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Abstract: In this paper, we provide a triple scalar multiplication analogue of the simultaneous double scalar
Schoenmakers’ algorithm for multiexponentiation. We analyse this algorithm to show that on the average, the
triple scalar Schoenmakers’ algorithm is more expensive than the straight forward method of computing the
individual exponents and then computing the requisite product, thus making it undesirable for use in resource
constrained environments. We also show the derivation of the Schoenmakers’ algorithm for simultaneous
double scalar multiplication and this is then used to construct the triple scalar multiplication analogue.

1 INTRODUCTION

Elliptic Curve Cryptography(ECC) is seen as an
increasingly attractive alternative to conventional
public key cryptography such as RSA, as it is
able to match RSA-level security, but using smaller
parameter sizes and thus is ideal for implementation
in constrained environments such as smart cards
and mobile devices where computational resources
such as computational capacity, network bandwidth,
silicon real estate and memory are at a premium.

In recent years, amongst other things, research
in the area of ECC has focused on efficient
implementations. Point multiplication is at the
core of most ECC applications and dominates ECC.
Further, multi-exponentiation is often an important
ingredient in the implementation of contemporary
public key cryptographic algorithms, including ECC.
The abstract setting is usually an Abelian groupG and
it is required to compute a product of the form

∏
1≤ j≤n

gei
i

where the gi are elements ofG and the ei are
integer exponents. In a group with an additive
notation for the group operation such as Elliptic
Curve groups over a finite field, multi-exponentiation
is appropriately termed multi-scalar multiplication.
Clearly multi-exponentiation can be achieved by
first computing the individual exponents and then
multiplying the individual products. However, one
can do better than this by utilizing Strauss’ method

(Bellman and Straus, 1964) which was constructed
in the context of addition chains as a solution to a
problem posed by Bellman.

A finite sequence of integersa0,a1, . . .ar is called
an addition chain (section 4.63 in (Knuth, 1998)) for
ar if for each elementai, there existsa j andak in the
sequence such thata0 = 1 and for alli = 1,2, . . .r

ai = a j + ak, for somek≤ j < i (1)

Addition chains can be used to efficiently
compute either a single exponentiation or a
multi-exponentiation, by using Strauss’ method.
Addition chains are applicable both in the context
of multiplicative groups and additive groups such as
Elliptic curve groups over a finite field.

The author in (Montgomery, 1987) proposed
a special type of an elliptic curve, now known
as Montgomery form of elliptic curve or simply
Montgomery curve. The arithmetic on a Montgomery
curve relies onx-coordinate only arithmetic and also
requires the ’difference’ of two group elements
(points) to be known prior to the computation of
addition of these two elements. Thus ordinary
addition chains and improvements of these chains
cannot be directly utilized for scalar multiplication
on Montgomery curves. A special form of addition
chain called a Lucas chain is useful in this context. A
Lucas chain is a restricted variant of an addition chain
where the indices in equation (1) above are such that
either j = k or the differenceak−a j is already part of
the chain. A special case of Lucas chains occur when
either j = k or ak− a j = a0 = 1 and these are called
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binary chains. The Montgomery ladder in Section 2
of this paper is an example of a binary chain. A good
reference for Lucas chains is (Montgomery, 1992).

The first algorithm towards double scalar
multiplication for Montgomery curves was
constructed by Schoenmakers in 2000 and published
in (Stam, 2003). Akishitha’s algorithm for double
scalar multiplication was published in (Akishita,
2001). Shoenmakers’ and Akishita’s algorithm
for double scalar multiplication produce binary
chains. The author in (Bernstein, 2006b) proposed
algorithms for double scalar multiplication which
included binary chain algorithms as well as euclidean
chain algorithms. In (Azarderakhsh and Karabina,
2012), another double scalar multiplication algorithm
was proposed.

