
Animation and Automatic Evaluation to Support Programming
Teaching

Paula Correia Tavares1, Pedro Rangel Henriques2 and Elsa Ferreira Gomes1,3
1Departamento de Informática,Instituto Superior de Engenharia do Porto, Rua Bernadino de Almeida, Porto, Portugal

2Departamento de Informática, Universidade do Minho, Campus de Gualtar, Braga, Portugal
3GECAD- Knowledge Engineering Decision Support, Instituto Superior de Engenharia do Porto, Porto, Portugal

1 RESEARCH PROBLEM

Learning programming is a complex task that poses
significant challenges.

Students face different kinds of difficulties at
complex levels that traditional teaching/learning
methods are nor able to cope with resulting in a high
rate of failures.

Two very distinguished concepts that are
incredibly misunderstood by the students are:
learning programming and learning the syntax of a
programming language.

Programming is, first of all, to outline strategies
in order to solve problems, regardless of the
language used. In fact, this task involves several
steps that go from the understanding of the work
proposal to the test of the program, passing through
the algorithm development and codification.

Although we believe the codification is not the
main difficulty, previous studies had conclude that
(Gomes, 2010), the adopted programming paradigm
and the language used have a huge impact in the
learning process and consequently in the task
performance.

Learning how to program is an iterative process.
The solution to a complex problem can be obtained
in a successive steps solving simpler problems and
enriching the previous solutions.

It is only possible to learn how to program by
programming. Following this approach, students can
understand and acquire problem-solving strategies.
Therefore, it is obvious that an active behavior by
the student, instead of a passive behavior, leads to an
improvement in his ability to solve the proposed
problems.

However, teachers realize that in most cases,
when students are requested to solve a particular
problem, they are not able to start the task, neither
on paper nor in the computer. Even when they break
this initial inertia, they often become discouraged
and give up easily as soon as they face the first

hurdle. Under these circumstances, the students’
main difficulties are:
 Understanding the problem due to their

unfamiliarity with the subject or due to the
inability to understand the problem statement;

 Lacking logic thinking to write the correct
algorithm to solve a given problems;

 Learning the language syntax and semantics.
The above difficulties identified in learning
programming led to the creation of languages and
development environments that smooth the
designing of algorithms, or the writing and the
analyzing of programs.

New teaching/learning approaches must be
devised. The resort to computer supported education
specially tailored to programming activities shall be
explored

For this reason, several authors have researched
the pedagogical effectiveness of program
visualization and animation, and developed some
tools. Animation can help students on the analysis
and understanding of given programs, and can also
guide on the development of new ones.

Besides that, it is very important to give students
the opportunity to practice solving programming
exercises by themselves. Receiving feedback is
essential for knowledge acquisition. New tools arose
(especially in the area of programming contests) to
allow for the submission of solutions (programs
developed by the students) to the problem statements
presented by the teacher and to assess them,
returning immediately information about the
submitted answer. These tools can be incorporated
into teaching activities, allowing students to test
their work getting immediate feedback. Automatic
evaluation systems significantly improve students
performance.

In this article are shown two approaches to the
teaching of programming, animation and automatic
assessment are reviewed, and a new pedagogical
practice resulting from combination of both is

28

Correia Tavares P., Rangel Henriques P. and Ferreira Gomes E..
Animation and Automatic Evaluation to Support Programming Teaching.
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

proposed.

2 OUTLINE OF OBJECTIVES

The goal of the Ph.D. work is summarized below:
 To provide means for an easier understanding of

programs
 To make students increase their ability to

practice regularly programming, since the first
day, obtaining immediate feedback.

We believe that this can increase their motivation,
engagement and consequently improving the
academic success.

3 STATE OF THE ART

The animation tools provide a visual metaphor that
significantly help the understanding of complex
concepts. Therefore, these tools allow the students to
find the dynamics of hard to understand but
extremely important processes. In this way, the
student is stimulated to progress in his activity
(Hundhausen et al., 2002).

In this sector, beyond discussing the animation
strategy, we will also discuss the importance of
feedback in the teaching-learning process. In this
perspective, we will analyze the impact of tools for
automatic evaluation of programs when integrated in
teaching process.

3.1 Animation

Several authors have been concerned about the use
of graphic interfaces that enable a way of
communication between the user and the computer
not restricted to a textual form (Hansen et al., 1999)
(Stasko and Kehoe, 1996) (Hundhausen and
Douglas, 2000).

Aiming to enhance the learning process, many
educators and computer scientists have been
dedicated to the construction of animation,
visualization and simulation systems (computational
programs). The great motivation is to appeal to the
human visual system potential.

