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Abstract: For the trajectory tracking control problem of nonlinear systems, the most basic and classic strategy may
be applying the linear control technique to a linear time-varying approximate model around some desired
trajectory. However, this method is not commonly used because the design of a linear time-varying controller
is not simple. The authors proposed the simple design method of the pole placement controller for linear
time-varying discrete systems. In this paper, to show the applicability of the proposed linear time-varying
discrete pole placement technique to the trajectory tracking control problem of nonlinear systems, we apply
this control method to actual 2-link robot manipulator and present the experimental results.

1 INTRODUCTION

For the trajectory tracking control problem of non-
linear systems, the most basic and classic strategy
may be applying the linear control technique to a lin-
ear time-varying approximate model around some de-
sired trajectory. This method can be applied to any
type of nonlinear systems. However, since, controller
design method for linear time-varying system is not
necessarily simple (Nguyen(1987)) (Valsek(1995))
(Valsek(1999)), gain scheduling strategy, the nonlin-
ear control strategy, or PID control is commonly used
for such a control design problem.

The author et.al. proposed the simple pole place-
ment controller design method for linear time-varying
discrete systems (Mutoh(2011)) (Mutoh and Hara
(2011)). Such controller is obtained by finding a new
output signal so that the relative degree from the input
to this new output is equal to the system degree.

In this paper, we apply this control method to the
tracking control of an actual 2-link robot manipulator
to show the applicability of the proposed linear time-
varying discrete pole placement technique to the tra-
jectory tracking control problem of practical nonlin-
ear systems. In the following, some basic properties
of linear time-varying discrete systems are stated in
Section 2. Section 3 summarizes the design procedure
of a pole placement controller for linear time-varying
discrete systems. In Section 4, this control method
is applied to the trajectory tracking control problems

of practical 2-link robot manipulator and experimen-
tal results are presented to show the validity of this
control system.

2 BASIC PROPERTIES OF
LINEAR TIME-VARYING
DISCRETE SYSTEMS

In this section, some basic properties of linear time
varying multi variable discrete systems are presented.
Consider the following system.

x(k+1) = A(k)x(k)+B(k)u(k) (1)

Here,x∈ Rn andu∈ Rm are the state variable and the
input. A(k) ∈ Rn×n andB(k) ∈ Rn×m are time-varying
coefficient matrices. The state transition matrix of the
system (1) fromk = j to k = i, Φ(i, j), is defined as
follows.

Φ(i, j) = A(i −1)A(i −2) · · ·A( j) i > j (2)

Definition 1. System(1) is called ”completely reach-
able in n steps” if and only if, for any x1 ∈ Rn there
exists a bounded input u(l) (l = k, · · · ,k+n−1) such
that x(k) = 0 and x(k+n) = x1 for all k.

Lemma 1. System(1) is completely reachable in n
steps if and only if the rank of the reachability matrix
defined below is n for all k.

UR(k) =
[

B0(k),B1(k), · · · ,Bn−1(k)
]

(3)

373Mutoh Y., Kemmotsu M. and Awatsu L..
Trajectory Tracking Control of Robot Manipulators using Discrete Time-varying Pole Placement Technique.
DOI: 10.5220/0005533603730379
In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics (ICINCO-2015), pages 373-379
ISBN: 978-989-758-122-9
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



where,

B0(k) = B(k+n−1)

B1(k) = Φ(k+n,k+n−1)B(k+n−2)
... (4)

Bn−1(k) = Φ(k+n,k+1)B(k)

Let bl
i (k) be the i-th column of Bl (k), then, the reach-

ability matrix UR(k) can be written as

UR(k) =
[

b0
1(k) · · ·b

0
m(k)| · · · |b

n−1
1 (k) · · ·bn−1

m (k)
]

(5)

Note thatbr
i (k) also satisfies the same equation as

(4), i.e.,

b0
i (k) = bi(k+n−1)

b1
i (k) = Φ(k+n,k+n−1)bi(k+n−2)

... (6)

bn−1
i = Φ(k+n,k+1)bi(k) (i = 1, · · · ,m)

wherebi(k) is the i-th column ofB(k). Suppose that
the system (1) is completely reachable inn steps.
Then, the reachability indices,µi(i = 1, · · · ,m), can
be defined such that

m

∑
i=1

µi = n (7)

and then×n truncated reachability matrix

R(k) =
[

b0
1(k), · · · ,b

µ1−1
1 (k)| · · · |b0

m(k), · · · ,b
µm−1
m

]

(8)

is non-singular. It is assumed thatµ1 ≥ µ2 ≥ ·· · ≥ µm
without loss of generality.