A natural question to ask is, if one could
construct triple scalar multiplication analogues
of the double scalar multiplication algorithms
listed above. A practical motivation to construct
such multi scalar multiplication algorithms arises
in the implementation of some digital signature
and identification schemes and their elliptic curve
analogues. Chapter 11 in (Menezes et al., 1997)
covers some of these signature schemes. The
Okamoto Identification scheme (Refer to Sec
9.3 in (Stinson, 2006)) requires a triple scalar
multiplication operation to be performed by the
signature verifier. Triple scalar multiplication can
also be utilized in the accelerated verification of
ElGamal like Signatures(Antipa et al., 2005). The
need for higher order analogues can be seen in the
batch verification of multiple signatures (Cheon
and Yi, 2007). Whilst proposing double scalar
multiplication algorithms in (Bernstein, 2006b),
the author motivated future researchers to construct
triple scalar multiplication versions of ideas in his
paper. This exploration can be extended to other
double scalar multiplication algorithms too, such
as Akishita’s and Schoenmakers’. In this paper
we focus on the Schoenmakers’ algorithm - we
first motivate the derivation of this algorithm for
double scalar multiplication and then use this to
construct a triple scalar extension. On analyzing
this extension, we find that on the average, this
algorithm cannot even be made as efficient as the
straight forward method of computing the three
individual scalar multiplications first and then adding
up the individual sums. The lesson learnt here is that
other algorithms (possibly Akishita’s or Bernstein’s
algorithm for double scalar multiplication), should be
researched/extended towards constructing triple and
higher order scalar multiplication algorithms, while
Schoenmakers’ can be avoided. This paper shows

that the Schoenmakers’ algorithm for triple scalar
multiplication is not suitable for implementation,
especially in constrained environments. An efficient
extension of an other double scalar algorithm is the
subject matter of a sequel paper to be published by
this author in due course(Rao, 2015).

This paper is structured as follows: Section 2
is an introduction to Montgomery curve arithmetic
and also presents a Montgomery binary ladder
for single exponentiation. Section 3 presents
the easy double scalar multiplication algorithm
followed by a derivation of Schoenmaker’s algorithm
for double scalar multiplication. The extension
of Schoenmakers’ algorithm for triple scalar
multiplication is then provided in section 4 with an
analysis for best, average and worst case conditions.
We conclude in section 5 with a motivation for further
work in this area.

2 PRELIMINARIES

The Montgomery curve defined over a finite fieldFp
is given by

Em : By2 = x3+Ax2+ x

Let P = (x1,y1) be a point on the above curve.
In projective coordinates,P can be written asP =
(X1,Y1,Z1) and let [n]P = (Xn : Yn : Zn). Here the
scalar multiplication byn onEm is denoted by[n] and

[n]p = P+P+ · · ·+P
︸ ︷︷ ︸

n times

The sum[n + m]P = [n]P + [m]P can be computed
using the formulae below:

Addition: n 6= m
Xm+n =

Zm−n((Xm−Zm)(Xn +Zn)+ (Xm +Zm)(Xn−Zn))
2

Zm+n =

Xm−n((Xm−Zm)(Xn +Zn)− (Xm+Zm)(Xn−Zn))
2

Doubling: n = m
4XnZn = (Xn +Zn)

2− (Xn−Zn)
2

X2n = (Xn +Zn)
2(Xn−Zn)

2

Z2n = 4XnZn((Xn−Zn)
2+((A+2)/4)(4XnZn))

The addition formulae above costs(4M + 2S) and
the doubling formulae costs(3M +2S) respectively,
whereM andS are the costs of a field multiplication
and a squaring respectively and we follow this
convention in the rest of this paper. If coordinates of
(Xm−n,Ym−n,Zm−n) can be scaled such thatZm−n = 1,
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the addition formula above costs(3M+2S).

The well-known Montgomery ladder for
scalar multiplication on a Montgomery curve is:

Algorithm 1: L-R Binary Montgomery ladder.

