
Towards Gamification in Software Traceability: Between Test and
Code Artifacts

Reza Meimandi Parizi, Asem Kasem and Azween Abdullah
School of Computing and IT, Taylor’s University, 47500 Subang Jaya, Selangor, Malaysia

Keywords: Software Traceability, Software Testing, Validation, Gamification, Reliability.

Abstract: With the ever-increasing dependence of our civil and social infrastructures to the correct functioning of
software systems, the need for approaches to engineer reliable and validated software systems grows
rapidly. Traceability is the ability to trace the influence of one software artifact on another by linking
dependencies. Test-to-code traceability (relationships between test and system code) plays a vital role in the
production, verification, reliability and certification of highly software-intensive dependable systems. Prior
work on test-to-code traceability in contemporary software engineering environments and tools is not
satisfactory and is limited with respect to the need regarding results accuracy, lack of motivation, and high
required effort by developers/testers. This paper argues that a new research is necessary to tackle the above
weaknesses. Thus, it advocates for the induction of gamification concepts in software traceability, and takes
a position that the use of gamificaiton metrics can contribute to software traceability tasks in validating
software and critical systems. We propose a research agenda to execute this position by providing a unifying
foundation for gamified software traceability that combines self-adaptive, visualization, and predictive
features for trace links.

1 INTRODUCTION

Traceability is the ability to describe and follow the
life of software artifacts, and is described by the
links that connect related artifacts (Lago et al.,
2009). Traceability support (for software projects) is
deemed to assist software engineers in
comprehension, efficient development, and effective
management of software systems (Chen and Grundy,
2011). Research has shown that inadequate
traceability can be an important contributing factor
to software project failures and budget overruns
(Dömges and Pohl, 1998); and leads to less
maintainable software, and to defects due to
inconsistencies or omissions (Winkler and Pilgrim,
2010). On the other hand, achieving affordable
traceability can become critical to project success
(Watkins and Neal, 1994), and leads to increasing
the maintainability and reliability of software
systems by making it possible as a means to verify
and trace non-reliable parts (Ghazarian, 2010),
mostly through testing. Therefore, traceability is
important not only for software artifacts, but also as
a major component of many standards for software
development, such as the CMMI, ISO 9001:2000,

and IEEE Std.830-1998, to increase industrial and
enterprise considerations.

Coding and testing are two key activities of
software development (Huang and Kuo, 2002) that
are tightly intermingled, particularly in incremental
and iterative methodologies (Rompaey and
Demeyer, 2009) such as agile software development.
About half of the resources consumed during the
software development cycle are testing , verification,
and validation resources (Ohtera and Yamada, 1990,
Huang and Lyu, 2005, Wang et al., 2010), i.e.
testing is expensive and lengthy. It is beneficial to
monitor this stage closely to make it more
productive, and, if possible, shorter (Kubat and
Koch, 1983) in order to develop quality reliable
software with affordable resources (Ohtera and
Yamada, 1990). In this regard, supplementing
testing by traceability can be a decent remedy to
provide useful information (e.g. understand the
system, help efficiently locate the faulty code,
analyze the impact of the changes, find most
effective or redundant tests, and rectify defects more
reliably in less time) for developers and testers
during the testing and debugging phase. Thus,
traceability-aware testing, in turn, helps achieve a
highly reliable software system by reducing test

393Meimandi Parizi R., Kasem A. and Abdullah A..
Towards Gamification in Software Traceability: Between Test and Code Artifacts.
DOI: 10.5220/0005555503930400
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 393-400
ISBN: 978-989-758-114-4
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

effort, and increasing the effectiveness of software
fault detection and removal techniques (Kuo et al.,
2001, Espinoza and Garbajosa, 2011), especially in
critical systems.

However, the trace links between tests (or test
cases) and code artifacts (hereafter test-to-code
traceability (Parizi et al., 2014)) are typically
implicitly presented in the source code, forcing
developers towards overhead code inspection or
name matching to identify test cases relevant to a
working set of code components. Likewise, tests
also require frequent adaptation to reflect changes in
the production code to keep an effective regression
suite (Rompaey and Demeyer, 2009), e.g. during
software evolution. Identifying trace links can be
seen as an arduous, time-consuming, high cost, and
error-prone job (Sundaram et al., 2010, Mader et al.,
2013). Thus, capturing and creating traceability
information as a by-product of development (i.e.
performing in parallel with the artifacts / proactive)
is often found (Sundaram et al., 2010) to be tedious
to developers/testers, and is rarely done to the
necessary level of granularity, which can result in
poor quality and incomplete recording of the
relevant traceability.

