
SaaS Cloud Provider Management Framework

Rima Grati1, Khouloud Boukadi1 and Hanêne Ben-Abdallah2
1The Faculty of Economics and Management of Sfax, Route de l’Aéroport Km 4 Sfax 3018, Sfax, Tunisia

2Faculty of Computing and Information Technology King Abdulaziz University, Jeddah, K.S.A.

Keywords: Cloud Computing, Service, SaaS Cloud Provider.

Abstract: The new mode of inter-enterprise cooperation based on the paradigm of composite SaaS keeps promising an
ease and a fast implementation of an on demand cooperation. These collaborations called often, on demand
cooperation, arising to meet a business opportunity over the Internet. However, this new paradigm poses a
certain number of challenges for us. The main one is the lack of a management framework for the cloud
provider while covering the different layers IaaS-PaaS-SaaS. To tackle this challenge, we propose a
management framework for a cloud provider to define the typical concepts related to the intern management
of a composite SaaS provider. The proposed concepts are related to the stakeholders’ definition and the
presentation of the different management features to consider while specifying the dependence between the
cloud layers.

1 INTRODUCTION

The concept of composite SaaS has been recently
introduced by Yusho et al. (Yusoh and Maolin 2012)
combining both the cloud paradigm and technology
of the web service. Since it was introduced, the hype
surrounding has followed by promising to
revolutionize the way we undertake cooperation
over the Internet. The new concept is in its infancy,
it is essential to correctly identify the stakeholders
(MangementEntities) and management features
expected by a SaaS provider. However, up to now
no standard definition of management entities or
management features provided by a provider has
been proposed in the literature. In addition, few
industrial initiatives offering composite SaaS have
emerged (such as Google Gmail and Facebook).

Besides, these initiatives are related to mailing
features, video sharing and streaming video and they
do not propose any business service with added
value for enterprise.

These considerations complicate the provider’
task for offering a composite SaaS to customers
willing to establish an on demand cooperation based
on service composition. The need is so strong for a
management framework for a composite SaaS
provider covering both entities and management
features within the composite SaaS. To meet such a
need, it is important to note that SaaS composite
born from a combination of cloud and web service

inherits the concepts proposed by these technologies
and adds its own specificities. Composite SaaS
stems from web service technology the concepts
related to customer-provider relationships,
abstract/concrete services, service composition, etc.
From cloud paradigm, it results from the concept of
layer, elasticity of resources, payment for use, etc.
Thus, any framework must take into account these
different concepts. In addition, it should include
some specificities introduced by the composite SaaS
concept. These specificities are mainly related to the
relevant management functionalities that the SaaS
provider is supposed to offer. The examples of the
most relevant management features are the
configuration required to provide composite SaaS
based on web services, establishment of SLA
contract and the monitoring of the performance of
services according to the established contract. The
management features must take into account the
layers on which a composite SaaS is based, usually
named as XaaS (everything as a Service).

In addition, XaaS layers are connected according
to the customer-provider relationship where a layer
benefits of services/resources from a lower layer and
provides service/resource to a higher layer. This is a
vertical dependence between the different XaaS
layers. We mean by dependence, as defined by
Oxford dictionary “The state of being determined,
influenced, or controlled by something else.”
Dependence covers two aspects namely: the vertical

221Grati R., Boukadi K. and Ben-Abdallah H..
SaaS Cloud Provider Management Framework.
DOI: 10.5220/0005550402210228
In Proceedings of the 12th International Conference on e-Business (ICE-B-2015), pages 221-228
ISBN: 978-989-758-113-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

dependence (also called interdependence) and the
horizontal dependence (also called intra-
dependence). The latter denotes the link between
something belonging to the same level n. while the
vertical dependence indicates a connection between
something belonging to different levels (the notion
of hierarchical levels).

Thus, this paper aims to define a management
framework based on the concept of vertical
dependencies between the different features
considered by the cloud provider.

The remaining of this paper is organized as
follows. Section 2 discusses the related work.
Section 3 presents an overview of the proposed
management framework. The concluding remarks
are presented in Section 4.