Finally, the vector relative degree of a linear
MIMO system is defined. Let the followingη(k) ∈
Rm be the output vector of the system (1).

η(k) = H(k)x(k), H(k) ∈ Rm×n (9)

Definition 2. System(1), (9) has the vector relative
degree, r1, r2, · · · , rm from u toη, if and only if there
exist some matrix D(k) ∈Rm×n and some nonsingular
matrix Λ(k) ∈ Rm×m that satisfy the following equa-
tion.






α1(z)
. . .

αm(z)






η(k) =D(k)x(k)+Λ(k)u(k)

(10)
Here, αk(z) is an arbitrary monic polynomial of de-
gree rk and z is a forward shift operator.

3 DESIGN OF DISCRETE
TIME-VARYING POLE
PLACEMENT CONTROLLER

In this section, the design procedure of the pole place-
ment controller for linear time-varying multi input
discrete systems is summarized. Suppose that the
system (1) is completely reachable with its reacha-
bility indices,µ1, · · · ,µm. The problem is to design a
state feedback for the system(1) so that the resulting
time-varying closed-loop system becomes equivalent
to some linear time-invariant system with arbitrarily
stable poles. For this purpose, we first define a new
output signaly(k) ∈ Rm of the system (1) by

y(k) =C(k)x(k) (11)

so that the total relative degree fromu(k) to y(k) is
equal to the system degreen. Here,

y(k) =









y1(k)
y2(k)

...
ym(k)









∈ Rm
, C(k) =









c1(k)
c2(k)

...
cm(k)









∈ Rm×n

(12)

whereyi(k) ∈ R andci(k) ∈ R1×n. We have the fol-
lowing Theorem (Mutoh and Hara (2011)).

Theorem 1. If the system(1) is completely reachable
in n steps, there exists a new output y(k) such that
the vector relative degree from u(k) to y(k) becomes
µ1, · · · ,µm, which implies that the total relative degree
from u(k) to y(k) is n. And, such C(k) can be calcu-
lated by the following equation.

C(k) =WR−1(k−n) (13)

where

W = diag(w1,w2, · · · ,wm)

wi =
[

0 · · · 0 1
]

∈ R1×µi (14)

(i = 1, · · · ,m)

From this, the pole placement state feedback is ob-
tained in the following procedure.

Let qi(z) be the desired stable characteristic poly-
nomial ofzas

qi(z) = z µi +αi
µi−1z µi−1+ · · ·+αi

1z+αi
0. (15)

(i = 1, · · · ,m)

Since, the vector relative degree fromu(k) to y(k) is
µ1, µ2, · · · , µm, we have the following equation.






q1(z)
. . .

qm(z)






y(k) = D(k)x(k)+Λ(k)u(k)

(16)
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Here,

D(k) =









D1(k)
D2(k)

...
Dm(k)









, Λ(k) =









Λ1(k)
Λ2(k)

...
Λm(k)









(17)

andDi(k) ∈ R1×n andΛi(k) ∈ R1×n are defined by

Di(k) =
[

αi
0,α

i
1, · · · ,α

i
µi−1,1

]











c0
i (k)

c1
i (k)
...

c µi
i (k)











(18)

Λi(k) = [0, · · · ,0,1,γi(i+1), · · · ,γim].

In the above equation,cl
i (k) is defined by the follow-

ing recursive equations, usingci(k),

c0
i (k) = ci(k)

c(l+1)
i (k) = cl

i (k+1)A(k) (19)

(l = 0,1,2, · · ·)

and,
γi j = c µi−1

i (k+1)b j(k) (20)

for i = 1, · · · ,m. Then, by applying the state feedback

u(k) =−Λ−1(k)D(k)x(k) (21)

to the system (1), the closed loop system becomes as
follows.







q1(z)
. . .

qm(z)






y(k) = 0 (22)

This system is time-invariant and has the following
state representation.

w(k+1) = A∗w(k) (23)

wherew(k) ∈ Rn is the new state variable. The matri-
cesA∗ ∈ Rn×n is written by

A∗ =







A∗
1 0

...
0 A∗

m






(24)

andA∗
i ∈ Rµi×µi is defined as follows.