The key question is how to apply these methods
in order to help students to deal with complex
concepts.

Many researches (Brown and Sedgewick, 1985)
(Korhonen, 2003), (Kerren and Stasko, 2002) have
been working to identify the rules that should be
followed while designing and creating visualizations

and animations effective for teaching. As it
computational programs con be hard to understand
when presented in a textual format; however it is
expected that a better comprehension could be
achieved with an animated graphic format (Pereira,
2002).

An animation is a natural approach of expressing
behaviors. Particularly, the animation of an
algorithm is a dynamic visualization of their main
abstraction. So, its importance lies on the ability to
describe the algorithm logical essence.

When inspecting the control and data of a
program to understand its behavior, we have, at the
first time, two big choices: do it during code
execution (debugging), or simulate the execution in
another environment (Pereira, 2002). For teaching
purposes we believe that the second approach is
clearly the most interesting. Thus, means animation
system is a tool that allows build animations kind of
interactively. In this context, there are several tools
that try to introduce basic programming concepts
through a familiar and pleasant environment in order
to help students learn to program. The following list
shows some of these most well known tools:
BALSA (Saraiya, 2002), TANGO (Hughes and
Buckley, 2004), Jeliot (Silva et al., 2009), Alma
(Pereira and Henriques, 1999), SICAS (Mendes et
al, 2004), OOP-Anim (Santos et al., 2010) (Esteves
and Mendes, 2003), VILLE (Rajala et al., 2007),
JIVE (Lessa et al., 2011). All of these tools are
concerned with visualization or animation of
programs written in traditional programming
languages (C, Java, etc.). Besides these, there are
also some programming environments less
conventional that allow to edit, run, and view
programs developed in visual languages designed
for the purpose of facilitating the teaching of
programming: AMBAP (Xavier et al., 2004), Alice2
(see http://www.alice.org/), Scratch (see
http://scratch.mit.edu), etc. As referenced above,
several authors became interested in this problem.
They develop less complex and appealing
environments than the professional environments,
with important features for novice programmers.
These systems have long been used to allow
understanding important aspects in programming
through animation pseudo-code, flowcharts, or
programs written in specific or general programming
languages such as Pascal, C, Java, and others. The
most interesting and appealing are those that allow
students to introduce and simulate their own
algorithms and programs. The animation based at
simulation allows introduce the dynamic
visualization of the program and help student

Animation�and�Automatic�Evaluation�to�Support�Programming�Teaching

29

comprehension at his own pace. To understand this
idea, Figure 1 and Figure 2 show illustrative
screenshots of Jeliot System.

Figure 1: Jeliot interface - Java Class to calculate an
average.

Figure 2: Jeliot interface - Java Class to calculate an
average.

The figures show two moments in the animation
of a class to calculate an average. Figure 1 illustrates
the steps when a new value is being added to the
sum (execution of an assign statement); Figure 2
exhibits another step when cycle stop condition is
being evaluated. The sequence of these images,
corresponding to the execution of each statement
produces the animation of the class as desired.

3.2 Automatic Evaluation

It´s very important to give students the opportunity
to practice and solve programming exercises by
themselves.

The maximum effectiveness of this approach
requires the teacher's ability to rate and review each
resolution. Instant feedback is very important for the
acquisition of knowledge. Independently of the
particular learning strategy, it motivates students.

However, in large classes and with few lecture
hours, this approach is impractical. Individual
feedback may consume too much teacher´s time

with risk that students don’t benefit from it in due
time (Queirós and Leal, 2015).

To solve this problem, there are a large number
of online submission systems that support the
automatic evaluation for the programming problems
(Queirós and Leal, 2012).

Different studies show that these systems enable
students to autonomously develop programming
skills and significantly improve their performance
(Verdú et al., 2011).

Since not all students are motivated in the same
way, it is important to provide different learning
environments: individual (traditional), collaborative
(group work), competitive (competitions), among
others. Taking advantage of the human spirit of
competition, competitive learning increases
commitment and leads to a greater involvement of
students in practical activities.

Competitions with automatic evaluation are
becoming important for the practice of
programming. However, differences in motivation
and feelings between losers and winners can exist.
These negative effects can be minored through
different practices, such focusing on learning and
fun rather than in a competition.