2 RELATED WORK

(Zhao, 2012) presents a holistic security
management framework, a model, processes, and
controls based on appropriate standards to enable
cloud service providers and consumers to be security
certified. This framework helps evaluate initial cloud
computing security risks and inform security
decisions. The author assumes that the security
responsibilities of both the provider and the
consumer greatly differ between cloud service
models. On an IaaS level, the responsibility for
securing the underlying infrastructure and
abstraction layers belongs to the provider and the
PaaS and SaaS level fit to the consumer’s
responsibility. PaaS offers a balance somewhere in
between, where securing the platform itself falls
onto the provider, but securing the applications
developed against the platform and developing them
securely, both belong to the consumer. In his work,
Zhao does not address a holistic management
framework including all the features considered by
the SaaS provider. He focuses only on the security
level.

(Winkler and Schill, 2009) present the problem
of dependencies between the composite service.
They illustrate these dependencies through two
examples from the logistics domain. The authors
argue that dependencies between services lead to
situations where the SLA violation of one service
affects the provisioning of other services. Similarly,
the renegotiation of the SLA of one service has
effects on the SLAs of other services. To solve this
problem, the authors present a conceptual
architecture to manage the dependencies. The
management dependencies is composed of two main
steps: the first step is a design time step, it consists
on the analysis of dependencies and the creation of a
dependency model. The second step is a run time
step composed of the dependency effects evaluation
based on the dependency model. The proposed
architecture is not yet implemented. The authors
present a framework management for only the inter
dependencies of the service composition. Unlike our
approach, the services are not deployed in cloud
environment so the authors do not consider the
dependencies of the layers of cloud computing
paradigm.

(Alcaraz Calero and Gutierrez Aguado, 2014)
present a monitoring architecture addressed to the
cloud provider and the cloud consumers. They
provide a monitoring architecture namely MonPaaS
(Monitoring Platform as a Service). It offers to the
customers of cloud infrastructures the possibility to
see automatically its cloud resources, define
manually other resources to be monitored, configure,
and customize what information is gathered over its
resources. MonPaaS is addressed also to the cloud
provider, it offers the ability to see a complete
overview of the infrastructure by means of
distributed architecture automatically deployed in
the cloud infrastructure. MonPaaS in an open source
monitoring solution combining Nagios and
Openstack. In this work, the authors focus only on
the monitoring functionality and specially on the
IaaS level and neglect the other cloud stack and the
dependency between them.

Table 1: Comparative table of related work.

 Features
 Works

Monitoring PaaSConfiguration Billing Security Dependencies

(Zhao, 2012) No No No Yes No

(Winkler and Schill, 2009) No No No No
Yes, especially dependence

between the composite service
(Alcaraz Calero and Gutierrez

Aguado, 2014)
Yes No No No No

(Kouki, Jr et al., 2014) and
(Kotsokalis, Rueda et al., 2011)

No No Yes No No

(Sharma, Sengupta et al., 2013) No Yes No No No
Our approach Yes Yes Yes Yes Yes

ICE-B�2015�-�International�Conference�on�e-Business

222

Figure 2: ManagementEntities Meta-model.

Besides, most of the works in litterature propose
a price policy related to one layer: SaaS, PaaS or
IaaS does not specify the strong dependence that
connects these levels of billing (Naik, Beaty et al.,
2014) and (Jain and Asadullah, 2012). In addition,
these works do not present the detailed formulas for
price policy calculation. They only mention the price
per request, the price per resource, etc. Moreover
few works (Kouki, Jr et al., 2014) and (Kotsokalis,
Rueda et al., 2011) focus on the penalty in case of
SLA violation in the cloud.

(Sharma, Sengupta et al., 2013) present an
approach for assessing a SaaS application for
migration to different PaaS cloud platforms. The
migration assessment approach can be seen as a 5-
stage process. The stages 1 through 3 are manual. In
stage 1, the authors create a taxonomy and
hierarchical categorization of different external
technical utility services. Stage 2 consists in creating
a corresponding hierarchical category of the
technical utility services for a target PaaS platform,
such as Heroku or CloudFoundry,in Stage 3 a set of
advisories and recommendations are written to
capture the changes required in the code. Stages 4
and 5 are automated, where the actual code analysis
and migration assessment is performed in the MAT
engine The proposed approach has been
implemented in a prototype tool called Migration
Assessment Tool or MAT using Java language and
PaaS platforms like Heroku and CloudFoundry.

