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Abstract: UML2 sequence diagrams are interaction diagrams which have been used largely to model the behaviour of 
objects interaction in systems. These diagrams suffer from lack of precise semantics due to the semi-formal 
nature of the UML notation. This problem hinders the automatic analysis and verification of such diagrams. 
Process algebras have been used largely in order to deal with such problem. In this paper, we propose a 
mapping of CombinedFragments of UML2 sequence diagrams into π-calculus specifications and use the 
Mobility Workbench (MWB) tool for the verification of these diagrams. The mapping provides a formal 
semantics as well as formal analysis and checking for UML2 sequence diagrams. We illustrate our approach 
by an example to prove the usefulness of the translation. 

1 INTRODUCTION 

UML (Unified Modeling Language) is a semi-formal 
language to visualize, specify, build and document all 
the artifacts and aspects of software systems (Object 
Management Group, 2011). UML provides 
interaction diagrams to represent the communications 
with and within the software. The sequence diagram, 
considered as the well-known among them, shows 
temporal representation of the interactions between 
the objects and the chronology of the exchanged 
messages between the objects and with the actors.  

The mapping of UML diagrams into formal 
methods has been adopted largely in order to deal 
with its problem of imprecise semantics. In this paper, 
we propose a mapping of the CombinedFragments of 
UML sequence diagrams into the π-calculus 
computation model in order to exploit the precise 
semantics and rich theory of this target formalism 
especially in modeling interactions in systems with 
dynamic structures.  

The main contribution of this paper is to develop 
the corresponding π-calculus specification for 
CombinedFragments. Then, we use it for model 
checking, equivalence checking and simulation of 
models designed as UML sequence diagrams. The 
mobility workbench (MWB) tool (Victor et al., 1994) 
is used for these purposes.  

The novel aspect of our approach is in using the 
π-calculus as the target semantic domain and 

addressing complex interactions. In fact, in contrast 
to traditional formal modeling techniques (like Petri 
nets, enhancements of Petri nets, and input languages 
of model checkers); the π-calculus additionally offers 
the possibility to model systems with dynamic 
structures (such as business processes and web 
services). In such systems, the objects (actors) as well 
as the communication links between them are subject 
to changes, e.g. addition of new objects (actors) and 
links, or remove of existing objects (actors) and links. 
Thus, providing a formal correspondence to UML2 
sequence diagrams using the π-calculus could 
improve largely the development of correct critical 
systems especially in the cited domains.   

The rest of the paper is structured as follows. In 
Section 2, we expose the related works. In Section 3, 
we introduce UML2 sequence diagrams and the π-
calculus. In Section 4, we propose a mapping of 
UML2 sequence diagrams into the π-calculus. In 
Section 5, we present an overview of the analysis task 
illustrated by an example. Section 6 concludes the 
work by remarks and future works. 

2 RELATED WORKS 

Several approaches have been proposed to give 
precise semantics to scenario based models 
(including Sequence Diagram, Message Sequence 
Chart (MSC) (International Telecommunication 
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Union, 1993), and Live Sequence Chart (LSC) 
(Damm et al., 2001) for verification purposes and it is 
impossible to include all of them due to space 
constraints. Thus, we focus on the most related to our 
work especially those used for verification and 
including CombinedFragments. An interested reader 
could refer to (Micskei et al., 2011) where a detailed 
study was provided. 

According to the target formalisms, process 
algebras and Petri nets are the most formalisms used 
to deal with verification tasks. In (Lam et al., 2005) 
the authors present a simple mapping of UML 
sequence diagrams into the π-calculus in a global 
proposed approach for checking the consistency 
between them and statechart diagrams. In (Pokozy-
Korenblat et al., 2004) an automatic translation of 
UML specifications made up of sequence and state 
diagrams into π-calculus processes is provided. In 
(Dan et al., 2010), the authors propose an approach to 
formalize sequence diagrams in the CSP 
(communicating and sequential processes) for system 
analysis and verification.  

In (Eichner et al., 2005) a compositional 
semantics is given for sequence diagrams using M-
net (multivalued nets) which is an algebra based on 
Petri nets. The gained semantics could be used in 
simulation and verification. Recently, in (Bouabana 
et al., 2013), the authors have used Colored Petri Nets 
(CPNs) to propose a new semantics for the 
CombinedFragments by revising the already 
published true-concurrency-based approaches.   