INPUT: A point P on Em and a positive integer
n = (nt . . .n0)2

OUTPUT: The point[n]P

[Initialize]
P1← P andP2← [2]P
[Loop through the scalar bits]
for i = t−1 down to 0 do

if ni = 0 then
P2← P2+P1 (P); P1← 2P1

else
P1← P2+P1 (P); P2← 2P2

end if
end for

[Finalise]
returnP1

Algorithm 1 is a left-to-right algorithm as it
processes the scalar bits from left to right. In all
algorithms in this paper, whenever the difference
between two points is required to compute the sum of
those points, that difference is indicated in brackets
immediately after the addition formula. For example,
in the above algorithm we have

P1← P2+P1 (P) (2)

The notation in equation (2) means that whenP2 is
added toP1 and the result is stored inP1 while the
difference required between these two points isP
i.e., P2−P1 = P. From the above algorithm we can
see that, to compute[n]P (where(nt . . .n1n0)2 is the
binary representation ofn and the most significant bit
nt = 1), we hold{miP,(mi+1)P} for mi = (nt . . .ni)2.
If ni = 0,miP = 2mi+1P and (mi + 1)P = (mi+1 +
1)P + mi+1P else miP = (mi+1 + 1)P + mi+1P and
(mi +1)P = 2(mi+1+1)P. Beginning from{P,2P},
the above algorithm computes{[n]P, [n + 1]P}. A
good reference to Montgomery ladders is (Joye and
Yen, 2002).

3 SCHOENMAKERS’
ALGORITHM FOR DOUBLE
SCALAR MULTIPLICATION

Now we motivate the construction of the
Schoenmakers’ algorithm. Towards this end we
define a set of four pointsGi = {miP+ niQ,miP+

(ni + 1)Q,(mi + 1)P + niQ,(mi + 1)P + (ni + 1)Q},
for mi = (kt . . .ki)2, ni = (lt . . . li)2. Below we show
the construction of elements ofGi from Gi+1 for all
four combinations of(ki, li):

1. (ki, li) = (0,0):
Heremi = 2mi+1 andni = 2ni+1.

miP+ niQ = 2(mi+1P+ ni+1Q);

(mi +1)P+ niQ

= ((mi+1+1)P+ ni+1Q)+ (mi+1P+ ni+1Q);

miP+(ni+1)Q

= (mi+1P+(ni+1+1)Q)+ (mi+1P+ ni+1Q);

(mi +1)P+(ni +1)Q

= ((mi+1+1)P+ ni+1Q)+ (mi+1P+(ni+1+1)Q)

2. (ki, li) = (1,0):
Heremi = 2mi+1+1 andni = 2ni+1.

miP+ niQ

= ((mi+1+1)P+ ni+1Q)+ (mi+1P+ ni+1Q);

(mi +1)P+ niQ = 2((mi+1+1)P+ ni+1Q);

miP+(ni +1)Q

= ((mi+1+1)P+ ni+1Q)

+ (mi+1P+(ni+1+1)Q);

((mi +1)P+(ni+1)Q

= ((mi+1+1)P+(ni+1+1)Q)

+ ((mi+1+1)P+ ni+1Q);

3. (ki, li) = (0,1):
Heremi = 2mi+1 andni = 2ni+1+1.

miP+ niQ

= (mi+1P+(ni+1+1)Q)+ (mi+1P+ ni+1Q);

(mi +1)P+ niQ

= ((mi+1+1)P+ ni+1Q)

+ (mi+1P+(ni+1+1)Q);

miP+(ni +1)Q = 2(mi+1P+(ni+1+1)Q);

((mi +1)P+(ni+1)Q

= ((mi+1+1)P+(ni+1+1)Q)

+ (mi+1P+(ni+1+1)Q);

4. (ki, li) = (1,1):
Heremi = 2mi+1+1 andni = 2ni+1+1.

miP+ niQ = ((mi+1+1)P+ ni+1Q)

+ (mi+1P+(ni+1+1)Q);