To the best of our knowledge, none of the
discussed approaches deals with a holistic
management framework that covers almost all of the
relevant features for SaaS provider while

emphasizing the strong dependence between these
different features. Table 1 positions our approach
with respect to the related work.

3 OVERVIEW OF THE
FRAMEWORK MANAGEMENT

The framework management for a composite SaaS
provider that we propose is based on the definitions
of the concepts and the features related to the
management dependencies across the various layers
of cloud computing. This definition is achieved
through CPM Framework meta-model shown in
Figure 1.
 The ManagementEntities package covers the

concepts of services and different mechanisms of
service composition that are available to the
software, platform and infrastructure layer.

In other words, the ManagementEntities represent
the entities to manage in the framework management
of the composite SaaS provider.

Figure 1: CPM Framework Meta-model.

SaaS�Cloud�Provider�Management�Framework

223

 The ManagementFeatures package covers the
concepts related to different features concerning
different levels, namely SaaS, PaaS and IaaS that
are considered by the cloud provider. All the
composite SaaS is executed and delivered using
the different elements of ManagementEntities.

In the following, we discuss the two core packages
highlighting the existing dependencies.

3.1 Management Entities

As shown in Figure 2, the basic building block of
CPM Framework is the concept of service. This
concept encompasses different levels (SaaS, PaaS
and IaaS). Although it is possible to consider other
levels below IaaS (example Hardware as a Service),
within the CPM framework, we consider that the
IaaS level is the last visible and manageable level.

For each service (Service), it may be different
service instances (ServiceInstance), each instance
delivers functionalities to one or more customers.
Each service instance (ServiceInstance) is an
independent entity with respect to other instances;
hence it can be managed independently. Some
management features can be made to service and
then applied to all instances of service. To enable the
management at all levels, service and
serviceInstance are two subclasses of
MangementEntities. Management features

(ManagementFeatures) will be described in Section
3.2.

Note that the ManagementEntities package
defines two possible kinds of association between
services, called «uses» and «composes». The
association «uses» identifies a service given by a
level uses and depends on another service offered by
a lower level of the cloud layer, so it is a vertical
dependence.

The association «composes» means that a value
added services can be built by composing other
services that exist in the same layer, therefore it
represents horizontal dependence—it connects
concepts belonging to the same layer. More
precisely, the association «composes» indicates that
the IaaS, PaaS our SaaS (IaaSService, PaaSService
or SaaSService) service can be composed
respectively by other services IaaS, PaaS or SaaS.

A SaaS composite is a specification of a
SaaSService, which represents a composition of the
concrete service (ConcreteService). The meta-model
in Figure 2 illustrates the possibility of several
concrete services belonging to different provider
implementing the same abstract service with
different QoS parameters. For instance, “Tunisair”
and “AirFrance” are concrete services of the abstract
service “flight reservation”.

In addition, IaaSService is a composition of
various resources (Resources) belonging to the data
centre of a cloud provider. Resources can be a

Figure 3: ManagementFeatures Meta-model.

ICE-B�2015�-�International�Conference�on�e-Business

224

physical machine, virtual machine, network device,
etc.

In our work, we omit the dependence PaaS-IaaS,
therefore, the vertical dependence related to the
«uses» association can lead to only one possible
case: a SaaS service uses an IaaS service (the case of
a composite SaaS is deployed on a virtual machine
configured correctly and belonging to the data centre
of the cloud provider). In Figure 2, this dependence
is represented by the association « uses » between
different classes encapsulated in two dotted circles.
This vertical dependence ensures the selection of a
composite SaaS that meets the client’s request with
an optimal resource allocation (the adequate
IaaSService).

3.2 Management Features

In addition to the relevant concepts of composite
SaaS service, the management framework for the
Cloud provider must offer a holistic management of
cloud and covers all the layer SaaS, PaaS and IaaS.
Indeed, the separate cloud levels are strongly linked
and their definitions and their good operation can be
valorized only by reference to all the layers. For
example, a desfunctioning of a composite service
(execution of the service with a too long response
time) can be caused by a malfunction in one of the
lower levels of the cloud (PaaS or IaaS).

For each problem the cloud provider must find
the most effective solution by coordinating the
different layers.