Other works describe sequence diagrams in terms 
of input languages of well-known model checkers. In 
(Alawneh et al., 2006), the authors introduce a unified 
paradigm to verify and validate popular UML2 
diagrams (including sequence diagrams) using 
NuSMV. The approach supports Alternatives and 
Parallel CombinedFragments. In (Knapp et al., 2006), 
the authors present an operational semantics for a 
translation of UML2 interactions into automata, 
which is then used to verify, using SPIN or UPPAAL, 
whether an interaction can be satisfied by a given set 
of message exchanging UML state machines. The 
authors in (Lima et al., 2009) have proposed a 
mapping of CombinedFragments into PROMELA in 
order to provide a formal verification and validation 
of UML2 sequence diagrams using the SPIN model 
checker. In (Shen et al., 2012), the authors propose to 
formally describe sequence diagrams with 
CombinedFragments in terms of the input language 
of the model checker NuSMV for verification 
purposes. 

In contrast to all these works, our contribution 
provides multiple benefits over them especially in 

using the π-calculus as the target formalism which is 
well adapted to model systems with dynamic 
structures. In addition, it provides a high expressivity 
power in terms of describing interleaving and true-
concurrency which make it suitable to respect the 
standard interpretation of the OMG. 

3 BACKGROUND 

3.1 UML2 Sequence Diagrams (SDs) 

A sequence diagram (Object Management Group, 
2011) (see Fig. 1.) is one of the most popular UML 
diagrams which used to illustrate the interactions. An 
Interaction consists of a set of Lifelines, Messages 
and InteractionFragments. A lifeline is a participant 
in the interaction. A message represents a unit of 
behavior that has a send event (occurrence 
specification) and a receive event. 
CombinedFragments are InteractionFragments which 
came with UML2 to deal with complex interactions. 
They consist of one or more InteractionOperator (alt, 
opt, par, loop, ... etc) and a number of 
InteractionOperands which can include plain 
Interactions or again CombinedFragments.  An 
InteractionOperand may contain a Boolean 
expression which is called an InteractionConstraint 
(guard) and it must be evaluated to true to enter the 
InteractionOperand by the enclosing lifelines of the 
CombinedFragments. 

The semantics over CombinedFragments are 
largely handled in the literature. Multiple works have 
adopted several meanings and in some cases ignoring 
the standard interpretation. Interleaving semantics, 
i.e. two events may not occur at exactly the same time 
(Micskei et al., 2011), is considered by the OMG 
specification as the implicit semantics of events 
occurrence order used to explain Interactions. 
According to the standard, CombinedFragments have 
an interleaving semantics while plain 
InteractionFragments have partial order semantics. 
Weak sequencing which means that events on 
different lifelines from different operands may occur 
in any order or interleave (Bouabana et al., 2013) is 
defined by the OMG specification as the implicit 
composition operator for fragments is used to 
compose CombinedFragments with the rest of the 
diagram. 
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Figure 1: Structural elements of UML2 SDs with 
CombinedFragments. 

3.2 The Language of π-calculus 

The π-calculus (Milner, 1999) is a process algebra 
that provides a high expressivity power by 
authorizing the passage of “channels” between 
processes; it can be used for the representation, the 
analysis, the verification and simulation of mobile 
and concurrent systems. The π-calculus uses two 
concepts of modeling; a process that is an active 
communicating entity in the system, and a name that 
is anything else, e.g. a communication link, variable, 
data, etc. The abstract syntax for the π-calculus is 
built from the following BNF grammar: 

P ::=   0                     Nil; Empty process 
      |  x (y) . P            Input prefix; receive y along  x 
      |  x <y> . P          Output prefix; send y along  x 
      |  τ. P                   Silent prefix; an internal action 
      |  P | P                 Parallel composition  
      |  P + P                Non-deterministic choice 
      | (ν x) P               Restriction of x to process P 
      | ! P                     Replication of process P 
      | [x = y] P            Match; if x = y then P 
      | [x = y] P            Mismatch; if x = y then P 
      | A(y1, … , yn)     Process identifier 

There are several extensions of the π-calculus, in our 
paper we choose the polyadic version where a 
message could consist of multiple names rather than 
one.  