(mi +1)P+ niQ = ((mi+1+1)P+(ni+1+1)Q)

+ ((mi+1+1)P+ ni+1Q);

miP+(ni+1)Q = ((mi+1+1)P+(ni+1+1)Q)

+ (mi+1P+(ni+1+1)Q);
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(mi +1)P+(ni+1)Q

= 2((mi+1+1)P+(ni+1+1)Q);

The four elements inGi, 0≤ i ≤ t give rise to the
easy double scalar binary chain. DenotingmiP +
niQ,miP+(ni+1)Q,(mi+1)P+niQ and(mi+1)P+
(ni + 1)Q as P1,P2,P3 and P4 respectively, the easy
double scalar algorithm is as follows:

Algorithm 2: L-R Easy Double scalar algorithm.

INPUT: PointsP andQ on Em; positive integers
k = (kt . . .k0)2 andl = (lt . . . l0)2;
Precompute(P−Q); Identity isO

OUTPUT: The point[k]P+[l]Q

[Initialize]
P1← O; P2← P; P3← Q; P4← P+Q
[Loop through the two scalar bits simultaneously]
for i = t down to 0 do

if (ki, li) = (0,0) then
P2← P2 +P1 (P); P3← P3 +P1 (Q);
P4← P4 +P1 (P+Q); P1← 2∗P1

else if(ki, li) = (1,0) then
P1← P2 +P1 (P); P3← P2 +P3 (P-Q);
P4← P4 +P2 (Q); P2← 2∗P2

else if(ki, li) = (0,1) then
P1← P3 +P1 (Q); P2← P2 +P3 (P-Q);
P4← P4 +P3 (P); P3← 2∗P3

else if(ki, li) = (1,1) then
P1← P4 +P1 (P+Q); P2← P4 +P2 (Q);
P3← P4 +P3 (P); P4← 2∗P4

end for
[m0P+n0Q is in P1]
returnP1

However, to computem0P+ n0Q, it is not necessary
to use all the four elements ofGi for this purpose.
If we omit (mi + 1)P + (ni + 1)Q in Gi, it would
still be possible to compute the rest of the elements
in all of the Gi, 0≤ i ≤ t. Amongst the above set
of formulae, for the cases where(ki, li) = (0,0) or
(1,0) or (0,1), no change is required, except omitting
(mi+1)P+(ni+1)Q. However, when(ki, li) = (1,1),
(mi + 1)P + niQ and miP + (ni + 1)Q may have to
be computed differently from the formula above, as
they depend on(mi+1 + 1)P+(ni+1 + 1)Q in Gi+1.
Therefore when(ki, li) = (1,1),
(mi +1)P+ niQ

= ((mi+1+1)P+(ni+1+1)Q)

+ ((mi+1+1)P+ ni+1Q)

= ((mi+1+1)P+ ni+1Q)

+ (mi+1P+(ni+1+1)Q)+P

The difference between the first two terms in the
above rewritten equation is(P−Q). The difference
between the first two terms taken together which is
((mi+1+1)P+ ni+1Q+mi+1P+(ni+1+1)Q) andP
can also be expressed in terms of elements inGi+1
i.e.,

((mi+1+1)P+ ni+1Q+mi+1P+(ni+1+1)Q)−P

= (mi+1P+(ni+1+1)Q)+ (mi+1P+ ni+1Q);

Similarly,
miP+(ni +1)Q

= (mi+1+1)P+(ni+1+1)Q)

+ (mi+1P+(ni+1+1)Q);

= ((mi+1+1)P+ ni+1Q)

+ (mi+1P+(ni+1+1)Q)+Q;

As before, the difference between the first two terms
in the above rewritten equation is(P− Q). The
difference between the first two terms taken together
is ((mi+1 + 1)P+ ni+1Q+mi+1P+(ni+1 + 1)Q)and
Q can also be expressed in terms of elements inGi+1
i.e.,

