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Abstract: Stochastic Activity Networks (SANs) are used in modeling and managing projects that are characterized by 
uncertainty. SANs are primarily managed using Monte Carlo Sampling (MCS). The accuracy of the results 
obtained from MCS depends on the sample size. So far the required sample size has been determined 
arbitrarily and independent of the characteristics of the SAN such as the number of activities and their 
underlying distributions, number of paths, and the structure of the SAN. In this paper we show that the 
accuracy of the SANs simulation results would depend on the sample size. Contrary to existing practices, 
we show that such sample size must reflect the project size and structure, as well as the number of activities. 
We propose an optimization-based approach to determine the project variance, which in turn is used to 
determine the number of replications in SAN simulations.  

1 INTRODUCTION  

Activity networks (AN) are known to be useful 
models for managing many real world projects.  In 
routine projects such as construction projects, the 
time and resources required by each activity are 
known with certainty. In none-routine projects, the 
time or resources requirements of an activity may 
be, at best, characterized by a random variable with 
a given probability distribution function. Such 
networks are known as stochastic activity networks 
(SANs). 

Many of the measures required for managing the 
SAN projects are hard to calculate using analytical 
methods.  To illustrate the difficulty in calculating 
activity or project completion times consider the 
problem of calculating the probability distribution 
function (pdf) of the completion time of a project 
represented by the AN of Figure 1. The duration of 
activity i is represented by an independent random 
variable Yi for i = 1, 2, 3, 4, 5, each with a specified 
pdf. The completion time of the project, represented 
by the random variable T, is the maximum of the 
duration of the three paths in SAN. Therefore, 
T = max {T1,T2,T3} where Tj is the duration of path j 
= 1, 2, 3; or explicitly 
   T1 =Y1 + Y4, T2 =Y1 + Y3 + Y5, and T3 =Y2 + Y5.  
In general T = max

 
{T(k) over all k ε P} where P is 

the set of all paths in SAN. Consequently, T is the 

maximum over many dependent random variables.  
While it is possible to calculate the exact pdf of T 
for small size SANs, such as the one in Figure 1, and 
for some underlying activity pdfs, it is not possible 
to calculate the exact pdf of T for larger size SANs 
and for various underlying activity distributions. 
This difficulty led to most of the research in SANs 
starting with the development of the well-known 
PERT procedure, Clark (1961). The research is 
focused on approximating or bounding the pdf of T 
or its statistics, Adlakha and Kulkarni (1989); and 
Herroelen and Leus (2005).  

The difficulty in calculating pdf of T or any of 
the other measures stated above has led to the use of 
Monte Carlo sampling (MCS). It is assumed that as 
the number of simulation runs, known as sample size 
n, increases the resulting pdf of T and all of its 
statistics improve in their accuracy, and eventually 
converge to the exact values as n → ∞.  How large n 
should be to guarantee a certain level of accuracy in 
the estimated measures?  The Central Limit 
Theorem (CLT) has been used to answer this 
question. For instance, in case of the mean value for 
the T, denoted by μT, if μs denotes the corresponding 
simulated value, then the level of accuracy is 
measured by the absolute difference ε = | μs - μT|,  
where it is desired to have the difference to be ≤  ε 
with a very high probability. Let α =1 - Pr(| μs - μT| ≤ 
ε), then from the CLT it is concluded that  
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Figure 1: Example of a stochastic activity network. 
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In case of SANs, the above determination of the 
sample size n is problematic as it assumes that: 
 Standard deviation of T, σ, is known 
 The pdf of T converges to a normal 
distribution 
 Sample size n is independent of SAN size 
or number of paths in the AN 
 n is also independent of the underlying pdf 
of the activity durations 
 n is also independent of the structure or 
complexity of the AN. 

To illustrate some of the above problems, is it 
possible that for a given confidence level α that the 
required n to simulate the SAN of Figure 1 (with 
five activities, four nodes, and three paths) is equal 
to the n required to simulate a much larger SAN 
(such as a SAN with 60 nodes, 500 activities, and 
thousands of paths)? Second, it has been proven that 
in most SANs the pdf of T is not normally 
distributed, Dodin and Sirvanci (1990). This paper 
focuses on exploring the relationships that may exist 
between the sample size and the above factors. 