In the literature, several management works
related to a single level of cloud and dealing with
management in isolation of the other level have
emerged (Spanoudakis and Mahbub, 2004),
(Barbon, Traverso et al., 2006) and (Baresi and
Guinea, 2011). Most of these approaches generally
cover features on the IaaS layer and neglect the other
levels as well as the vertical dependence between
them. As illustrated in Figure 3, in our work, the
management features considered by the provider
(ManagementFeatures) encompasses the three levels
of the cloud stack –

SaaSFeatures, PaaSFeatures and IaaSFeatures.
More specially, our framework includes the
following management features (see Figure 3): SLA
establishment, Computing cost of service usage,
Monitoring of execution service and Configuration
PaaS. The CPM framework is extensible, other
management features can be added to cover
additional cloud requirements.

In the following, we first detail each of these
management capabilities. Next, we present the

vertical dependence for each functionality across
different levels of Cloud. Finally, we focus on the
dependence SaaS-IaaS discussed at the
ManagementEntities package in order to propose in
section 4 a management method for vertical
dependence between SaaS and IaaS services (Recall
that our framework management assumes that the
dependence SaaS-PaaS is provided by a
configuration PaaS appropriate to web service
deployment and execution).

3.2.1 SLA Establishment

On the client side, a request for a composite service
is sent to the provider with QoS constraints such as
cost, response time, availability, etc.

Once negotiated, the qualities of service form a
clause in the SLA contract (Service Level
Agreement) established between the provider and
the customer. As part of our work, we are not
interested in the negotiation phase, we refer the
reader to the most relevant work in the theme (Li,
2011), (Linlin, Garg et al., 2013) and (Stantchev and
Schrpfer, 2009). We believe that once the SLA is
established, it will be agreed between the two parties
(provider and customer).

An SLA can be expressed between different
layers in the cloud stack, contractualising the
vertical dependencies between layers. We are
expected to focus on the vertical dependence
between SaaS and IaaS. Solving the problem of
vertical dependence means to express an SLA
between a SaaS client and a provider offering SaaS
service under an IaaS infrastructure. The solution is
represented by the class SLAEstablishment in Figure
3.

The provider offers a SaaS service that runs on
IaaS selected resources to meet the user’s
constraints. Thus, from the provider point of view,
there are two levels of SLA: SLA for the SaaS level
and SLA for the IaaS level (respectively SLASaaS
and SLAIaaS in Figure 3). SLA for the SaaS level
(SLASaaS) is the contract between the end user and
the cloud provider. It specifies a set of objectives in
SaaS level in terms of performance and availability.
Regarding the IaaS level, it dictates to the cloud
provider the adequate resources for the proper
execution of services while respecting the SLASaaS.
In our case, SLAIaaS represents an internal contract
to the provider since it has its own resource
infrastructure (IaaS). This type of contract indicates
the level of IaaS service in terms of the resource
infrastructures under which the composite service
should be executed (virtual machine, memory, CPU,
utilization rate, etc). The cloud provider can save the

SaaS�Cloud�Provider�Management�Framework

225

SLAIaaS in a repository to be used later in the future
when he is confronted to other service requests with
similar QoS.

Otherwise, note that a violation of SLAIaaS
consistently produces a violation of SLASaaS. In
other words, the SLAs expressed in the SaaS and
IaaS level represent a vertical dependence model.
An example of vertical dependence of SLA is
represented by how to express the availability of
SaaS service depending on the resources (IaaS)
availability.

3.2.2 Computing Cost of Service Usage

In addition to SLA establishment, our framework
takes into account the management function related
to the computing cost of service usage (Billing in
Figure 3). This management function is related to
the policy adopted by the cloud provider to bill the
use of the requested service by the customer.
Defining a strong vertical dependence between the
cloud layers, the invoiced price of SaaS service
includes the price of IaaS resources under which the
service runs. In our work, we assume that the
computing cost of service usage includes indirectly
the price of PaaS since we consider that the cloud
provider hold the adequate platform for the
execution of composite SaaS.

To calculate cost, we propose a formula that
aligns the specificities of composite SaaS. We
include the price for the SaaS level and the IaaS
level to cover the vertical dependence of the billing
at both levels. Thus, we define Cost (n,t) the
execution price of a composite service requested by
the customer from n virtual machines and t types as
follows:

Cost୬,୲ ൌ PC୬,୲ ൅	DTC୲ ൅ PDC୬ (1)

PCn,t represents the cost for serving the request,
it depends on the request’s processing time
(procTn,t), the price of the virtual machine of type t
per hour (Pt) and the price of the service (PS) per
unit of time.