((mi+1+1)P+ ni+1Q+mi+1P+(ni+1+1)Q)−Q

= ((mi+1+1)P+ ni+1Q)+ (mi+1P+ ni+1Q);

If we denote the reducedGi i.e.,Gi without
(mi +1)P+(ni+1)Q asG′i and the elements
(miP+niQ), ((mi+1)P+niQ) and(miP+(ni+1)Q)
asP1[i], P2[i] andP3[i] respectively, then for the case
(ki, li) = (1,1), the elements ofG′i can be computed
as follows:

P1[i]← P2[i+1]+P3[i+1] (P−Q)

P2[i]← P1[i]+P (P3[i+1]+P1[i+1])

P3[i]← P1[i]+Q (P2[i+1]+P1[i+1])







(3)

Thus in order to computeP2[i] andP3[i], we need to
first computeP3[i+1]+P1[i+1] andP2[i+1]+P1[i+
1]. The difference betweenP3[i+1] andP1[i+1] is Q
and the difference betweenP2[i+ 1] andP1[i+ 1] is
P and thus it is possible to compute bothP3[i+1]+
P1[i+1] andP2[i+1]+P1[i+1]. Rules for the other
cases can be constructed from the formulae above.
For example when(ki, li) = (0,0),

P1[i]← 2P1[i+1]

P2[i]← P2[i+1]+P1[i+1] (P)

P3[i]← P3[i+1]+P1[i+1] (Q)

As stated previously, Schoenmakers’ algorithm was
designed in 2000 and published in (Stam, 2003) in
2003. The derivation is not available in (Stam, 2003).
In [5, Sec 4], Bernstein specifies which one of the
four elements ofGi is eliminated. We fill this gap
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by motivating the construction here and this helps
us in constructing the three dimensional analogue of
Schoenmakers’ algorithm in the next section. Doing
away with the array notation forP1, P2 andP3 above,
we can present Schoenmakers’ algorithm for double
scalar multiplication as follows:

Algorithm 3: L-R Schoenmakers’ Double scalar multi-
plication algorithm.

INPUT: PointsP andQ on Em; positive integers
k = (kt . . .k0)2 andl = (lt . . . l0)2;
Precompute(P−Q)

OUTPUT: The point[k]P+[l]Q

[Initialize]
P1← O; P2← P; P3← Q

[Loop through the scalar bits simultaneously]
for i = t down to 0 do

P1← P1Store;P2← P2Store;P3← P3Store;
if (ki, li) = (0,0) then

P1← 2∗P1Store;P2← P2Store+P1Store (P);
P3← P3Store+P1Store (Q)

else if(ki, li) = (1,0) then
P1← P2Store+P1Store (P);
P2← 2∗P2Store;
P3← P2Store+P3Store (P-Q)

else if(ki, li) = (0,1) then
P1← P3Store+P1Store (Q);
P2← P2Store+P3Store (P-Q);
P3← 2∗P3Store

else if(ki, li) = (1,1) then
P1← P2Store+P3Store (P-Q);
P2Partial← P3Store+P1Store (Q);
P3Partial← P2Store+P1Store (P);
P2← P1+P (P2Partial);
P3← P1+Q (P3Partial)

end if
end for

[m0P+n0Q is in P1]
returnP1

We note here thatP2Partial and P3Partial are
required as a result of Equation (3) above. We now
compare Schoenmakers’ algorithm for double scalar
multiplication (Algorithm 3) with the straight forward
method of achieving the same. Since in the For
loop in Algorithm 3, (ki, li) can take on any of the
four values of(0,0),(1,0),(1,0) and(1,1) with equal
probability, the average cost per bit of the two scalars
taken simultaneously can be computed as:
when(ki, li) 6= (1,1):

three point additions are required.
i.e, 3(3M+2S) = (9M+6S) operations.

when(ki, li) = (1,1):

five point additions are required.
out of these five, three require(3M + 2S)

operations.
the other two require 4M + 2S operations (as

Z-coordinate ofP2Partial, P3Partial 6= 1).
resulting in a total of 3(3M + 2S) + 2(4M +

2S) = (17M+10S) operations
Thus on the average

(3(9M+6S)+3(3M+2S)+2(4M+2S))
4

= (11M + 7S) operations would be required to run
Algorithm 3 for every bit of the two scalars taken
together.

