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Abstract: In this paper we discuss the concept of co-adaptation between a human operator and a machine interface and
we summarize its application with emphasis on two different domains, teleoperation and assistive technology.
The analysis of the literature reveals that only in a few cases the possibility of a temporal evolution of the
co-adaptation parameters has been considered. In particular, it has been overlooked the role of time-related
indexes that capture changes in motor and cognitive abilities of the human operator. We argue that for a more
effective long-term co-adaptation process, the interface should be able to predict and adjust its parameters ac-
cording to the evolution of human skills and performance. We thus propose a novel approach termed progres-
sive co-adaptation, whereby human performance is continuously monitored and the system makes inferences
about changes in the users’ cognitive and motor skills. We illustrate the features of progressive co-adaptation
in two possible applications, robotic telemanipulation and active vision for the visually impaired.

1 INTRODUCTION

In the field of Human-Computer Interaction (HCI)
and, more generally, in the field of Human-Machine
Interaction (HMI), the term co-adaptation refers to
the process of adjustment of both the machine and
the human operator during prolonged interaction. In
other words, “both the human user and the machine
should be able to adapt to the other through ex-
periencing the interaction occurring between them“
(Sawaragi, 2005). Designers of HMI applications
can adopt several strategies for implementing adap-
tive changes in the HMI system with goals akin to
co-adaptation: these approaches are defined human-
centered and goal-oriented .

The aim of human-centered (or user-centered) co-
adaptation is to create a pleasant interface (Dixon,
2012) that maximizes usability. The design needs are
shaped around the user skills and expectations. Ac-
cording to ISO 9241-210:2010 (Jokela et al., 2003),
human-centered design is an “approach to systems
design and development that aims to make interactive
systems more usable by focusing on the use of the
system and applying human factors/ergonomics and
usability knowledge and techniques” (see Fig. 1).

Goal-oriented co-adaptation focuses instead on
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Figure 1: Performance and usability goals according to dif-
ferent HMI approaches. The separation between progres-
sive co-adaptation and human-centered design should hap-
pen once performance is approaching a plateau.

designing a user interface that can be exploited at
its maximum potential. This approach makes the as-
sumption that the user is very skilled in performing
the task. The drawback is that only well trained users
can benefit from the adaptability of the system. A
typical example of this approach is the use of joy-
sticks to operate an excavator. Joysticks are widely
used as human-machine interfaces in many applica-
tions of excavators, cranes, forklifts, electric-powered
wheelchairs, and telemanipulated robots due to their
reliability, ergonomy, and low cost. For some of these
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applications (e.g. excavators) the operator is required
to undergo an extensive training as the mapping be-
tween the master device (joysticks) and the slave end-
effector (shovel) can be counterintuitive. Another ex-
ample of goal-oriented approach in a different domain
is The vOICe, a mobile assistive device for the visu-
ally impaired that converts visual images to auditory
signals (Ward and Meijer, 2010). In this case, given
the richness of the information, the system requires
long periods of training and user adaptation to the in-
herent cognitive load.

Performances and usability during interaction
evolve in a different way depending on the selected
approach, with human-centered design prioritizing
usability increase and goal-oriented design giving
more importance to performance increments (Fig. 1).
The co-adaptation design approach aims to combine
the advantages of human-centered design with the fi-
nal performances achievable using the goal-oriented
design by creating an interface that can adapt to the
skills of the user assessed over time. It is adopted in
all those applications where long-time training is re-
quired to make the interaction efficient and reliable.

Examples of co-adaptation design can be found in
speech recognition software, gesture classifiers, and
multimodal interfaces coupling human training and
learning algorithms (Christoudias et al., 2006). Some
form of co-adaptation is embedded in collaborative
control strategies for robotic wheelchairs to determine
the user’s intention (e.g. desired destination) and ad-
just the control signals accordingly, adapting the level
of assistance based on the affordances of the sur-
roundings (Carlson and Demiris, 2012).