New tools have emerged to facilitate and enable
their use in teaching activities, allowing students to
incorporate tests in its work. These tools increase the
level of satisfaction and motivation of students.
According to teachers and students, feedback should
be as quickly and detailed as possible. These tools
do not replace the teacher, but provide help and
increase the value of time in the classroom. The
proposed problems have different levels of difficulty
and feedback is useful for an increased
understanding of programming for the students.
Teachers should be able to select the problems they
intend to present to the students according to their
level of difficulty (Verdú et al., 2011). With suitable
software tools, correctness of the program can be
determined with an indication of the quality
according to a set of metrics. It´s not easy to find a
unique approach to the problem of assessment of
programming works. Different teachers can adopt
different strategies, depending on their specific goals
and objectives of the course, especially of his own
style and preferences (Joy et al., 2005). So, the
problem is related to the resources required to
manage the evaluation of practical exercises. The
students receive accurate feedback at the right time
to the benefit of their learning. Most of the tools
available for this purpose include the delivery of
works and automatic evaluation. This is adequate for
an initial learning where knowledge and

CSEDU�2015�-�Doctoral�Consortium

30

understanding are being tested. The final goal is to
provide new learning strategies to motivate students
and make programming more accessible and an
attractive challenge. Boss (Heng et al., 2005),
Mooshak (Leal and Silva, 2008) and EduJudge
(Verdú et al., 2011) are examples of such tools.
Their main goal, besides testing the students'
answers against a set of data input and give a rating,
is to allow the evaluator motivate students through
precise and rapid feedback.

Figure 3: Mooshak System Interface.

Figure 3 shows a Mooshak screen illustrating the
simplicity and ease of its interface. In addition to the
statement of the problem to solve, shown in the
center window, it´s possible to see the different
options on the top window.

4 METHODOLOGY

To achieve this goal we intend to follow a method
based on the steps:
 Bibliographic research (theoretical and

technological);
 Reasoning about the research evidences and

writing;
 Proposal of a new approaches/strategies;
 Experimentation in the classroom.
According to the feedback obtained in the last phase,
we will iterate over the four steps above.

5 EXPECTED OUTCOME

In order to increase the motivation and self-
confidence of students of Introductory Programming
courses, we presented in this paper a proposal for a
doctoral thesis. Our goal is to clearly identify the

difficulties that actually arise in this process and
suggest different approaches, supported on computer
resources to minimize these difficulties.

So, the expected outcome of this Ph.D. work is a
set of strategies to improve the success of
programming courses. These strategies will be based
on the use of computers and computer applications
that can increase the involvement of students in
comprehension and development tasks. The proposal
will combine several tools originally created with
different objectives.

6 STAGE OF THE RESEARCH

The first year of this Doctoral Program, PDInf, was
devoted to literature review in order to write the
state-of-the-art chapters.

At present the first proposal design is
undergoing. It is based on the principal that students
should analyse a good solution (well-solved
examples) before starting their own resolution.

To be more concrete we introduce in the sequel a
summary of this proposal.

We suggest that for each topic to teach, the
teacher prepare two groups of similar exercises.

For the first group of exercises, the teacher
discusses the problem statement, outlines the
resolution (an algorithm) and presents the program
that solves it. Then the student can make its
animation and so analyse / understand the solution.

For the second set of exercises, after discussing
the proposal, the teacher asks the students to solve
and to test the solution produced through an
automatic evaluation system.

On a third moment, the teacher discusses with
students the feedback received from the evaluator.

This approach assumes that teachers select a
powerful animation tool and easy to use; and choose
an Automatic Evaluator System (AES) that, besides
friendly return feedback and provide a diagnosis. It
is also desirable that the Automatic Evaluator
Systems comment on the code quality. Currently the
idea is to do experiment Jeliot and Mooshak.

REFERENCES

Moore, R., Lopes, J., 1999. Paper templates. In
TEMPLATE’06, 1st International Conference on
Template Production. SCITEPRESS.

Smith, J., 1998. The book, The publishing company.
London, 2nd edition.

Brown, M., Sedgewick, R., 1985. Techniques for

Animation�and�Automatic�Evaluation�to�Support�Programming�Teaching

31

Algorithm Animation. IEEE SOFTWARE Vol2(1), pp
28-39.

Esteves, M., Mendes, A., 2003. OOP-Anim, a system to
support learning of basic object oriented programming
concepts. International Conference on Computer
Systems and Technologies - CompSysTech’2003.

Gomes, A., 2010. Difficulties of learning computer
programming. Contributions to the understanding and
resolution, Dificuldades de aprendizagem de
programação de computadores: contributos para a sua
compreensão e resolução. Dissertação submetida à
Universidade de Coimbra para obtenção do grau de
“Doutor em Engenharia Informática”.

Hansen, S., Narayanan, N., Schrimpsher, D., 1999.
Helping Learners Visualize and Comprehend
Algorithms. Proceedings of the World Conference on
Educational Multimedia, Hypermedia &
Telecommunications (ED-MEDIA'99).