The straight forward method of computing[k]P+
[l]Q constitutes computing[k]P and [l]Q separately,
recovering theY -coordinates of[k]P and [l]Q and
adding up [k]P and [l]Q in projective coordinates
(Section 2.1 in (Akishita, 2001)). If we take the
bit lengths of scalarsk and l to be the same and
equal to |k|, then this method requires(12|k| +
28)M + (8|k|S). If one ignored the complexity of
recovering theY -coordinates and the complexity of
adding up[k]P and [l]Q, then the complexity of the
straight forward method per bit of the scalar multiple
is ((12|k|)M + (8|k|)S)/|k| = 12M + 8S operations.
This can also be inferred from the fact that the
total complexity to compute[n]P using the binary
ladder is(6M+4S)(|n|2−1) for Montgomery curves
(Refer to Remarks 13.36, page 288 in (Cohen and
Frey, 2006)). Thus on the average, Schoenmakers’
algorithm performs better than the straight forward
method for double scalar multiplication.

Best case per bit cost of running Schoenmakers’
double scalar multiplication algorithm is(9M + 6S)
and this occurs when none of the(ki, li) is (1,1) and
under these circumstances Schoenmakers’ algorithm
will perform better compared to the straight forward
algorithm.

Worst case per bit cost to run Algorithm 3 is
(17M+10S) and this occurs when all of the(ki, li) =
(1,1). (17M+10S)> 12M+8S and thus under worst
case conditions, the straight forward algorithm would
be better than Schoenmakers’ algorithm for double
scalar multiplication.

In comparing the costs here, we have not taken
into consideration the costs of the precomputation
in Schoenmakers’ algorithm and at the same time
we have not taken into consideration the cost of
recovering theY -Coordinates and adding up[k]P and
[l]Q in the straight forward method as these are small
constant time costs and do not impact the result of the
analysis presented here.
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4 SCHOENMAKERS’
ALGORITHM FOR TRIPLE
SCALAR MULTIPLICATION

We now extend Schoenmakers’ ideas for triple
scalar multiplication. We do not explicitly derive
the algorithm as the derivation is very similar to
that of the double scalar multiplication algorithm.
However, we do note that in everyG′i, where
the G′i is analogous to that used in the double
scalar multiplication case,G′i = {miP + niQ + SiR,
(mi + 1)P + niQ + SiR, miP + (ni + 1)Q + SiR,
miP+ niQ+(Si+1)R, (mi +1)P+(ni +1)Q+ SiR}.
Taking (miP+ niQ+ SiR), ((mi + 1)P+ niQ+ SiR),
(miP + (ni + 1)Q + SiR), (miP + niQ + (Si + 1)R)
and ((mi + 1)P + (ni + 1)Q + SiR) to be P1 P2, P3,
P4 andP5 respectively, the algorithm for triple scalar
multiplication is as follows:

Algorithm 4: L-R Schoenmakers’ triple scalar multi-
plication algorithm.

INPUT: PointsP, Q andR on Em;
Positive integersk = (kt . . .k0)2, l = (lt . . . l0)2,
s = (st . . .s0)2
Precompute(P+Q), (P−Q), (P−R),
(Q−R), (P+Q−R)

OUTPUT: The point[k]P+[l]Q+[s]R

[Initialize]
P1← O; P2← P; P3← Q; P4← R; P5← P+Q

[Loop through the 3 scalar bits simultaneously]
for i = t down to 0 do

P1← P1Store;P2← P2Store;P3← P3Store;
P4← P4Store;P5← P5Store;
if (ki, li,si) = (0,0,0) then