2 SAN CHARACTERIZATION 

The following notation is used throughout the paper: 
A: Set of activities/arcs in the project 
M = |A|; Number of activities in the project/SAN 
N:  Number of nodes in the SAN. 
Yij: A random variable denoting the duration of arc 
(i,j) ε A which starts in node i and ends in node j. 
P:  The set of all paths in the network. 
K = |P|; number of paths in the SAN. 

T(k): The duration of path k ε P; T(k) = 
( , ) ( )

ij

i j P k

Y

 . 

T: The duration of the longest path in SAN 
designating node N realization time as well as the 

project completion time. Hence T = 
P k 

max


{T(k)}. 

The shape of the AN also may reflect the degree of 
dependency among the paths. A rectangular shaped 
AN tends to have many paths in parallel; hence, less 
dependencies among paths than a triangular one. It is 
well known that the higher the precedence relations 
between activities the greater the dependency among 
paths and the harder the task of managing. One of 
the ways to measure some of the above attributes is 
to use the the following AN complexity index, as 
suggested by Kolisch, Sprecher, and Drexl (1995). 
ANCI = [sum of all precedence relations]/N.  In 
some studies N in the ANCI expression is replaced 
by M. ANCI is often used in designing ANs to test 
the efficiency of algorithms/heuristics that are used 
to manage the corresponding projects. 
In case of SANs, ANCI can be used to characterize 
such networks in addition to other characterizations. 
The above expression of T indicates that the 
following factors can play a role in characterizing 
SANs: 

1. Underlying pdf of the activities 
2. Number of paths in the set P 
3. Dependency among the paths 
4. The gap between the duration (expressed in 
terms of the mean and variance) of the longest 
path in SAN and the next longest. 

From the definition of T we notice that the longest 
path is not unique. In fact each path k ε P can be the 
longest path but with certain probability. This 
probability is known in the literature as the 
criticality index of the path, and it is used in SANs 
to rank the paths and the activities, Dodin and 
Elmaghraby (1985). The pdf of T, denoted by F(t), is 
given by F(t) = PR (T ≤ t) = Pr (T(k) ≤ t for all k ε 
P).  Hence,  F(t) ≤ Pr(T(k)) for any one path k ε P.  
This shows that approximating F(t) by the pdf of the 
duration of only one path forms an upper bound on 
F(t). In general, SANs examples can be given to 
show that such an approximation is grossly 
optimistic. It can be shown that the joint pdf of any 
paths combination continues to form an upper bound 
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on F(t). Therefore, the mean value of the duration of 
any individual path, or a surrogate SAN consisting 
of any combination of the P paths of the original 
SAN continue to form a lower bound on E(T), Feller 
(1968), and Dodin (1985).  

The above shows that, in general, T cannot be 
approximated by one T(k) for k ε P, or a 
combination of paths in the set P and simulation may 
become necessary to determine the realizations of T 
and its pdf. We show below how the above factors 
characterize SAN with respect to the ease of 
calculating the pdf of T. To pursue this consider first 
the following two cases: 
Case 1: A SAN consisting of only one path where 
the M activities are in series. In this case the CLT is 
applicable, and as M increases, the pdf of T 
converges to a normal distribution regardless of the 
pdf of the activity distribution. The project 
completion time T, mean, and variance of T are 
given by: 

T = Σij Yij, µ(T) = Σij μ(i,j), and σ2(T) = Σij σ2 (i,j), 

and F(t) can be easily calculated for any value of t 
≥0. In this case there is no need for simulation. This 
is also the case if a path j ε P in SAN dominates all 
other paths k ε P, where a path j dominates a path k 
if 

Pr(T(j) ≤ t) ≤ Pr(T(k) ≤ t) for all t ≥ 0. 