Existing traceability approaches (Antoniol et al.,
2002, Marcus and Maletic, 2003, Egyed, 2003,
Wang et al., 2009, Lucia et al., 2007, Witte et al.,
2008, Jirapanthong and Zisman, 2009, Bacchelli et
al., 2010) mostly rely on post-mortem analysis (ad
hoc and after the fact) of software artifacts as a
sought-after activity to recover trace links. This is
also the case with existing test-to-code traceability
approaches (see Section 2), where traceability is not
an internal characteristic or property of the source
code or tests. Instead, traceability is achieved outside
the source code and test artifacts, after they are built.
It has to be said however that obtaining traceability
information using this strategy suffers from a
technical bias that impedes its performance
(including accuracy of results and required effort
and cost) in modern software projects, e.g. the
emerging trend towards the adoption of agile-based
or big data-driven projects which are the
mainstream.

Much of test-to-code traceability problems in
this case, first and foremost, derive from the fact that
for most software projects, ensuring traceability is a
duty honour'd in the breach and is not regarded as a
visible and feasible option to individual stakeholders
or the project manager (Mader et al., 2013). Also, it
can be contended that the current challenges inherent
to test-to-code traceability originate in a lack of

motivation and improper engagement of human
developers/testers in traceability tasks.

To date, the realization of test-to-code
traceability has received lesser attention in which
only a small proportion of research work in the
literature targets this subject. Even in industrial
settings, test-to-code traceability is not common in
software development (Qusef et al., 2014), and often
falls far short of accepted principles in software
engineering. These observations show that the
current research and practice on test-to-code
traceability is in infancy. Hence, to support the
advancement in this area, and the maturity of the
test-to-code traceability, new approaches need to be
developed or current approaches evolved with new
concepts and ideas. This in turn provided a
motivation for this research to propose a change of
research focus from existing post-mortem recovery
of trace links to proactive construction of traceable
software systems with highly engaged human
factors.

Gamification (Deterding et al., 2011) as a new
technological trend, introduces game mechanisms
into non-gaming contexts in order to increase
engagements, motivation, and participation.
Gamification has recently been a burgeoning interest
for researchers and enterprises due to its merits
(Koivisto and Hamari, 2014). An examination of the
literature reveals that gamification has been utilized
across various fields of research and domains,
aiming for enhancement of conventional techniques.
For instance, in requirement elicitation (Fernandes et
al., 2012), software architecture (Herzig et al.,
2012), testing environment (Chen, 2011), learning
and education (Domínguez et al., 2013, Simões et
al., 2013, de-Marcos et al., 2014, Rodríguez Corral
et al., 2014), online business and retail (Insley and
Nunan, 2014), tablet software (Browne et al., 2014),
and government services (Bista et al., 2014). The
results achieved from these studies and some SE-
specific work (Dubois and Tamburrelli, 2013,
Vasilescu, 2014, Pedreira et al., 2015) motivated the
use of gamification and its usefulness within
software and systems engineering activities. In this
respect, the idea behind gamification (as it creates
feedback-rich environment) can be worthwhile,
attractive and offers much promise regarding test-to-
code traceability human-related problems.

Despite the large number of recent studies on the
utilization of different gamification concepts, there
has been no sound and fundamental work for which
this concept is well suited to test-to-code traceability
of software-intensive systems. Thus, investigating
this idea to the traceability problem remains

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

394

challenging as an open research area to be
conducted. This research will address this gap in the
existing traceability literature. As far as we are
aware, this is the first attempt made in the literature
to fundamentally bridge software traceability field
with gamified concepts.