There are cases where co-adaptation is a require-
ment of the system. An example comes from the
field of Brain-Computer Interfaces (BCI) applied to
teleoperation applications. Electroencephalography
(EEG) signals coming from the brain are collected,
filtered, and coded in order to control a remote robot
(Bi et al., 2013). For this types of applications, co-
adaptation is necessary because the system needs to
learn how to associate desired commands with brain
signals patterns while the participant is adapting to the
novel task. The interface needs to be adaptive so to
account for changes in cortical plasticity which mod-
ify brain connectivity leading to a different neural re-
sponses. This can be obtained in several ways. Bryan
et al., for example, combined reinforcement learning
and Bayesian inference (Bryan et al., 2013). Gürel
and Mehring, instead, implemented an unsupervised-
learning decoder with a cost function derived from
neuronal recording that allows on-line adjustment of
its parameters (Gürel and Mehring, 2012).

In all these cases the interface should be able

to dynamically modify its architecture at each time
point, so to be able to optimise both long-term usabil-
ity and performance. However, existing co-adaptation
approaches are usually biased towards goal-oriented
or human-centered interface improvements, which
unavoidably lead to similar plateaus typical of non-
adaptive solutions.

The main contributions of this paper is the defi-
nition and formalization of a new paradigm in HMI,
named progressive co-adaptation. A progressive co-
adaptive interface is one that incorporates two func-
tions: self-adaptation of the interface to the actual
user skills, and simultaneous training of the user in or-
der to increase long-term performances. The concept
is discussed for two potential case scenarios, namely
a robotic telemanipulation task and an active vision
system for the visually impaired, which could both
benefit from this novel approach.

2 CO-ADAPTATION IN TASKS
INVOLVING HUMAN
MOTOR-LEARNING SKILLS

In master-slave teleoperation implementations, the
adaptation of the interface can take place for several
reasons and at multiple levels. The control needs to
account for various parameters, including time-delay
(to increase performance and keep the system stable)
(Chen et al., 2014), operator model uncertainties (re-
lated to human body impedance, not to cognitive or
skill aspects) (Chan et al., 2014), and environment
force uncertainties (Passenberg et al., 2010). Potential
control problems are usually avoided by using classic
control approaches (Hokayem and Spong, 2006) or
with more advanced control techniques such as adap-
tive admittance control (Love and Book, 2004) or
impact stabilization controllers (McAree and Daniel,
2000). In all these applications, the interface adapts
immediately to the human and environment condi-
tions to optimize the quality of the performed action
in terms of transparency, stability, and reliability. Hu-
man adaptation of course still takes place, but it is not
taken into account as a direct key-parameter to pro-
mote a modification of the interface.

If we indicate with c the set of parameters that
characterize the interface and that can be adjusted in
order to adapt the interface to the human, then we can
write the following:

c = f (S) (1)

where S represents the group of measurable parame-
ters related to the aforementioned time-delay during
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telemanipulation, operator model uncertainties, envi-
ronment force uncertainties, stability parameters, etc.

To elucidate this equation, we consider the mouse
of a computer as an example. Such a control inter-
face maps the two-dimensional motion on a surface
to command a pointer on a display. For this interface,
c represents the speed parameter, the ratio between
displacement of the cursor on the screen and displace-
ment of the mouse on the surface.

Interface adaptation can take place at different
levels and it can be prompted by parameters related
to the operator skills. In master-slave teleopera-
tion scenarios, the term Human Adaptive Mechatron-
ics (HAM) indicates those interfaces that “are aimed
to assisting the human according to his or her skill
level by changing their own functions”(Harashima
and Suzuki, 2010). For example, Furuta et al. pro-
posed a haptic interface for operating a pendulum-
like juggling slave mechanism (Furuta et al., 2011;
Furuta, 2003) where a dedicated module provides a
correction force controller to assist the human oper-
ator. Igarashi et al. proposed a graphical user inter-
face, provided with effective alert functions, to reduce
operator’s misrecognition in a teleoperation task of a
quadruped robot (Igarashi et al., 2005). Alert infor-
mation is modulated depending on the human sensi-
tivity to the features of the graphical user interface.