The dominance test is easy to implement if the 
number of paths in SAN is small as, based on CLT, 
each path is normally distributed. Its mean, variance, 
and pdf are calculated as above. However if the 
number of paths is large, then the dominance test 
can be cumbersome. In this case the dominance test 
can be replaced by calculating the gap between the 
longest path, j, and the second longest path, k, in 
mean; then perform the above dominance test 
between these two paths, j and k, or the weaker form 
of dominance given by: 

Pr(T(j)≥ T(k)) ≥ Pr(T(k) ≥ Pr(T(j))=1-Pr(T(j) ≥ T(k)) 

If j dominates k then in all of these instances T can 
be approximated by T(j) and no need for simulation. 
In this case PERT Estimates are excellent regardless 
of the activities underlying distributions. For this 
type of network structure simulation is not needed as 
illustrated by Table 1 below. 
What if there is no one path in SAN that dominates 
all other paths? The next case responds to this 
question: 
Case 2: SAN consists of K independent paths in 
parallel. In this case F(t) is given by:  F(t) = PR 
(T(k) ≤ t for all k ε P) = 

P k 
 Fk(t), and F(t) is not 

normal even if any or all of the underlying K 
distributions  are  normal,  David  (1981),  Galambos 

Table 1: Mean, µ, and Standard Deviation, σ, for One Path Network. 

Number of 
Activities 

Parameter 
Normal Uniform Exponential Mixed 

PERT Sim PERT Sim. PERT Sim PERT Sim 

10 
µ 104.4 104.4 80.9 80.9 7.6 7.6 52.9 53.1 

σ 6.82 6.82 5.48 5.61 2.5 2.46 11.76 11.88 

20 
µ 208.3 208.2 170.3 170.4 42.5 42.5 124.3 124.3 

σ 9.701 10.15 7.74 7.67 13.86 13.77 8.30 8.44 

40 
µ 414.2 414.2 281.1 280.7 56.8 56.8 292.9 293.1 

σ 13.49 13.34 10.95 11.00 11.00 11.23 11.92 11.82 

Table 2: Contrast of μ & σ for T of a SAN with K parallel paths. 

Number 

of Paths 

Normal Uniform Exponential Mixed 

Longest 

Path  

Simulated 

 for T 

Longest 

Path  

Simulated 

for T 

Longest 

Path  

Simulated 

for T 

Longest 

Path  

Simulated 

for T 

μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

10 10 2 13.09 1.20 8 1.73 10.46 .50 .67 .67 1.97 .88 10 2 20.32 11.05

20 10 2 13.76 1.05 8 1.73 10.69 .28 .67 .67 2.41 .86 10 2 22.09 11.21

40 10 2 14.36 0.99 8 1.73 10.86 .14 .67 .67 2.87 .82 10 2 33.83 13.64
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 (1978). If the K paths are also identically 
distributed, then F(t) = [Pr(T(k) ≤ t)]K. In this case 
F(t) converges to an Extrême Value (EV) 
distribution with long right hand tail. Table 2 shows 
that as K increases μ(T) increases where the longest 
path mean and variance stay constant. Table 2 also 
shows that the underlying distributions and SAN’s 
size affect T and its statistics. The increase in μ(T) is 
large especially if some of the underlying 
distributions have long right tails such as the 
exponential distribution. In spite of the fact that all 
paths are iid, except for the mixed case, μ(T) 
continues to increase as the number of paths 
increases. Consequently, if SAN consists of K iid 
paths, then T has an EV distribution. Its pdf, mean 
and variance can be easily computed without the  
need for simulation, Dodin and Sirvanci (1990). 
Consider a large SAN with several paths. In Case 1 
above, the CLT continues to apply for any network 
as long as it contains a single path that dominates all 
other paths. Similarly in Case 2, the EV theory can 
be applied to many SANs with certain 
characteristics, while there are not many SANs that 
consist of many iid paths.  As explained by Case 1, 
the duration of each path is  normally distributed and 
the paths may not be independent. However, many 
of the paths may become normally distributed with 
close means, and variances, and the degree of 
dependencies is very low. Consequently, the 
conditions of the EV theory also exists in these 
networks, and T can be approximated by an EV 
distribution. This is the case for large SANs with 
rectangular or diamond shapes. For these networks 
the distribution of T is affected by two 
convergences: convergence to a normal distribution 
for the individual paths as the number of activities 
on each path increases, and convergence to an EV as

 the number of paths increases and more of them 
become more iid. It was shown in  Dodin and 
Sirvanci (1990) that if SAN has m ≥ 4 dominating 
paths ; i.e. m close to being iid, then pdf of T can be 
accurately approximated by:  
F(t) = Pr(T ≤ t) = exp[- e-(b

m
- a

m
)] 