2 LITERATURE REVIEW

In this section, we review the existing approaches
available for test-to-code traceability and assess their
strengths and weaknesses. A general standpoint to
review current approaches is to look into underlying
strategies to achieve traceability, which are generally
categorized in two ways (Sundaram et al., 2010):

1. By-product of artifact development (a.k.a
proactive)

2. After-the-fact artifact development

Developers/testers are not usually willing to
record traceability information while they are
developing the software systems. If traceability
information is maintained as a by-product of
development throughout a project’s lifetime, it
would be desirable and highly recommended; but
unfortunately researchers have not given much
attention to this category (Sundaram et al., 2010,
Mader et al., 2013). As a result, traceability is often
conducted in an ad-hoc, after-the-fact manner and,
therefore, its benefits are not always fully realized
(Cleland-Huang et al., 2014). Researchers in
(Deursen and Moonen, 2002, Sneed, 2004, Rompaey
and Demeyer, 2009, Qusef et al., 2010, Cleland-
Huang et al., 2014) argued that in most cases of real-
world software systems, traceability links are not
maintained properly or even documented, and thus
are unavailable during the maintenance phase;
therefore, as a last resort, traceability links need to
be recovered during the evolution of software
systems.

In the last decade, enormous approaches have
been proposed to recover traceability links between
various software artifacts. But, the realization of
test-to-code traceability has received lesser attention
in which only a small proportion of research work in
the literature targets this subject. In the following,
the existing test-to-code traceability recovery
approaches are reviewed and discussed.

Today's integrated development environments
provide little support for software developers to
navigate between unit tests and tested classes. As an
example, Microsoft visual studio 2010 environment
provides a wizard to create unit tests for existing

classes. In its subsequent versions, a unit test
generator is available as an extension for users. The
Eclipse Java environment also provides the same
feature. Several sources (Sneed, 2004, Rompaey and
Demeyer, 2009, Qusef et al., 2010, Espinoza and
Garbajosa, 2011, Qusef et al., 2011, Qusef et al.,
2014) have proposed different test-to-code
traceability solutions to recover traceability links
between unit tests and production code.

Rompaey and Demeyer, in 2009, empirically
compared a series of automatable traceability
approaches, namely Naming Convention (NC),
Fixture Element Types (FET), Static Call Graph
(SCG), Last Call Before Assert (LCBA), Lexical
Analysis (LA) and Co-Evolution. The results of their
empirical experiments on three open-source Java
systems, JPacman, ArgoUML, and Mondrian,
indicated that although LCBA, LA and FET have a
high applicability, they have poor results in
precision and recall. On the other side, NC showed a
good result in accuracy. The best overall result was
achieved with a combination of NC, FET and
LCBA.

Qusef et al., in 2010, introduced a traceability
recovery approach based on Data Flow Analysis
(DFA) to enhance LCBA method proposed by
(Rompaey and Demeyer, 2009). This approach
works based on the assumption that, if a method call
in a unit test affects the result of the last assert
statement, the method should belong to the unit
under test. To assess the accuracy of DFA, Qusef et
al performed a case study on AgilePlanner and
Mondrian which are two open-source Java software
systems. In this case study, the effectiveness of DFA
in identification of test-to-code traceability links
were analyzed and DFA was compared with NC and
LCBA, in terms of accuracy of the recovered
traceability links. The results showed that DFA is
more accurate than NC and LCBA. However, the
proposed approach failed when there was no real
relationship between unit test classes and classes
under test that affect the results of the last assert
assessment.

Qusef et al. also presented (Qusef et al., 2011,
A.Qusef et al., 2012, Qusef et al., 2014) another
approach called SCOTCH (Slicing and Coupling
based Test to Code trace Hunter) which is based on
the last assert statement analysis, dynamic slicing
and conceptual coupling together to identify a set of
tested classes in two sequential steps. In the first
step, SCOTCH identifies the last assert assessment
instance in each execution trace using dynamic
slicing. In the second step, it uses a stop-class list
(list of classes from standard library types such as

Towards�Gamification�in�Software�Traceability:�Between�Test�and�Code�Artifacts

395

java.*, javax.*, org.junit.*) and conceptual coupling
to shortlist the candidate types and prune-out
unwanted classes. Since only conceptual coupling is
used as a filtering strategy and there are more crucial
information in the classes, most recently, Qusef et al.
,in 2014, introduced an extension to this approach,
called SCOTCH+. This extended approach employs
a more refined filtering strategy based on both
internal and external textual information, and shows
some improvement compared to the original version.

The review of the existing test-to-code
traceability recovery approaches provided us with a
number of lessons to highlight the existing problems
in this field. The major problems/issues that were
identified are as below:

• Test-to-code traceability links are not
established completely in all existing
traceability recovery approaches (missing and
redundant links).