In this kind of applications it is necessary to per-
form a direct measure of the humans’ skills (Suzuki
et al., 2013) in terms of social abilities, planning,
cognitive functions, dexterity, sensory-motor perfor-
mance, or their combination. For this, models of
human behavior models are required (Cui and Hua,
2013). Mavridis et al., for example, introduced a met-
ric to evaluate operator’s skills involved the teleoper-
ation of a robot controlled by two joysticks. The met-
ric considers kinematic parameters and is correlated
to facial expression analysis (Mavridis et al., 2015b;
Mavridis et al., 2015a). Suzuki et al. monitored the
learning process involved in a bimanual teleoperation
tasks (the tracking of two markers on a screen) by
evaluating the tracking errors (Suzuki et al., 2008).
Human skills can also be monitored by assistive tech-
nologies. In Hoey et al. (Hoey et al., 2010), for exam-
ple, a vision-based system for automated handwash-
ing assistance monitored the psychological state of a
person with dementia to adapt accordingly. An alter-
native, indirect estimate of activity can be obtained
by monitoring brain activity through EEG or Near-
infrared spectroscopy (Ishikuro et al., 2014).

To emphasize the key role of quantitative indexes
in the interface adaptation process related to human
skills, eq. 1 can be modified as follows:

c = f (S;F) (2)

where F represents the set of measurable parame-
ters related to human skills. Note that in the human-
centered design approach, the interface adjusts its pa-
rameters on-the-fly, as expressed by eq. 2. On the
contrary, eq. 1 refers to the goal-oriented approach,
where the interface does not account for the user
skills. Back to the mouse example, F could be the
average of the inverse of the error between the desired
and the actual pointer position over a training section.
Following eq. 2, it is therefore necessary to introduce
a metric that explicitly measures human skills over
time.

3 PROGRESSIVE
CO-ADAPTATION

All previously described adaptive techniques rely on
the assumption that: a) there exists a relationship be-
tween the actual interface architecture (c) and the hu-
man skills (F), and b) that the mapping between the
two aspects is static and known a priori. In other
words, adaptive techniques assume that there is a
proper interface for each skill level of the user. How-
ever, as the inventor of the mouse Douglas Engelbart
wisely stated: “if ease of use was the only valid cri-
terion, people would stick to tricycles and never try
bicycles”. Indeed other factors, like the maximization
of the overall performance, should be considered.

To achieve this, the relationship between the in-
terface parameters c and the human skills F can be
defined as being dynamic rather than static:

c = f (S;F; t) (3)

where t is the time, which becomes a key parameter
in the design of the interface. For example, the mouse
speed (i.e. c parameter) could be linearly increased
with time (c = Costant� t ). This simple strategy is
meant to train non-skilled users over a long-time pe-
riod. Note that, in the context of eq. 3, the adaptation
rate of the interface dc

dt has to be properly calibrated,
since it affects the stability of the system (Merel et al.,
2013) as well as the final achievable performances of
the human-machine interaction.

Another aspect that needs to be considered in a dy-
namic mapping interface is when the user is not able
to improve the task performance (e.g. because of the
limitation of the current interface parameters). This
can be monitored by observing the term dF

dt , which
captures changes in the human skills F. The interface
can change to accommodate lacks of performance im-
provement, for example by linking the interface adap-
tation rate to dF

dt . Therefore, the co-adaptation inter-
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face can be described as follows:

c = f
�

S;F;
dF

dt
; t
�

(4)

Such equation is the general representation of the re-
quirements of interfaces based on the notion of pro-
gressive co-adaptation, characterized by gradual but
steady improvements. In practice, the separation be-
tween progressive co-adaptation and human-centered
design should happen once the performance is ap-
proaching a plateau and dF

dt in eq. 4 decreases. In
the following sections we will analyze two scenarios
where the framework captured by this equation can be
applied.

4 APPLICATION #1:
TELEMANIPULATION

An interface for teleoperation is made up of several
“layers”, each one with parameters that need to be
modified over time for the co-adaptation to take place,
even at the hardware level (Jin et al., 2014).

Operation performance depends not only on the
mapping between slave DoFs and operator’s DoFs
(DoFs of the hands and/or arms involved in the re-
mote operation), but also on several other geometric
and control parameters, such as control gain (Huys-
mans et al., 2006) and stiffness (Oliver et al., 2006).
To become the operator of heavy equipments, trainee
require extensive training because of the counterin-
tuitive and demanding cognitive mapping. Training
simulators are often employed to reduce cost and
time requirements. We believe that the parameters
involved in teleoperation training can be modified
over time according to the progressive co-adaptation
paradigm in order to improve the effectiveness of the
training procedures.

This approach can be applied to the domain of
multi-robot teleoperation and, in particular, to the
case of three n-DoFs independent serial robots tele-
operated by a sole operator. To solve this issue we
propose a control strategy based on a mixed control
involving the Direct Rate control and the Resolved
Position Control.