A∗
i =













0 1 0
...

...
...

... 1
−αi

0 . . . . . . −αi
µi−1













(i = 1, . . . ,m) (25)

From this, the characteristic polynomial ofA∗ is writ-
ten as follows usingqi(z) defined by (15).

q(z) =
m

∏
i=1

qi(z) (26)

(19) and (22) imply thatw(k) is written as follows.

w(k) :=



























y1(k)
...

y1(k+µ1−1)
...

ym(k)
...

ym(k+µm−1)



























=





























c0
1(k)
...

cµ1−1
1 (k)

...
c0

m(k)
...

cµm−1
m (k)





























x(k)

= P(k)x(k) (27)

On the other hand, from (1) and (21), the time-
varying state equation of the closed loop system be-
comes

x(k+1) = (A(k)−B(k)Λ−1D(k))x(k). (28)

Thus, the system (28) is equivalent to the system (23),
with the transformation matrixP(k). It is then obvi-
ous that the following equation holds.

P(k+1)(A(k)−B(k)Λ−1D(k))P−1(k) = A∗ (29)

This implies that the state feedback (21) makes the
closed loop system equivalent to the system (23) that
has an arbitrarily stable characteristic polynomial,
q(z).

Note that the transformation matrixP(k) and
P−1(k) must be bounded functions, in other words,
P(k) must be a Lyapunov transformation, to ensure
the stability of the closed-loop system.

The procedures to obtain the state feedback gain
is summarized below.

Pole Placement Design Procedure
STEP 1. Calculate the reachability matrixUR(k−n)

and the reachability indicesµi .

STEP 2. CalculateC(k) =WR−1(k−n) for the new
output signal,y(k), using the truncated reachabil-
ity matrix R(k).

STEP 3. Determine the desired stable closed-loop
characteristic polynomials as follows fori =
1, · · · ,m.

qi(z) = z µi +αi
µi−1z µi−1+ · · ·+αi

1z+αi
0

STEP 4. Using (17)∼ (20), calculateD(k) andΛ(k).
Then, the state feedback for the pole placement is

u(k) =−Λ−1(k)D(k)x(k)
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4 TRAJECTORY TRACKING
CONTROL OF 2-LINK
MANIPULATORS

In this section, discrete time-varying pole placement
technique is applied to the trajectory tracking control
of a two-link robot manipulator.

4.1 The Model of the Manipulator

Fig. 1 and Fig. 2 show the picture and the model of
the 2-link robot manipulator for the experiment. All
links rotate in the horizontal plane.

Figure 1: Two-Link Manipulator(SR-402DDII.)

Its motion equation is described as follows.

M(θ(t))θ̈(t)+C(θ(t), θ̇(t))θ̇(t)+D(θ̇(t)) = τ(t)
(30)

where,

θ(t) =

[

θ1(t)
θ2(t)

]

M(θ(t)) =

[

J1+ J2+2m2r2l1cosθ2(t),
J2+m2r2l1cosθ2(t),

J2+m2r2l1cosθ2(t)
J2

]

C(θ(t), θ̇(t)) =

[

−2m2r2l1θ̇2(t)sinθ2(t),
m2r2l1θ̇1(t)sinθ2(t),

−m2r2l1θ̇(t)2sinθ2(t)
0

]

D(θ̇(t)) =

[

2sgn(θ̇1(t))
0.25sgn(θ̇2(t))

]

Ji = Jl i +mir
2
i (i = 1,2).

Here,θi(t) andτi(t) are joint angle and input torque
of i-th joint, l i and r i are length of thei-th link and
the distance between thei-th joint and the center of
gravity of thei-th link, andJl i is the moment of inertia
of the i-th link about its center of gravity (i = 1,2).

D(θ̇(t)) is a friction term which is estimated from the
experimental data.

In the above, the values of the physical parameters
are shown in Table 1.

Table 1: Parameter of Manipulator.

variable unit link1 link2
(i = 1,2) i = 1 i = 2

mi [kg] 3.43 1.55
l i [m] 0.2 0.2
r i [m] 0.1 0.1
Jl i [kgm2] 0.208 0.03

4.2 Experimental Results

In this section, we show the experimental result of the
trajectory tracking control of the 2-link robot manip-
ulator using the time-varying discrete pole placement
controller.