• Most approaches recover traceability links
between unit tests and the classes under test,
and not specifically other constructs such as
methods (capturing only high-level/coarse-
grained trace links).

• All the recovered test-to-code traceability
links need to be verified manually by a
domain expert (high cost).

• There is no delivery of visual analytics and
support for trace links (lack of visualization
support).

• The Last, and most importantly, is non-
interactiveness in the sense that the
approaches are not self-adaptive as the
project evolves, thus requiring high manual
effort to maintain trace links (high effort).

As a summary, it has to be said that there is a
lack of ubiquitous test-to-code traceability
foundation and approach to recover all traceability
links between tests and production code of software
systems with minimal human effort for links
verification. As the analysis of the code is a
sophisticated task, in this research we propose a
strategic and engaging approach built into the
project environment for achieving traceability
information with minimal effort for developers to
facilitate software testing/maintenance. In contrast to
our proposed research, none of the previous related
work has given attention to by-product way of
achieving traceability to make use of the rich human
resource (developers/testers) on the spot.

3 RESEARCH AGENDA

3.1 Research Objectives

The main objective of this research is to develop a
test-to-code traceability system for software-
intensive applications by building a proactive and
self-adaptive model inspired by gamification
mechanics, and one that is capable of creating and
maintaining trace links throughout the project
lifetime. The specific objectives are as follows:

1. To define a strategic theory that identifies the role
of gamification, the use of game mechanics, in
enabling developer engagement with traceability
tasks.

2. To derive and design a ubiquitous formal model
based on the theory in (1) that self-adapts itself
as a project evolves and also learns from human
feedback with predictive and visualization
features.

3.2 Research Process

The research design (planning) below provides the
overall structure of the procedures and steps that
need to be done in order to achieve the two stated
objectives of this research.

1) Objective 1: As the increasing application of
social and mobile games plays important trends in
culture today, we were originally inspired to
understand the value of adding the elements of
games into traceability tasks. For a software-
intensive system to start and proceed on to a
sustainable operation, it is important that developers
are encouraged to contribute positively and
frequently in traceability tasks. To achieve this
objective, we consolidate the different gamification
design elements and demographics to explore
traceability task of developers. In this regard, we
review the literature about game design and identify
motivational elements that have been incorporated in
the design of gamification. Then, using case analysis
and collecting, analyzing, and processing every
piece of evidence from which trace data can be
inferred and managed, we verify these elements and
will propose a game-thinking theory for traceability
purposes. We use the set theory and z-notation to
specify the roles, functions and responsibilities of
each involving agent (i.e. developer/tester).

Furthermore, for the formalization and
representation of the traceability concepts defined in
the proposed gamified theory and the project’s
artifacts (i.e. test and code), we use the F-logic

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

396

(frame logic) language (Kifer and Lausen, 1989).
We choose F-logic because it is a knowledge
representation and ontology language, which
combines the advantages of conceptual modeling
with object-oriented, frame-based languages and
offers a declarative and compact syntax. Features
include object identity, complex objects, inheritance,
polymorphism, query methods, and encapsulation.
F-logic allows us to define the required complex
data schema, to reason about the differences
between two schemas, to reason about differences
between a schema and instances, and to infer
implicit knowledge from a schema.

2) Objective 2: To achieve this objective, we
devise the following components, whose inner
workings are discussed.

a) Self-adaption: Self-aware systems are able
to modify their own behavior in an attempt to
optimize performance. Such systems can self-
diagnose, self-repair, adapt, add or remove software
components dynamically. To work toward achieving
automated adaptation in trace creation and
maintenance, we undertake the following activities:
• Develop intelligent tracing solutions which are not
constrained by the terms in the source and target
artifacts, but which understand game-specific
concepts (proposed in the theory), and can reason
intelligently about relationships between artifacts.
• Adopt self-adapting solutions, which are aware of
the current project state and reconfigure accordingly
in order to optimize the quality of trace links. To
discover the best way to model available features of
the trace engine (e.g. stoppers, stemmers, VSM, LSI,
LDA, voters, etc.) in a feature model, we use a
genetic algorithm to search for the ideal
configuration.

b) Human Feedback: Analysts are needed to
evaluate the generated trace. Human feedback can
impact the quality of the generated trace links.
Because in many domains, especially safety- and
mission-critical ones, results from automated
techniques cannot be used unless inspected by a
human. We therefore need to gain a better
understanding of the process human analysts go
through to vet and approve a generated trace link,
and to understand which sequences of actions are
more or less likely to lead to correct decisions.
Furthermore, with the increasing adoption of social
collaboration tools, it is interesting to explore the
impact of collaborative decision making on the
correctness of trace links.