In the Direct Rate control manipulator there is a
direct correspondence between each DoF of the mas-
ter and each manipulator joint velocity. In this way,
the master position is interpreted as a velocity com-
mand for the manipulator joint. Therefore the veloc-
ity can vary linearly with respect to the master po-
sition. Typically, this approach is used in excavators
and cranes because the joystick position directly com-
mands the hydraulic valve opening. In fact, there ex-
ists a linear relationship between the manipulator joint

speed and the valve opening. In the Resolved Position
Control, instead, the mapping is simply between each
master DoF and the spatial DoFs of the manipulator.

s1 s3 s2

li

h2
h1

qi

Figure 2: DoFs mapping between the 3 robots slave system
and the two operator’s hand poses.

The two approaches can be combined as shown in
Fig. 2. A vision-based tracking device or a two glove-
based master measures the positions of the operator’s
fingers. The two thumb poses h1 and h2 are used to
control the end-effectors of two robots s1 and s2 ac-
cording to a Resolved Position Control approach.

The third robot is controlled in a direct rate con-
trol mode by the other fingers. Let q̇i be the command
speed of each joint of the robot and li the distance of a
fingertip from the origin of the frame h1 (or h2). The
control role of each robot’s joint is given then by the
set of relations:

q̇i = ki(li� li0) (5)

where ki and li0 are parameters to be defined which
characterize the human-robot interface. Therefore,
in this case, the vector of the interface parameters is
c = fk1; :::;kn; l10; :::; ln0g. The latter can be adjusted
adopting the proposed progressive co-adaptation ap-
proach.

For this application, we assume that the data trans-
fer time-delays between the master device and the
slave are negligible. Moreover, we assume that the
slave system operates in a structured environment.
Under these conditions, the parameter S in eq. 4 is
not relevant to the adjusting process and can be omit-
ted. Instead, we need to define a metric to measure
the operator’s motor skills F over time. Let ē be the
error defined as the sum of the distance of the three
end-effector poses s1, s2 and s3 from target poses im-
posed by the specific task s1task , s2task and s3task . The
skills parameter F can be defined then as the average
of the inverse error 1=ē during each training section.

One possible progressive co-adaptation function
could be implemented by increasing the parameters
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k1; :::kn by a constant value every time dF

dt drops be-
low a given threshold e. In this way, as the user’s skills
tend to reach a plateau over time (additional training
will not produce effects on motor skills), the interface
parameters are adjusted in order to increase the over-
all performance of the human-robot interaction.

The co-adaptation process ends when no further
operator’ skill improvements are registered. This
strategy would guarantee a stepwise training phase.

5 APPLICATION #2: ACTIVE
VISION

Another domain where co-adaptation can be applied
is with mobile cyber-physical systems, in particular
those addressing the fundamental problem of active
vision with human-in-the-loop. The preliminary work
in (Bellotto, 2013), for example, proposes a multi-
modal interface for handheld cameras devised to im-
prove the navigation experience of the visually im-
paired. Such interface enables the user to point a
smartphone’s camera towards features of the environ-
ment facilitating for example navigation tasks like ob-
stacle detection or place localization. In this scenario,
co-adaptation between user and mobile device is par-
ticularly challenging due to the unpredictability of hu-
man motion and sensor uncertainty.

Active vision with human-in-the-loop is related to
the classic problem of active perception, where the
goal is to find models and control strategies that can
facilitate the execution of a task (Bajcsy, 1988). In
particular, the processes involved can be represented
by a closed-loop system, in which the feedback from
the mobile device and the vision algorithms are con-
verted into “control signals” for the user to execute.
The goal is to orient the camera towards particular ob-
jects or features in the environment, whose locations
are used as reference for the system. Fig. 3 illustrates
the concept. The input r is the reference provided,
for example, by some obstacle detection or a place lo-
calization algorithm, giving the direction of a visual
target the camera should be pointing at. The error e
between the reference and the actual orientation y of
the camera is used by the controller C to generate the
control signal u.