μ(T) = am + 0.57722 / bm, and σ(T) = π /(2.45 bm) 
where. 
am = µ + σ[(2 ln m)1/2 - (l/2)(ln ln m + ln 4π) / (2 ln 

m)1/2],  bm = 


m)ln  (2
,  

and μ & σ are the mean and standard deviation of 
the first dominating paths.      
Figure 2 and Table 3 show three estimates for the 
pdf of T for a large SAN (with N=40 nodes and 
M=100 activities) where the activities have varying 
exponential distributions. SAN does not have one 
dominating path, but it has many dominating paths. 
It is clear that the pdf based on one of the longest 
paths (normal distribution known also as PERT 
distribution) provides a weak upper bound on pdf of 
T; where that EV estimates are very close to the 
simulated F(t). 

The above two cases prove that if SAN has one 
dominating path, then T is normally distributed; and 
if it has several dominating paths then T has an 
Extreme value distribution. In both cases simulation 
can be avoided. Determining if SAN has one or 
several dominating paths is relatively easy. This 
follows from repeating the dominance test stated in 
Case 1. 

If one path is not the dominating path, then the 
test is repeated by contrasting one of the first two 
longest in mean to  the third longest in mean, then 
the fourth, and so on. This leaves us with the third 
case where SAN does not have either of these two 
characterizations.  

0.0
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Figure 2: Cumulative distributions for the estimates of Normal, Simulation, and Extreme value. 
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Case 3: This includes SANs where the longest 
path/s in mean may not be the longest path/s in 
variance or vice-versa. The SAN is in between the 
above two extremes.  Hence the pdf of T is not 
normally distributed and cannot be approximated by 
longest average (PERT), and cannot have the EV 
distribution. In this case simulation becomes 
necessary for obtaining an accurate approximation 
for T where determining the required sample size n 
is the main issue. The next section deals with the 
issue of determining the n required for achieving the 
desired level of accuracy.  

3 SIMULATION SAMPLE SIZE 

This section shows that project variance depends on 
the network structure expressed by the number of 
activities and activity precedencies.  In order to 
prove such result, we first represent the project 
network into a longest path formulation.  We assume 
that all projects have one dummy starting activity 
and a final ending dummy activity, whose variances 
and durations are equal to zero. So, all paths in the 
network must start and end with these two starting 
and ending dummy activities. The formulation 
assumes activity on arc (AOA) representation. Let 

1

, )  1, ,

set of nodes connecting to i by activity (i,j)  1, ,   

where =
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The above model contains N nodes (constraints) and 

D=
1

N

i
i

A

  precedence or arcs (variables). Program 

(p) solution would provide the maximum variance 
path in the project network, V(P), regardless of its 
completion time.  The size of program (P) in terms 

of number of variables and constraints reflects the 
network structure and accordingly its complexity. 
Projects with larger number of nodes would have 
more constraints and an increased number of 
precedence among these activities would be 
reflected into higher number of variables.   

Proposition: consider two project networks: 
i. The first is a project P0 consisting of N0 

activities and D0  precedencies  among these 
activities. 

ii. The second project, P1, is a sub-network of 
project P0 and, consists of   N1 activities and D1 
precedencies among these activities, where N1≤N0 
and D1 ≤ D0, showing that the network complexity 
index of project P0 , is greater than or equal to that of 
project P1,  NCI (P1) ≤ NCI (P0)      
Then the variance of V(P1)   ≤ V(P0)   
Proof: The number of paths in project P0 is ≥ than 
that of project P1 since it contains N1≤N0   and D1 ≤ 
D0.  Therefore the feasible region for program V (P1) 
is a subset of program V(P0). Clearly maximizing 
over a larger feasible region (larger number of paths) 
for project P0 would yield a higher objective 
function than that of P1. Therefore the optimum 
objective function value of program (P1), V(P1) ≤ the 
optimum objective function value of program (P0), 
V(P0).       
The above Proposition ensures that the network 
structure is represented in calculating the project 
variance, V (P0). 

The following example illustrates that the project 
variance is dependent upon the network structure 
including the number of activities and the number of 
precedencies. 

In order to maintain the same project structure, 
we will formulate program (P) using both AOA and 
AON.  The AOA model would be used to illustrate 
the impact of the number of activities on the 
variance, while the AON would be applied to show 
the impact of the number of precedencies on the 
variance.   Table 4 presents a sample eight-activity 
project. 