As a novel initiation, in this research, we intend
to integrate feedback provided by gamification data

to be useful to enrich the accuracy of results. To
achieve this, we adopt to use a standard information
technique known as Rocchio, which increases or
decreases term weightings used to compute
similarity scores according to whether a term occurs
in a rejected or confirmed trace link. In this case,
developers may also directly modify the trace query
by adding and/or removing terms and the ‘before’
and ‘after’ queries can be used to learn a set of query
transformation rules which can be used to improve
future queries.

c) Predictive and monitoring feature: To
address this feature, we use aspect-orientation
methodology and time series analysis to the runtime
monitoring and quality forecasting of trace links, as
a component. Statistical techniques for analyzing
time series will be used to facilitate the prediction
and forecasting (the term ‘prediction’ and
‘forecasting’ are interchangeably used) of
probabilistic quality link properties, most
importantly trace coverage metrics. Furthermore, in
order to reduce the human effort and to cope with
more sophisticated scenarios, in this step we aim to
automate the analysis and modeling process by
utilizing relevant tools such as Matlab, AMOS,
SPSS. This part will deliver a prospective trace
capture solution that will be capable of monitoring
development environments, including artifacts and
human activities, to infer trace-related information.

d) Visualization feature: To address this
feature, we generate trace slice visualizations in
which the test case is the root node and all direct and
indirect traced artifacts that contribute to mitigating
the associated bug will be shown as a tree. More
specifically, linear, tabular, hierarchical, and graph-
based representations, as the most prevalent forms of
visualization component, will be used to depict
traceability information in the proposed approach,
and hyper-links (cross-references) are routinely used
to associate artifacts and traverse the links
interactively.

In summary, it is worth highlighting the
distinguishing characteristics of the proposed work
over the existing work, which are in line with the
future vision of software traceability. These include
being engaging (brought by gamification), by-
product, self-adaptive, trace visual-equipped, and
trace monitor-equipped.

3.3 Empirical Studies

To assess the model in a context of test-to-code
traceability, the research: (1) Adopts a qualitative
methodology carrying out in-depth interviews with

Towards�Gamification�in�Software�Traceability:�Between�Test�and�Code�Artifacts

397

individuals who are experienced developers/testers.
Further study is planned to evaluate the acceptance
of the proposed approach by collecting responses
from participants regarding their perceptions of the
elements of the gamification activities. It is expected
that results from this evaluation will provide a basis
for software enterprises to leverage the proposed
theory and approach properly. (2) Provides a large-
scale experiment to statistically compare the current
test-to-code traceability approaches, using
measurements to determine the effectiveness and
efficiency of each approach. In this case,
effectiveness refers to the accuracy of each approach
in constructing links and efficiency refers to the
effort to produce links by each approach. This
evaluation includes:

1) Define variables and measures: In this step,
we define the independent and dependent variables
as well as, metrics to be used to quantify the
dependent variables. For instance, to evaluate and
compare the accuracy of each approach, we use two
well-known, recall and precision metrics as well as,
F-measure to assess the global accuracy of the
approaches.

2) Determine subject programs or datasets: As
with any experimental setting in software
engineering, here we also require a set of subject
programs and/or dataset to collect data through
observation of its execution process. We use a suite
of four large-scale software system projects (named
AspectJ, Rhino, ArgoUML, BlueJ) written in Java
and taken from considerably different application
domains as objects in the experiment. We required
all four systems to share the following properties:

• Open source — To enable replications and
secondary studies of our experiment.
Furthermore, to provide access to the source
code as to verify the presence of test suite and
to apply the given automated approaches.

• Written in Java — To establish consistency
among the system chosen for the experiment.
In addition, to comply with implementations
related to the existing approaches as they are
targeted towards systems developed in Java.

• Possess test suite — To enable application of
the approaches and aggregate measurements.