To design the discrete controller, we discretize the
manipulator system (30) by Euler method as follows.
Here,Ts is the sampling time.

x(k+1) = x(k)+

[

0 Ts I2
0 Ts Γ(x(k))

]

x(k)

+

[

0
Ts Φ(x(k))

]

u(k)

= f (x(k),u(k)) (31)

where

x(k) =

[

θ(k)
θ̇(k)

]

∈ R4

u(k) =

[

τ1(k)
τ2(k)

]

∈ R2 (32)

I2 =

[

1 0
0 1

]

Γ(x(k)) = −M(θ(k))−1C(θ(k), θ̇(k)) ∈ R2×2

Φ(x(k)) = M(θ(k))−1 ∈ R2×2

Figure 2: Two-Link Manipulator Model.
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The sampling timeTs is 10 [msec] for the experi-
ment.

Let the desired trajectory of the end portion of this
manipulator be the circle in the horizontalX-Y work
space as presented by the the following equation,

X(t) = 0.08cos
π
5

t +0.3 (33)

Y(t) = 0.08sin
π
5

t +0.05 (34)

which is described in Fig.3.

0.2 0.3 0.4 0.45
−0.05

0

0.1

0.2

x [m]

y
 [
m
]

Figure 3: Desired Trajectory of the End Portion.

From the desired trajectory of the end portion, the
desired trajectory of the joint angles,θ∗(t), and their
speed,̇θ∗(t), can be calculated using the inverse kine-
matics. Which gives the desired state variablex∗(t) as
follows.

x∗(t) =

[

θ∗(t)
θ̇∗(t)

]

(35)

The desired input signalu∗(t) is obtained fromθ∗(t)
and θ̇∗(t) using (30). MAXIMA is used to calcu-
late the explicit function representations forx∗(t) and
u∗(t), which are omitted here because of the space
limitation. Instead of this, the graphs ofx∗(t) and
u∗(t) are shown in Fig.4 and 5.

By discretizing these signals using the sampling
time Ts, the discrete desired state trajectoryx∗(k) and
the discrete desired inputu∗(k) are obtained. Note
that we use the same variable for continuous space
and discrete space, i.e.,x(t) is continuous variable,

0 5 10 15
−1

0

1

2

2.5

time [sec]

x
(

)

 

 
x ( )

x ( )

x ( )

x ( )

t

t

t

t

t

Figure 4: Desired Trajectoryx∗(t).

0 5 10 15
−4
−2

0
2
4

time [sec]

u
1
(

) 
[N

m
]

0 5 10 15
−0.5

0

0.5

time [sec]

u
2
(

) 
[N

m
]

t
t

Figure 5: Desired Inputu∗(t).

x(k) is a discrete variable ofk-th step andx(kTs) is a
sampling variable in thet-axis.

To obtain the linear time-varying approximate
model around the desired trajectory,x∗(k) andu∗(k),
define∆x(k) and∆u(k) by

{

∆x(k) = x(k)− x∗(k)
∆u(k) = u(k)−u∗(k)

(36)

Then we have the following approximate model from
(31).

x(k+1) =
∂
∂x

f (x∗(k),u∗(k))∆x(k)

+
∂
∂u

f (x∗(k),u∗(k))∆u(k)

= A(k)∆x(k)+B(k)∆u(k) (37)

where,

A(k)=







0 0 1 0
0 0 0 1
0 a32(k) a33(k) a34(k)
0 a42(k) a43(k) a44(k)






(38)

B(k)=







0 0
0 0

β31(k) β32(k)
β41(k) β42(k)







(39)

Here, the explicit function representation of A(k) and
B(k) are obtained by using MAXIMA, which are de-
scribed in Appendix A, for reference.

Fig.6 shows the closed loop response of the ma-
nipulator end portion in the horizontal work space.
The initial position of the end portion is(0.4,0) in
the coordinate of the horizontal work space. This ini-
tial condition corresponds to the initial condition of
state variable vector,x1(0) = x2(0) = x3(0) = x4(0) =
0. The response of the manipulator state variable
x(kTs) (joint angles and their speed), the state er-
ror ∆x(kTs) = x(kTs)− x∗(kTs), are shown in Fig.7
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and Fig.8 respectively. The control inputu(kTs) =
u∗(kTs)+∆u(kTs) is shown in Fig.9. The desired sta-
ble poles of the closed loop system and the observer
are chosen as (−5,−90,−5,−90).