P1← 2∗P1Store ;
P2← P2Store+P1Store (P);
P3← P3Store+P1Store (Q) ;
P4← P4Store+P1Store (R);
P5← P5Store+P1Store (P+Q)

else if(ki, li,si) = (0,0,1) then
P1← P4Store+P1Store (R);
P2← P2Store+P4Store (P-R);
P3← P3Store+P4Store (Q-R);
P4← 2∗P4Store;
P5← P5Store+P4Store (P+Q-R)

else if(ki, li,si) = (0,1,0) then
P1← P3Store+P1Store (Q);
P2← P2Store+P3Store (P-Q);
P3← 2∗P3Store;
P4← P3Store+P4Store (Q-R);
P5← P5Store+P3Store (P)

else if(ki, li,si) = (0,1,1) then
P1← P3Store+P4Store (Q-R) ;
P2← P5Store+P4Store (P+Q-R) ;
P3Partial← P4Store+P1Store (R);

P4Partial← P3Store+P1Store (Q) ;
P5Partial← P2Store+P4Store (P-R) ;
P3← P1+Q (P3Partial) ;
P4← P1+R (P4Partial) ;
P5← P2+Q (P5Partial)

else if(ki, li,si) = (1,0,0) then
P1← P2Store+P1Store (P) ;
P2← 2∗P2Store ;
P3← P2Store+P3Store (P-Q) ;
P4← P2Store+P4Store (P-R) ;
P5← P5Store+P2Store (Q)

else if(ki, li,si) = (1,0,1) then
P1← P2Store+P4Store (P-R);
P3← P5Store+P4Store (P+Q-R) ;
P2Partial← P4Store+P1Store (R);
P4Partial← P2Store+P1Store (P) ;
P5Partial← P3Store+P4Store (Q-R) ;
P2← P1+P (P2Partial) ;
P4← P1+R (P4Partial) ;
P5← P3+P (P5Partial)

else if(ki, li,si) = (1,1,0) then
P1← P5Store+P1Store (P+Q) ;
P2← P5Store+P2Store (Q) ;
P3← P5Store+P3Store (P) ;
P4← P5Store+P4Store (P+Q-R);
P5← 2∗P5Store

else if(ki, li,si) = (1,1,1) then
P1← P5Store+P4Store (P+Q-R) ;
P2Partial← P3Store+P4Store (Q-R) ;
P3Partial← P2Store+P4Store (P-R) ;
P4Partial← P2Store+P3Store (P-Q) ;
P5Partial← P4Store+P1Store (R) ;
P2← P1+P (P2Partial)
P3← P1+Q (P3Partial);
P4← P1+R (P4Partial);
P5← P1+(P+Q) (P5Partial)

end if
end for
returnP1

We now compute the per bit average cost of the above
algorithm.
when (ki, li,si) = (0,0,0) or (0,0,1) or (0,1,0) or
(1,0,0) or (1,1,0):

five point additions are required.
i.e, 5(3M+2S) = (15M+10S) operations.

when(ki, li,si) = (0,1,1) or (1,0,1):
eight point additions are required.
out of these eight, five require(3M+2S)

operations each i.e.,
5(3M+2S) = 15M+10S.

the other three require 4M+2S
operations each i.e.,

3(4M+2S) = 12M+6S.
resulting in a total of(27M+16S) operations.
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when(ki, li,si) = (1,1,1):
nine point additions are required.
out of these nine, five require(3M+2S)

operations each i.e.,
5(3M+2S) = 15M+10S.

the other four require 4M+2S
operations each i.e.,

4(4M+2S) = 16M+8S.
resulting in a total of(31M+18S) operations.