PC୬୲ ൌ 	procT୬,୲ ൈ ሺP୲ ൅ PSሻ		 ∀n ∈ N, t ∈ T (2)

 DTCt is the transfer cost which includes the cost
of data in (inDS) and data out (outDS).

DTC୲ ൌ 	inDS ൈ inPri୲ ൅ 	outDS ൈ outPri୲ (3)

where inPri୪is the price of data transfer in and
outPri୪is the price of data transfer out.

 PDCn is the delay cost. It represents how much
the service provider has to give discount to users
in case of SLA violation. It depends on the

penalty rate β (fixed in the SLA contract signed
by the cloud provider and the customer) and the
penalty delay time (PDT) period.

PDC୬ ൌ β ൈ PDT (4)

3.2.3 Monitoring Services Execution

The cloud provider must be able to monitor the
parameters of its resources (IaaS Monitoring) to
meet the objectives agreed in the SLA. In turn, the
monitoring must meet the dependence of monitoring
the low level metric (resource IaaS) and the
monitoring of SLA parameters (MonitoringSaaS).
This dependence is modeled in Figure 3 by a dotted
association between MonitoringSaaS and
MonitoringIaaS. In Cloud environment, the
requested composite runs on physical and virtual
resources. These services are characterized by their
performance and their availability, which are
described as high level SLA parameters such as
response time, price and availability, etc. However,
the physical or virtual resources, under which
services run, are characterized by low level metrics
such as packetsize, bandwidth, CPU, memory, etc.
Thus, there is a discrepancy between low level
metrics and SLA parameters. To bridge the gap
between low level metrics and SLA parameters and
to solve the problem of vertical dependence between
monitoring SaaS and monitoring IaaS, we proposed
in (Grati. R., Boukadi. K. et al., 2014c) a framework
for monitoring the QoS of composite SaaS.

3.2.4 Configuration PaaS

Configuration in the PaaS level (PaaSConfiguration
in Figure 3) is necessary for the execution of
composite SaaS. It ensures the request of
deployment elementary web service belonging to
different service providers.

These features deal with the PaaS level and more
particularly the management and the provisioning of
software. When a SaaS provider wants to generate a
PaaS from heterogeneous PaaS, he meets several
management difficulties such as the lack of
compatibility of APIs and the lack of PaaS devoted
to the provider of composite service, etc. Indeed,
each available PaaS requires the use of specific
APIs. For example, to interact with the PaaS
Force.com, Apex API is provided; Cloud Foundry
also provides its own API, etc. Each PaaS exposes a
different interface and no standard or generic API is
available. So a provider of composite SaaS can not
achieve an easy interaction with heterogeneous
PaaS.

ICE-B�2015�-�International�Conference�on�e-Business

226

To overcome the difficulty of managing
heterogeneous PaaS, we assume that the provider
has an independent PaaS for provisioning and
managing software assigned for running composite
SaaS. Figure 4 represents the various entities that
compose the platform. By platform, we mean all the
software needed for the execution of web service
deployed on an IaaS layer.

As modeled in Figure 4, each platform is
characterized by its unique name and it is
instantiated from PlatformTemplate which is, in
turn, characterized by a name. PlatformTemplate is
constructed from a set of entities:
PlatformComponent is the list of software

associated with PlatformTemplate. The possible
values of this list are: a database, a container, a
router and an engine.

PlatformInterface defines the interfaces between
the components of the PlatformComponent

PlatformConfiguration consists of several
configuration actions (ConfigurationAction).

Certainly, there are functions associated with the
configuration in the IaaS level. However we do not
deal with this configuration on this level since there
are several mature tools to perform IaaS
configurations tasks (Georgiou, Tsakalozos et al.,
2013) and (Papagianni, Leivadeas et al., 2013).

Figure 4: PaaS configuration meta-model.

So far, we have presented the building blocks of
a framework management of the cloud provider that
means the different stakeholders and different
features to manage the cloud provider while
emphasizing vertical dependence between the cloud
layers. In the following, we present a method to
manage the vertical dependence between SaaS and
IaaS services.