Typical active vision systems are concerned with
the optimal control of some electro-mechanical de-
vice that regulates the internal and/or external cam-
era’s parameters, like position, orientation, focal
length, etc. (Rivlin and Rotstein, 2000). Active vision
with human-in-the-loop, instead, tries to control the
output of the whole human-camera subsystem, illus-
trated in Fig. 3 by block H and P respectively. Within

C H Pur e u* y

Figure 3: Feedback configuration with human-in-the-loop.
The error e is the difference between the input reference r
and system’s output y. The control signal u is generated by
the controller C to act on the human H. The latter moves
the smartphone camera P through another control signal u�.

this subsystem, the control signal u� corresponds to
the torque applied by the human to the handheld cam-
era to change its direction and orientation.

In (Bellotto, 2013), a possible multimodal inter-
face was proposed. The system’s goal is to convey
information that needs to be transmitted from the con-
trol algorithm C to the user, i.e. to define a “signal”
u that, at least in most of the cases, can be interpreted
correctly by the person within a reasonable time. An
important aspect of this multimodal interface was the
combination of vibrations, 3D sounds and vocal mes-
sages (on bone-conduction headphones) to instruct
the user while pointing the smartphone’s camera to-
wards a visual target. The most efficient combina-
tion of the three modalities, as well as their individual
tuning, can be achieved only by taking into account
the long-term co-adaptation of the human-smartphone
system.

The problem can be framed in the progressive co-
adaptation paradigm of eq. 4 by first defining the pa-
rameters of the smartphone’s interface c. These in-
clude the position ps of the 3D sound source corre-
sponding to the visual target, as well as the frequen-
cies f fv; fs; fmg and the amplitudes fav;as;amg of the
vibrations, 3D sounds and vocal messages respec-
tively. For example, fm would be the average num-
ber of vocal messages generated by the system within
a fixed time interval, while am would be the volume
they are played at. Together, these parameters define
the whole interface c = fps; fv; fs; fm;av;as;amg.

Leaving aside the parameters S related to time-
delays etc., the next important element is the user
“pointing” skill F. One way to measure this is to com-
pute the average error ē of the control loop in Fig. 3
for a fixed time interval, then take its inverse (i.e. the
smaller the error, the more skilled the user is).

As in the previous application, the interface pa-
rameters could be adjusted by increasing the value of
one or more of them whenever dF

dt goes below a given
threshold e. For example, if during training the user
does not improve in pointing the camera to the correct
direction (i.e. dF

dt < e), the frequency fm of the vocal
messages could increase to better assist him/her in the
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task. Note that in general there is not a linear relation
between interface and skills parameters, and the map
from one to the other can be much more complex than
the examples provided here.

6 CONCLUSIONS

In this paper we proposed a general framework
for the description of interface design for human-
machine interaction tasks involving motor-learning
skills. In particular, two well-established approaches,
the goal-oriented approach and human-centered ap-
proach, have been reviewed. Their advantages and
drawbacks have been analyzed in terms of usabil-
ity and performance, considering also their temporal
evolution.

During the training phase of every long-term
human-machine interaction, a process of neuroplas-
ticity occurs: the user adapts to the interface and
his/her motor skills improve. If, at the same time,
the interface adjusts its characteristic parameters, the
whole process can be referred to as a process of co-
adaptation. The analysis of time-adjusting interfaces
coming from the literature reveals that the temporal
evolution of the parameters related to co-adaptation
(and in particular to the user’s performance) has not
been fully exploited. In particular, the role of time-
related indexes that capture changes in motor and cog-
nitive abilities of the user has been overlooked.

A novel approach named progressive co-
adaptation is proposed to fill the gap. In this
framework, human performance is continuously
monitored and the system makes inferences about
changes in the users’ cognitive and motor skills. As
argued in the paper, progressive co-adaptation at-
tempts to combine the advantages derived from both
the goal-oriented and human-centered approaches,
while it mitigates their drawbacks. Indeed, for a
more effective long-term co-adaptation process, the
interface should be able to predict and adjust its
parameters according to the evolution of human skills
and performance (and not only to the actual ones).

To validate the proposed approach we plan to im-
plement it for two practical applications of teleoper-
ation and assistive technology, namely robotic tele-
manipulation and active vision for the visually im-
paired. For both cases, initial challenges have been
described and potential solutions based on progres-
sive co-adaptation have been discussed. We are rea-
sonably confident that future research in this direc-
tion will highlight the advantages of the proposed ap-
proach.
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