3) Sketch of experimental design: We use a
randomized block design in the experiment. We
block the experiment on the subjects in which each
one is used exactly once to measure the effect of
every treatment allocated in a random order. By
using this design, the variability will be divided into

variability due to treatments and variability due to
blocks. Thus, the effect of the treatments could be
investigated without interfering from the effect of
blocks masking the outcome of the experiment.

After the experimental operation, proper and
robust statistical tests will be used to draw the
conclusions with respect to the effectiveness and the
efficiency of the proposed approach over peer
approaches.

3.4 Implementation

As a proof-of-concept development, the proposed
approach as a gamification plugin will be
prototypically incorporated into well-known
frameworks such as .NET and Java IDEs (e.g.
Eclipse). Such plugin will contain a dashboard that
displays the tracing progress for a project for
tracking and managing the project’s tracing goals
and also for motivating team members to create
appropriate trace links. The dashboard will display
useful information such as burn down charts
showing the percentage of hazards that do not have
mitigating requirements, or the percentage of
mitigating requirements without passing test cases.
This information will be generated via trace queries.
Personalized views will be created for individual
project members.

4 CONCLUDING REMARKS

Traceability is an increasingly common element of
public and private systems for monitoring
compliance with excellence, as quality of deployed
system’s source code is ultimately of utmost
importance. The current challenges inherent to test-
to-code traceability originate in a lack of motivation
and improper engagement of human
developers/testers in traceability tasks.

This position paper has presented a research
agenda in order to analyze and improve test-to-code
traceabilty from a human based-perspective. The
agenda is mainly based on gamification concept,
which aim to build a foundation that combines self-
adaptive features. The expected outcome of this
research is a unifying theory for gamified software
traceability that can be used as a template to enhance
software development processes and languages. The
completion of this theory would also create
opportunities to explore new ways of detecting
traceability coverage/failure in safety-critical
software systems such as aeronautics, medical

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

398

devices, and railway communications to demonstrate
if a rigorous process has been followed and to
validate that the system is safe for its intended use.

ACKNOWLEDGEMENTS

The research leading to this paper (based on a
project proposal) has received Fundamental
Research Grant Scheme funding from the Ministry
of Education, Malaysia, with reference
FRGS/2/2014/ICT01/TAYLOR/03/1.

REFERENCES

A.Qusef, Bavota, G., Oliveto, R., Lucia, A. D. & Binkley,
D. 2012. Evaluating Test-To-Code Traceability
Recovery Methods Through Controlled Experiments.
Journal Of Software: Evolution And Process, 25,
1167–1191.

Antoniol, G., Canfora, G., Casazza, G., Lucia, A. D. &
Merlo, E. 2002. Recovering Traceability Links
Between Code And Documentations. IEEE
Transactions On Software Engineering, 28, 970-983.

Bacchelli, A., Lanza, M. & Robbes, R. Linking E-Mails
And Source Code Artifacts. Proceedings Of The 32nd
Acm/Ieee International Conference On Software
Engineering, 2010 Cape Town, South Africa.
1806855: Acm, 375-384.

Bista, S. K., Nepal, S., Paris, C. & Colineau, N. 2014.
Gamification For Online Communities: A Case Study
For Delivering Government Services. International
Journal Of Cooperative Information Systems 23.

Browne, K., Anand, C. & Gosse, E. 2014. Gamification
and Serious Game Approaches For Adult Literacy
Tablet Software. Entertainment Computing, 5, 135-
146.

Chen, N. Gate: Game-Based Testing Environment.
Proceedings Of The 33rd International Conference On
Software Engineering, 2011. 1078-1081.

Chen, X. & Grundy, J. Improving Automated
Documentation To Code Traceability By Combining
Retrieval Techniques. Proceedings Of The 26th
Ieee/Acm International Conference On Automated
Software Engineering, 2011. 2190177: Ieee Computer
Society, 223-232.

Cleland-Huang, J., Gotel, O. C. Z., Hayes, J. H., Mader, P.
& Zisman, A. Software Traceability: Trends And
Future Directions. Proceedings Of The 36th
International Conference On Software Engineering,
2014. Acm, 55-69.

De-Marcos, L., Domínguez, A., Saenz-De-Navarrete, J. &
Pagés, C. 2014. An Empirical Study Comparing
Gamification And Social Networking On E-Learning.
Computers & Education, 75, 82-91.