For the convenience, we define the following 
shortcuts: (1) to represent the summation of all 
processes, (2) to represent the composition of all 
processes, (3) to represent a series of channels and (4) 
the restriction operator for multiple names in a 
process as follows: 

 Ii iP
def

  P1 + P2 + . . . + Pn                        (1) 

Ii iP
def

  P1 | P2 | . . . | Pn    (2) 

x1   
def

  x1, x2 ,...., xn                             (3) 

(ν x1, x2 ,...., xn) P 
def

 (ν x1)(ν x2) … (ν xn) P    (4) 

4 MAPPING OF UML2 
COMBINEDFRAGMENTS INTO 
THE Π-CALCULUS 

In our approach, we describe the behavior of a 
sequence diagram by the free merge of the semantics 
of their different lifelines behaviors, so it is a lifeline-
based semantics. We consider here asynchronous 
messages. We associate to each message occurrence 
specification (send or receive event) of an object a 
state on its lifeline (i.e. event-oriented behavior). We 
consider two events on our lifelines here, the receipt 
event and the sending event in contrast to (Lam et al., 
2005) while the authors build their mapping only on 
the receipt event. When an event is produced, the 
object switches from a state to another. By this way, 
we can maintain the weak sequencing and 
interleaving semantics during the mapping. In 
addition, such an interpretation makes the properties 
of a sequence diagram easier to check. 

We start this section by a mapping of basic 
elements of sequence diagrams to deal with basic 
interactions. Then, we tackle the translation of 
CombinedFragments and other interesting elements. 
Table 1 illustrates the mapping of the essential 
elements. 

Table 1: Mapping of elements of UML2 SDs. 

 

Sequence diagram π-calculus 

B
as

ic
 e

le
m

en
ts

 lifeline Process identifier 

send event Output action 

receive event Input action 
creation event Process creation 

destruction event Nil process 
message Channel 

C
om

bi
n

ed
F

ra
gm

en
ts

 alt Non-deterministic choice 
opt Non-deterministic choice 
par Parallel execution 

loop Recursive execution 

4.1 Basic Elements 

We provide here the mapping of basic constructs i.e. 
lifelines, messages and events (see Fig. 2). An object 
(lifeline) is transformed to a π-calculus process 
identifier. A message is transformed to a π-calculus 
channel. Events (occurrence specification) of sending 
and receiving of messages are transformed to π-
calculus output or input actions respectively. The 
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argument vector “ m


” is used to represent all different 
messages (m1, m2, ..., mn) handled (sent or received) 
by an object during its lifeline. OiSj is the process 
corresponds to the object Oi at the state Sj on its 
lifeline. Each lifeline process identifier use two 
channels to communicate messages “ m


” with the 

others, one to receive actions “inOi” and the other one 
to send actions “outOi”. We have used the last 
notations “OiSj, inOi, outOi” to provide a readable 
mapping when complex interactions are involved. 
Thus, the execution semantics of a lifeline “O1” is 
given by the behavior of the process:  

 
Figure 2: Mapping of basic elements. 

O1S1(ino1, outo1, m


) 

def

  

 ino1(x).([x= m1] O1S2(ino1, outo1, m


) +  1i
[x= mi] O1S1(ino1, 

outo1, m


)) 
 

 outo1<m1>.O1S2(ino1, outo1, m


)  

The receipt event of a message “m1” is 
represented by the input action “ino1”, and the sending 
event is modeled by the output action “outo1”. In the 
first case, the process O1S1(ino1, outo1, m


) waits on 

channel “ino1(x)” for an event “m1”  then it evolves to 
another process O1S2(ino1, outo1, m


). Otherwise, it 

proceeds as itself. In the second case, the process 
O1S1(ino1, outo1, m


) sends a message “m1”  and 

evolves to another process O1S2(ino1, outo1, m


).  

