useis not the the value ofc, is unchanged:

recipient of the ciphertex@. 2
R

Performance: In addition of being key-private, the R - x (mod {p,q})
scheme of Section 3.1 has a much more efficient t

key generation than the Goldwasser-Micali scheme. and

It simply requires evaluating a square modwb 2R;% 2Rit

whereas the Goldwasser-Micali scheme requires gen- R 12 = 2R (mod {p,q}) .
erating two large primes and a pseudo-square. This [T} +R

means that a device with limited computing capabili-
ties can generate keys for the scheme of Section 3.1.
The key generation can even be made easier —at

Hence, considet, tp,t3 € (Z/NZ)* such that
e t1 =t (modp),t1 =R/t (modQq);

the expense of a larger public key— by definRaas e =R/t (modp),tz=t (moda);
R =ri2+aN (instead ofR = r;2 modN) for some e t3=R/t (modp),t3=R/t (modq).
randoma cg {0, 1}INIF, In 4’s view, from ¢y, the four possible values

t1, t2, andts are equally likely. At the same time,
sinceR € Jn \ QRy we also havey) = (tﬁ) £

4 SECURITY ANALYSIS (t_l) - (t_z)

N/ 7 \N/"
The two next propositions assess the security of the ~ The probability that2 recovers(%) from ¢y is
scheme under the quadratic residuosity assumption. therefore% —note thatty, carries no information
Proposition 1. The scheme i$E-CPA under the on (%) sinceb is random in{0,1}. As a resultD
quadratic residuosity assumption. will return 1 with probability3.
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We so obtain: is negligible. In our case, a ciphertextencrypted under
key upky, (with b € {0,1}) is of the formCy = (Tp, Cp)
IPDWN) =1|we QRy] - wheret, = (—1)™(&) for somet. If messagem is
PrDwN) =1 we Iy \QRy]| = [e— %‘ unknown and uniformly drawn if0,1}, T, does not

_ o . help in distinguishing betweeg andD;. Only the
which must be negligible by th@R assumption.  ¢,-component ofC, needs to be considered. When
Hence, the scheme 1&-CPA secure under th@R the public key isupk, = R, then

assumption. O
; ; %= Ry modN, or
In order to prove that the scheme is key-private, B . b x ’
we need useful lemma adapted from (Ateniese and b M — Ryt modN
Gasti, 2009, Lemma 2). It considers the two follow- bRy,

ing sets: for some random € Z/NZ.
2_R 2_R Omitting upkg, upk; to ease the reading, Halevi's
Xo={uez/Nz | (LR) = (E8R) =1
0 { /NZ| ( P ) ( 4 ) } criterion requires that the distributior = {CE)B) |
and B &£{0,1}} andD; = {c”’ | B & {0,1}} are indis-
2 R 2 R tinguishable with overwhelming probability.
Xy = {ueZ/NZ| (“ pR) - (“ qR> - _1} : e

Lemma 1. LetRSAGen be a probabilistic algorithm Xop = {ue Z/NZ| WRp) . (CRe) 1
which, given a security paramet#f, outputs primes ' P q

p and g and their product N= pg. Let also ¢ be a W-R, W-Ry,

random element i,/NZ and R = r;2 modN. Then, Xip=JUEZ/NZ||—=2 ) =(—7—)="1
under the quadratic residuosity assumption, the sta-

tistical distance Yoo {u - (uz&b> _ (uzab) }
p q
’Pr[ﬂ)(x,R@,N) =1|x& %] -

As shown in Section 3.2, we ha\a%0> € Xop and

PI[D(X,R,N) = 1 x & X3 ¥ € Y, since
is negligible for any probabilistic polynomial-time 0)\ 2 tz—Rib 2
distinguisher?; the probabilities are taken over the (Cb ) —R, = o
experiment of runningN, p,q) + RSAGen(1¥), sam- d
plingr; & (Z/NZ)*, and choosing at randomsXg an ) 2-R 2
and xe X;. O (cg”) ~R, =R, [t2+Rib]
Proposition 2. The scheme i$K-CPA under the . b
guadratic residuosity assumption. wheret < Z/NZ. Hence, we can see that
Proof. Since the scheme is already known to c {u | uiXo,bUXLb} when3 =0
be IE-CPA, Halevi's sufficient condition for key- Do = Ry henp=1
privacy (Halevi, 2005) teaches us that the scheme {u jue b} w -

meets theéK-CPA notion if the statistical distance be-  The first assertion (whe = 0) follows from

tween the two distributions Lemma 1 (the notation= means computationally

equivalent —under th@R assumption in this case).
. Indeed, we haveu | u & Xop} < {u]ud Xop).
(upkg, usko), (upky, uski) <~ KEYGEN(PP), The second assertion (wh@nr= 1) follows by noting
m& a0} that the Jacobi symbc(l%”’) =1
As a consequence, assuming R assumption,
the distributiorDy, appears indistinguishable from the
D1 = { (upko, upky, ENCRYPT i, (M) | uniform distr!bution ovelZ/NZ. This conclqdes the
N proof by noting thatDg and D1 are essentially the
(upkg, usko), (upky, usk1) < KEYGEN(PP), same sets: any random elemenDig is also an el-
me& ) ement inD;, and vice-versa. O

Do = { (upkg, upky, ENCRYPT,p, (M) |

and
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5 CONCLUSIONS

The cryptosystem presented in this paper can be used
in any application requiring efficient public-key en-
cryption provably secure in the standard model with
strong privacy guarantees. Remarkably, it offers
both data privacyand key privacy under the standard
guadratic residuosity assumption. In addition, it fea-
tures a very fast key generation and is so well suited
to constrained devices requiring an on-board key gen-
eration.
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