Deterding, S., Dixon, D., Khaled, R. & Nacke, L. from
Game Design Elements To Gamefulness: Defining

"Gamification". Proceedings Of The 15th International
Academic Mindtrek Conference: Envisioning Future
Media Environments, 2011 Tampere, Finland. Acm,
9-15.

Deursen, A. V. & Moonen, L. The Video Store Revisited–
Thoughts On Refactoring And Testing. Proceedings
Of 3rd International Conferance, Extreme
Programming And Flexible Processes In Software
Engineering, 2002. 71-76.

Dömges, R. & Pohl, K. 1998. Adapting Traceability
Environments To Project-Specific Needs.
Communications Of The Acm, 41, 54-62.

Domínguez, A., Saenz-De-Navarrete, J., De-Marcos, L.,
Fernández-Sanz, L., Pagés, C. & Martínez-Herráiz, J.-
J. 2013. Gamifying Learning Experiences: Practical
Implications And Outcomes. Computers & Education,
63, 380-392.

Dubois, D. J. & Tamburrelli, G. Understanding
Gamification Mechanisms For Software Development.
Proceedings Of The 9th Joint Meeting On Foundations
Of Software Engineering, 2013 Saint Petersburg,
Russia. 2494589: Acm, 659-662.

Egyed, A. 2003. A Scenario-Driven Approach To Trace
Dependency Analysis. Ieee Transactions On Software
Engineering, 29, 116-132.

Espinoza, A. & Garbajosa, J. 2011. A Study To Support
Agile Methods More Effectively Through
Traceability. Innovations In Systems And Software
Engineering, 7, 53-69.

Fernandes, J. A., Duarte, D., Ribeiro, C., Farinha, C.,
Pereira, J. A. M. & Silva, M. M. D. 2012. Ithink : A
Game-Based Approach Towards Improving
Collaboration And Participation In Requirement
Elicitation. Procedia Computer Science 15 66 -77.

Ghazarian, A. 2010. A Research Agenda For Software
Reliability. Ieee Transactions On Reliability, Ieee
Reliability Society Technical Operations Annual
Technical Report For 2010, 59, 449-482.

Herzig, P., Ameling, M. & Schill, A. A Generic Platform
For Enterprise Gamification. Proceedings Of The
Joint Working Ieee/Ifip Conference On Software
Architecture And 6th European Conference On
Software Architecture, 2012. 219-223.

Huang, C.-Y. & Kuo, S.-Y. 2002. Analysis Of
Incorporating Logistic Testing-Effort Function Into
Software Reliability Modeling. Ieee Transactions On
Reliability, 51, 261-270.

Huang, C.-Y. & Lyu, M. R. 2005. Optimal Testing
Resource Allocation, And Sensitivity Analysis In
Software Development. Ieee Transactions On
Reliability, 54, 592-603.

Insley, V. & Nunan, D. 2014. Gamification And The
Online Retail Experience. International Journal Of
Retail & Distribution Management, 42, 340-351.

Jirapanthong, W. & Zisman, A. 2009. Xtraque:
Traceability For Product Line Systems. Software And
System Modeling, 8, 1619-1366.

Kifer, M. & Lausen, G. F-Logic: A Higher-Order
Language For Reasoning About Objects, Inheritance,
And Scheme. Proceedings Of The Acm Sigmod

Towards�Gamification�in�Software�Traceability:�Between�Test�and�Code�Artifacts

399

International Conference On Management Of Data,
1989. 134-146.

Koivisto, J. & Hamari, J. 2014. Demographic Differences
In Perceived Benefits From Gamification. Computers
In Human Behavior, 35, 179-188.

Kubat, P. & Koch, H. S. 1983. Managing Test-Procedures
To Achieve Reliable Software. Ieee Transactions On
Reliability, R-32, 299-303.

Kuo, S.-Y., Huang, C.-Y. & Lyu, M. R. 2001. Framework
For Modeling Software Reliability, Using Various
Testing-Efforts And Fault-Detection Rates. Ieee
Transactions On Reliability, 50, 310-320.

Lago, P., Muccini, H. & Vliet, H. V. 2009. A Scoped
Approach To Traceability Management. Journal Of
Systems And Software, 82, 168–182.

Lucia, A. D., Fasano, F., Oliveto, R. & Tortora, G. 2007.
Recovering Traceability Links In Software Artifact
Management Systems Using Information Retrieval
Methods. Acm Transactions On Software Engineering
And Methodology, 16, 13:1-13:50.