Heng, P., Joy, M., Boyatt, R., Griffiths, N., 2005.
Evaluation of the BOSS Online Submission and
Assessment System.

Hughes, C., Buckley, J., 2004. Evaluating Algorithm
Animation for Concurrent Systems: AComprehension-
Based Approach. 16th Workshop of the Psychology of
Programming Interest Group. Carlow, Ireland, April.
In E. Dunican & T.R.G. Green (Eds). Proc. PPIG 16.
pp. 193-205.

Hundhausen, C., Douglas, S., Stasko, J., 2002. A Meta-
Study of Algorithm Visualization Effectiveness.
Journal of VisualLanguages and Computing 13, pp.
259-290.

Hundhausen, C., Douglas, S., 2000. Using Visualizations
to Learn Algorithms: Should Students Construct Their
Own, or View an Expert’s?. Proceedings 2000 IEEE
International Symposium on Visual Languages IEEE
Computer Society Press, Los Alamitos.

Joy, M., Griffiths, N., Boyatt, R., 2005. The BOSS Online
Submission and Assessment System. Journal on
Educational Resources in Computing, Volume 5 Issue
3, September.

Kerren, A., Stasko, J., 2002. Chapter 1 “Algorithm
Animation”, Volume 2269, pp. 1-15.

Korhonen, A., 2003. Visual Algorithm Simulation.
Dissertation for the degree of Doctor of Science in
Technology. At Helsinki University of Technology
(Espoo, Finland), November.

Leal, J., Silva, F., 2008. Using Mooshak as a Competitive
Learning Tool.

Lessa, D., Czyz, J., Jayaraman, B., 2011. JIVE: A
Pedagogic Tool for Visualizing the Execution of Java
Programs. SIGCSE 2011 Dallas, Texas, USA.

Mendes, A., Gomes, A., Marcelino, M., 2004. Evaluation
and evolution of a Environment Support for
Programming Learning, Avaliação e Evolução de um
Ambiente de Suporte à Aprendizagem da
Programação. VII Congresso Iberoamericano de
Informática Educativa.

Pereira, M., 2002. Systematization of Programs
Animation, Sistematização da Animação de
Programas. Dissertação submetida à Universidade do

Minho para obtenção do grau de doutor em
Informática, ramo Tecnologia da Programação,
Dezembro.

Pereira, M., Henrriques, P., 1999. Made Algorithms
Animation Systematic, Animação de Algoritmos
tornada Sistemática. In 1º Workshop Computação
Gráfica, Multimédia e Ensino. Leiria.

Queirós, R., Leal, J., 2012. Exercises Evaluation Systems -
An Interoperability Survey. In Proceedings of the 4th
International Conference on Computer Supported
Education (CSEDU), Volume 1, pp.83-90. Porto.

Queirós, R., Leal, J., 2015. Ensemble: An Innovative
Approach to Practice Computer Programming. In R.
Queirós (Ed.), Innovative Teaching Strategies and
New Learning Paradigms in Computer Programming
(pp. 173-201). Hershey, PA: Information Science.

Rajala, T., Jussi, M., Erkki, L., Salakoski, K., 2007.
VILLE – A Language-Independent Program
Visualization Tool. Seventh Baltic Sea Conference on
Computing Education Research (Koli Calling 2007),
Koli National Park, Finland, November 15-18.

Santos, Á., Gomes, A., Mendes, A., 2010. Integrating New
Technologies and Existing Tools to Promote
Programming Learning. Algorithms , Vol3, pp.183-
196.

Saraiya, P., 2002. Effective Features of Algorithm
Visualizations. Thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University for
the degree of Master of Science In Computer Science,
July.

Silva, M., D'Emery, R., Neto, J., Bezerra, Y., 2009.
Programming structures: A Experiment with
Jeliot,Estruturas de Programação: um Experimento
com Jeliot. IX Jornada de Ensino Pesquisa e Extensão
(JEPEX) da UFRPE.

Stasko, J., Kehoe, C.,1996. Using Animations to Learn
about Algorithms: An Ethnographic Case Study.
Technical Report GIT-GVU-96-20, September 1996.

Verdú, E., Regueras, L., Verdú, M., Leal, L., Castro, J.,
Queirós, Q., 2011. A distributed system for learning
programming on-line. Computers & Education 58, pp.
1–10.

Xavier, G., Garcia, D., Silva, G., Santos, A., 2004. Factors
that Influencing Introductory Learning Programming,
Estudo dos Fatores que Influenciam a Aprendizagem
Introdutória de Programação.

http://www.uefs.br/erbase2004/documentos/weibase.

CSEDU�2015�-�Doctoral�Consortium

32