Thus on the average

(5(15M+10S)+2(27M+16S)+ (31M+18S))
8

= (20M + 12.5S) operations would be required to
run Algorithm 4 for every bit of the exponent.
To computex-coordinate ofkP+ lQ+ uR using the
straight forward method, we require the following
steps:

1. ComputekP using Algorithm 1(Binary ladder).
2. RecoverY -coordinate ofkP.
3. ComputelQ using Algorithm 1(Binary ladder).
4. RecoverY -coordinate oflQ.
5. ComputeuR using Algorithm 1(Binary ladder).
6. RecoverY -coordinate ofuR.
7. ComputekP+ lQ+ uR in projective coordinates.
8. Computex-coordinate ofkP+ lQ+uR asx = X/Z

We will assume the bit length of all the three
scalarsk, l and u to be the same. The algorithm
for recovery of theY -coordinate is described in
(Okeya and Sakurai, 2001) and this costs(12M + S)
operations. Then, the computational cost of step
1, 3 and 5 together is 3

[
(6|k| − 3)M + (4|k| − 2)S

]
.

Steps 2, 4 and 6 together costs 3(12M + S). Step
7 costs 2(10M + 2S) while step 8 costsM + I
where I denotes a field inversion. Thus the cost
of computing the x-coordinate of kP + lQ + sR
is (18|k|+ 48)M + (12|k|+ 3)S + I. Ignoring the
costs of recovering the individualY -coordinates and
adding the resulting sums, the approximate cost per
bit when the straight forward algorithm is used to
compute the triple exponentiation is(18M + 12S)
operations. Then on the average, the above straight
forward method performs better than Schoenmakers’
algorithm for triple scalar multiplication.

In the best case, the per bit cost of running
Algorithm 4 is 5(3M + 2S) = (15M + 10S) and
this occurs when(ki, li,si) = (0,0,0) or (0,0,1)
or (0,1,0) or (1,0,0) or (1,1,0). Under these
circumstances Schoenmakers’ algorithm performs
better than the straight forward algorithm.

Worst case per bit cost of Schoenmakers’
algorithm is 31M + 18S and this occurs when all

of (ki, li,si) = (1,1,1). Thus under worst case
conditions, the straight forward algorithm would
perform better than Schoenmakers’ algorithm for
triple scalar multiplication.

The best case, average and worst case
comparisons between Schoenmakers’ algorithm
and the straight forward method can be summarized
as in the table below. The table lists the better option
between Schoenmakers’ algorithm and the straight
forward method under best case, average and worst
case conditions.

Table 1: Straight Forward Vs Schoenmakers’.

Double scalar Triple scalar
Schoenmaker Schoenmaker

Vs Vs
Straight Straight
Forward Forward

Best Case Schoenmaker Schoenmaker
Average Schoenmaker Straight Forward
Worst Straight Forward Straight Forward

5 CONCLUSION

In this paper, we showed the derivation of
Schoenmakers’ algorithm for double scalar
multiplication and used this to construct the
analogue of Schoenmakers’ algorithm for triple
scalar multiplication. We further showed
that Schoenmakers’ algorithm for triple scalar
multiplication is more expensive than the
straight forward method except under best case
conditions. Thus Schoenmakers’ algorithm for
triple exponentiation may not be the best option for
implementation in smart cards and mobile devices.
In (Brown, 2014), the author constructed higher
degree analogues of Bernstein’s binary double
scalar multiplication algorithm, but this algorithm
is currently patented. Moreover, thex-coordinate
only formulae that was initially developed for
Montgomery curves have been generalized for other
types of elliptic curves as well. For instance, the
authors in (Lopez and Dahab, 1999) generalized
this idea to Weierstrass form binary curves and the
authors in (Brier and Joye, 2002) generalized it to
Weierstrass Curves defined overGF(p). In addition,
Montgomery curves themselves have been the focus
of recent research (Bernstein, 2006a) and there is
potential for the Montgomery curve Curve25519 to
be standardized. These reasons motivate the need
to construct triple scalar multiplication analogues of
other double scalar multiplication algorithms such as
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Akishita’s and Euclidean chain algorithms. One such
efficient triple scalar multiplication algorithm is the
subject matter of a sequel publication by this author
(Rao, 2015) in due course.
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