Mader, P., Jones, P. L., Zhang, Y. & Cleland-Huang, J.
2013. Strategic Traceability For Safety-Critical
Projects. Ieee Software, 30, 58-66.

Marcus, A. & Maletic, J. I. Recovering Documentation-
To-Source-Code Traceability Links Using Latent
Semantic Indexing. Proceedings Of The 25th
International Conference On Software Engineering,
2003 Portland, Oregon. Ieee Computer Society, 125-
135.

Ohtera, H. & Yamada, S. 1990. Optimal Allocation &
Control Problems For Software-Testing Resources.
Ieee Transactions On Reliability, 39, 171-176.

Parizi, R. M., Lee, S. P. & Dabbagh, M. 2014.
Achievements And Challenges In State-Of-The-Art
Software Traceability Between Test And Code
Artifacts. Ieee Transactions On Reliability, 63, 913-
926.

Pedreira, O., García, F., Brisaboa, N. & Piattini, M. 2015.
Gamification In Software Engineering – A Systematic
Mapping. Information And Software Technology, 57,
157–168.

Qusef, A., Bavota, G., Oliveto, R., De Lucia, A. &
Binkley, D. Scotch: Test-To-Code Traceability Using
Slicing And Conceptual Coupling. Proceedings Of
The 27th Ieee International Conference On Software
Maintenance 25-30 Sept. 2011 2011. 63-72.

Qusef, A., Bavota, G., Oliveto, R., Lucia, A. D. &
Binkley, D. 2014. Recovering Test-To-Code
Traceability Using Slicing And Textual Analysis.
Journal Of Systems And Software, 88, 147-168.

Qusef, A., Oliveto, R. & De Lucia, A. Recovering
Traceability Links Between Unit Tests And Classes
Under Test: An Improved Method. Ieee International
Conference On Software Maintenance (Icsm), 2010. 1-
10.

Rodríguez Corral, J. M., Civit Balcells, A., Morgado
Estévez, A., Jiménez Moreno, G. & Ferreiro Ramos,
M. J. 2014. A Game-Based Approach To The
Teaching Of Object-Oriented Programming
Languages. Computers & Education, 73, 83-92.

Rompaey, B. V. & Demeyer, S. Establishing Traceability
Links Between Unit Test Cases And Units Under Test.
Proceedings Of The 2009 European Conference On
Software Maintenance And Reengineering, 2009.
1545440: Ieee Computer Society, 209-218.

Simões, J., Redondo, R. D. & Vilas, A. F. 2013. A Social
Gamification Framework For A K-6 Learning
Platform. Computers In Human Behavior, 29, 345-
353.

Sneed, H. M. Reverse Engineering Of Test Cases For
Selective Regression Testing. Proceedings Of The 8th
European Conference On Software Maintenance And
Reengineering, 2004. 69-74.

Sundaram, S. K., Hayes, J. H., Dekhtyar, A. & Holbrook,
E. A. 2010. Assessing Traceability Of Software
Engineering Artifacts. Requirements Engineering, 15,
313-335.

Vasilescu, B. Human Aspects, Gamification, And Social
Media In Collaborative Software Engineering.
Proceedings Of The 36th International Conference On
Software Engineering, 2014 Hyderabad, India.
2591091: Acm, 646-649.

Wang, X., Lai, G. & Liu, C. 2009. Recovering
Relationships Between Documentation And Source
Code Based On The Characteristics Of Software
Engineering. Electronic Notes In Theoretical
Computer Science, 243, 121-137.

Wang, Z., Tang, K. & Yao, X. 2010. Multi-Objective
Approaches To Optimal Testing Resource Allocation
In Modular Software Systems. Ieee Transactions On
Reliability, 59, 563-575.

Watkins, R. & Neal, M. 1994. Why And How Of
Requirements Tracing. Ieee Software, 11, 104-106.

Winkler, S. & Pilgrim, J. V. 2010. A Survey Of
Traceability In Requirements Engineering And Model-
Driven Development. Software And Systems
Modeling, 9, 529-565.

Witte, R., Li, Q., Informatic, F. F., Zhang, Y. & Rilling, J.
2008. Text Mining And Software Engineering: An
Integrated Source Code And Document Analysis
Approach. Iet Software 2, 1-19.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

400