4 CONCLUSIONS

Our proposed approach addresses the lack of

management framework for the SaaS cloud provider.
This framework is described through a set of key
concepts. In addition, it includes some specificities
introduced by the composite SaaS concept which is
born from a combination of cloud and web service.
These specificities are mainly related to the relevant
management functionalities that the SaaS provider is
supposed to offer. The examples of the most relevant
management features are the configuration required
to provide composite SaaS based on web services,
establishment of SLA contract and the monitoring of
the performance of services according to the
established contract. The management features takes
into account the layers on which a composite SaaS is
based, usually named as XaaS (everything as a
Service).

REFERENCES

Alcaraz Calero, J. and J. Gutierrez Aguado (2014).
"MonPaaS: An Adaptive Monitoring Platform as a
Service for Cloud Computing Infrastructures and
Services." Services Computing, IEEE Transactions on
PP(99): 1-1.

Barbon, F., et al. (2006). Run-Time Monitoring of
Instances and Classes of Web Service Compositions.
International Conference on Web Services ICWS '06,
pp. 63-71.

Baresi, L. and S. Guinea (2011). "Self-Supervising BPEL
Processes." Software Engineering, IEEE Transactions
on 37(2): 247-263.

Georgiou, S., et al. (2013). Exploiting Network-Topology
Awareness for VM Placement in IaaS Clouds. Third
International Conference on Cloud and Green
Computing (CGC).

Grati. R., et al. (2014c). A framework for IaaS�to�SaaS
monitoring of BPEL processes in the Cloud: design
and evaluation. 11th ACS/IEEE International
Conference on Computer Systems and Applications
(AICCSA' 2014), IEEE Computer Societ, Doha,
Qatar.

Jain, S. and A. M. Asadullah (2012). Aggregating Bills
and Invoices on Cloud for Anytime Anywhere Access:
A Sustainable System. Third International Conference
on Services in Emerging Markets (ICSEM), 2012.

Kotsokalis, C., et al. (2011). Penalty Management in the
SLA@SOI Project. Book: Service Level Agreements
for Cloud Computing, Springer New York: 105-121.

Kouki, Y., et al. (2014). A Language Support for Cloud
Elasticity Management. IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing,
CCGrid, Chicago, United States.

Li, P. (2011). Towards a framework for automated service
negotiation in cloud computing. IEEE International
Conference on Cloud Computing and Intelligence
Systems (CCIS).

SaaS�Cloud�Provider�Management�Framework

227

Linlin, W., et al. (2013). Automated SLA Negotiation
Framework for Cloud Computing. 13th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid).

Naik, V. K., et al. (2014). Service Usage Metering in
Hybrid Cloud Environments. IEEE International
Conference on Cloud Engineering (IC2E), 2014.

Papagianni, C., et al. (2013). "On the optimal allocation of
virtual resources in cloud computing networks."
Computers, IEEE Transactions on 62(6): 1060-1071.

Sharma, V. S., et al. (2013). MAT: A Migration
Assessment Toolkit for PaaS Clouds. IEEE Sixth
International Conference on Cloud Computing
(CLOUD), 2013.

Spanoudakis, G. and K. Mahbub (2004). Requirements
monitoring for service-based systems: towards a
framework based on event calculus. 19th International
Conference on Automated Software Engineering,
2004. Proceedings.

Stantchev, V. and C. Schrpfer (2009). Negotiating and
Enforcing QoS and SLAs in Grid and Cloud
Computing. Proceedings of the 4th International
Conference on Advances in Grid and Pervasive
Computing. Geneva, Switzerland, Springer-Verlag:
25-35.

Winkler, M. and A. Schill (2009). Towards Dependency
Management in Service Compositions. Int. Conf. on
E-Business and Telecommunication Networks: 79-84.

Yusoh, Z. I. M. and T. Maolin (2012). Clustering
composite SaaS components in Cloud computing
using a Grouping Genetic Algorithm. IEEE Congress
on Evolutionary Computation (CEC).

Zhao, G. (2012). Holistic framework of security
management for cloud service providers. 10th IEEE
International Conference on Industrial Informatics
(INDIN), 2012.

ICE-B�2015�-�International�Conference�on�e-Business

228