0.2 0.3 0.4 0.45
−0.05

0

0.1

0.2

x [m]

y 
[m
]

 

 
Experimental Result

Desired Trajectory

Figure 6: Response of End Portion.
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x
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x
4
(kTs)

Figure 7: Response of State Variablex(k).
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1
(kTs)

∆x
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∆x
4
(kTs)

Figure 8: State Error∆x(k) = x(k)−x∗(k).
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m
]
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 (

k
T

s)
 [

N
m
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Figure 9: Input Torqueu(k).

5 CONCLUSIONS

In this paper, the trajectory tracking control of non-
linear systems was considered. For this purpose, the
pole placement controller designed by the simple pro-
cedure was applied to the linear time-varying discrete
approximate model of the system around some de-
sired trajectory. This controller was applied to track-
ing control of the actual 2-link robot manipulator to
show the applicability of this type of controller. The
experimental results showed that this controller has
very good performance.
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a32 =
31

(

28830cos(x2(k))
3 x4(k)

2 +185340cos(x2(k)) x4(k)
2
)

T

(31cos(x2(k))−90)2 (31cos(x2(k))+90)2

+
31

(

57660cos(x2(k))
3 x3(k)x4(k)+370680cos(x2(k)) x3(k)x4(k)

)

T

(31cos(x2(k))−90)2 (31cos(x2(k))+90)2

+
31

(

28830cos(x2(k))
3 x3(k)

2 +472409cos(x2(k))
2 x3(k)

2
)

(31cos(x2(k))−90)2 (31cos(x2(k))+90)2

+
31

(

185340cos(x2(k)) x3(k)
2 −251100x3(k)

2
)

T

(31cos(x2(k))−90)2 (31cos(x2(k))+90)2

a33 = 1−
62sin(x2(k)) (30x4(k)+31cos(x2(k)) x3(k)+30x3(k)) T

(31cos(x2(k))−90) (31cos(x2(k))+90)

a34 = −
1860sin(x2(k)) (x4(k)+x3(k)) T

(31cos(x2(k))−90) (31cos(x2(k))+90)

a42 = −
31(28830cos(x2(k))3x4(k)2+472409cos(x2(k))2x4(k)2)T

(31cos(x2(k))−90)2(31cos(x2(k))+90)2

−
31(185340∗cos(x2(k))x4(k)2−251100x4(k)2)T

(31cos(x2(k))−90)2(31cos(x2(k))+90)2

−
31(57660cos(x2(k))3∗x3(k)x4(k)+944818cos(x2(k))2x3(k)x4(k))T

(31cos(x2(k))−90)2(31cos(x2(k))+90)2

−
31(370680cos(x2(k))x3(k)x4(k)−502200x3(k)x4(k))T

(31cos(x2(k))−90)2(31cos(x2(k))+90)2

−
31(288300cos(x2(k))3x3(k)2+944818cos(x2(k))2x3(k)2)T

(31cos(x2(k))−90)2(31cos(x2(k))+90)2

+
31(1853400cos(x2(k))2x3(k)−502200x3(k)2)T
(31cos(x2(k))−90)2(31∗cos(x2(k))+90)2

a43 =
62sin(x2(k)) (31cos(x2(k)) x4(k)+30x4(k)+62cos(x2(k)) x3(k))T

(31cos(x2(k))−90) (31cos(x2(k))+90)

+
31(300x3(k)) T

(31cos(x2(k))−90) (31cos(x2(k))+90)

a44 =
62(31cos(x2(k))+30) sin(x2(k)) (x4(k)+x3(k)) T

(31cos(x2(k))−90) (31cos(x2(k))+90)
+1

b31 = −
30000T

961cos(x2(k))
2 −8100

b32 =
(31000cos(x2(k))+30000) T

961cos(x2(k))
2 −8100

b41 =
(31000cos(x2(k))+30000) T

961cos(x2(k))
2 −8100

b42 = −
(62000cos(x2(k))+300000)T

961cos(x2(k))
2 −8100

.
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