Solving the longest variance route AOA model 
for the Eight-Activity project yields a variance = 44. 
Suppose we drop two activities (3,4) and (4,6) while 
maintaining the same project precedence among the 
remaining activities. The longest variance route for 
the resulting six-activity project provides a variance 
= 42, which illustrates that a project with a larger 
number of activities would have a project variance 
that is greater than or equal to a project with a subset 
of those activities. Table 5 summarizes the results of 
variances for the three models solved for the same 
project.   The   table   also  shows  that  as   the   NCI  
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Table 3: Three estimates of F(t): Normal, Simulation, and Extreme value. 

t Simulation Normal (PERT) EV 
26.35 0.00 0.16 0.00 

31.79 0.02 0.26 0.00 

37.23 0.07 0.39 0.03 

42.67 0.19 0.54 0.12 

48.11 0.35 0.68 0.30 

53.55 0.52 0.80 0.50 

58.99 0.68 0.89 0.67 

64.43 0.79 0.94 0.79 

69.87 0.88 0.97 0.87 

75.31 0.93 0.99 0.93 

80.75 0.96 1.00 0.96 

86.19 0.98 1.00 0.97 

91.63 0.99 1.00 0.99 

97.07 0.99 1.00 0.99 

102.51 1.00 1.00 0.99 

107.95 1.00 1.00 1.00 

113.39 1.00 1.00 1.00 

118.83 1.00 1.00 1.00 

124.27 1.00 1.00 1.00 

129.71 1.00 1.00 1.00 

135.15 1.00 1.00 1.00 

Table 4: Sample Eight-Activity Project. 

Activity (AoA) (1,2) (1,3) (2,4) (3,4) (3,5) (4,5) (4,6) (5,6) 
Activity (AoN) A B C D E F G H 

Precedence (AoA) - - (1,2) (1,3) (1,3) (2,4),(3,4) (2,4),(3,4) (3,5) ,(4,5) 
Precedence (AoN) - - A B B C, D C,D E, F 

Variance 9 6 10 15 12 10 8 13 

Table 5: Maximum Variances for eight-activity project and its subset projects. 

ProjectDescription 
Number of 

NCI Maximum Variance 
Activities Precedence Nodes 

Original 8 9 6 1.5 44 
Subset(activities D & G deleted) 6 5 6 0.83 42 

Subset(No C-F & F-H precedence ) 8 7 8 0.875 31 
 

increases the project variance increases. Please note 
that in all cases, the variance provided by optimizing 
the longest variance route model would always be 
greater than or equal the variance of the longest path 
T. 
Therefore, the variance given by the longest 
variance model would serve as the basis for 
computing the simulation sample size.  Our 
proposed approach would ensure that the project 
network structure, expressed by the number of 
activities and precedence relationships, have a direct 
impact on the project variance and accordingly on 
the project simulation sample size. Let   

2
v = the maximum variance V(P)

= the critical path expected lengthET


 

Then the proposed approach would be as follows: 

4 PROPOSED SIMULATION 
APPROACH 

a. Formulate a longest variance model using 
program (P) with the variances as the cost 
coefficients of the (0, 1) variable corresponding to 
each activity. 
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b. Optimize the model to get the maximum 

variance, 2
v . This provides the value for the project 

variance.   Please recall that the CLT would ensure 
that project duration distribution is a normal 
distribution with an expected project duration TE and 
a standard deviation σv.  
c. For a specified upper bound on the error in 
TE, given by ϵ, we can then compute a lower limit on 

the value of n, as follows:  




2

2

2

vn Z   

d. Replicate the simulation according to this n. 

5 CONCLUDING REMARKS 

In this position paper, we classify SANs based on 
the probability distributions of the activity durations 
as well as the network structure.  We identify the 
situations where stochastic simulation is required.  
For those simulation experiments, we have also 
shown that the existing approaches for determining 
the number of replications based on the central limit 
theorem is inaccurate.  The paper illustrates the need 
for determining the simulation sample size based on 
the project network structure and size.  We proposed 
an optimization based approach to determine the 
number of replications based on the SAN structure 
and size.  Future work would involve conducting 
extensive computational experiments on SANs with 
a variety of structures and size.  
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