4.2 CreationEvent and 
DestructionEvent 

A CreationEvent (Fig. 3 on left) models the creation 
of a lifeline (object). We can describe the execution 
semantics of the lifeline “O1” by the behavior of the 
process identifier with arguments O1S1(ino1, outo1, 
m


) as follows: 

O1S1(ino1, outo1, m


) 
def

 outo1<m1>.(O1S2(ino1, outo1, m


) | O2S1(ino2, 

outo2, m


)) 

A DestructionEvent (Fig. 3 on right) models the 
destruction of a lifeline (object). We can describe the 

execution semantics of the lifelines “O1” and “O2” by 
the behavior of the processes identifiers O1S1(ino1, 
outo1, m


) and O2S1(ino2, outo2, m


) as follows: 

O1S1(ino1, outo1, m


)
def

 outo1<m1>.O1S2(ino1, outo1, m


)  

O2S1(ino2, outo2, m


)
def

 ino2(x).([x= m1]0 +  1i
[x= mi] 

O2S1(ino2, outo2, m


)) 

 

Figure 3: Mapping of Creation and Destruction events. 

In the first case, at the beginning there is only the 
process O1S1(ino1, outo1, m


) in execution. This last 

carries the output action “outo1<m1>” that is 
corresponds to the Create Message, then it behaves 
like two parallel processes. One of these last, 
O1S2(ino1, outo1, m


) is corresponding to another state 

on the lifeline of the same object. The other one, 
O2S1(ino2, outo2, m


) is corresponding to the new 

object created. 
In the second case, the process O1S1(ino1, outo1, 

m


) carries the output action “outo1<m1>” that is 
corresponding to the Destruction Message and it 
behaves like another process O1S2(ino1, outo1, m


) 

that is corresponding to another state on the lifeline of 
the object. The process O2S1(ino2, outo2, m


)  waits on 

channel “ino2(x)” for an event “m1”, if it is the case, 
it then evolves to null process “0”. Otherwise, it 
proceeds as itself. 

These two cases reveal some capabilities of the π-
calculus such as the dynamic creation of a process and 
its dynamic destruction, which it is not possible to 
represent in a so natural way in other formalisms. 

4.3 Alternative CombinedFragments 

The alt CombinedFragment (see Fig. 4) represents 
alternative choices of behavior and one of the 
operands will be chosen at most. The chosen operand 
must have an explicit or implicit guard expression 
that evaluates to true to enter it. In this rule, for 
simplicity, we consider that no explicit guard is 
defined at the moment (see interaction constraints 
mapping for explicit guard), thus, we apply an 

ICSOFT-PT�2015�-�10th�International�Conference�on�Software�Paradigm�Trends

90



implicit true guard in the operand. In the π-calculus, 
we use the non-deterministic choice to model the alt 
CombinedFragment. The execution semantics of a 
lifeline “O1” enclosed by an alt CombinedFragment 
is given by the process: 

 

 

Figure 4: Mapping of alt CombinedFragment. 

O1S1(ino1, outo1, m


)

def

  
 ino1(x).([x= m1] O1S2(ino1, outo1, m


) + [x= m2] O1S3(ino1, outo1, m


)  

+   2,1i
[x= mi] O1S1(ino1, outo1, m


)) 

 ino1(x).([x= m1] O1S2(ino1, outo1, m


) + 1i
[x= mi] O1S1(ino1, 

outo1, m


)) + outo1<m2>.O1S3(ino1, outo1, m


) 
 

 outo1<m1>.O1S2(ino1, outo1, m


) + ino1(x).([x= m2] O1S3(ino1, outo1, m


) + 2i
[x= mi] O1S1(ino1, outo1, m


))  

 outo1<m1>.O1S2(ino1, outo1, m


) + outo1<m2>.O1S3(ino1, outo1, m


)   

In the first case, the process O1S1(ino1, outo1, m


) 
waits to receive an event and depending on what is 
received (m1 or m2), it evolves to either O1S2(ino1, 
outo1, m


) or O1S3(ino1, outo1, m


). In the second 

case, the process O1S1(ino1, outo1, m


) waits until it 
receives the message “m1” to proceed to another 
process, or it sends a message “m2” and evolves to 
another process in an alternative way. The third case 
is similar to the second case, because we adopt the 
interpretation of the OMG specification with regard 
to the operands evaluation which assumes that only 
one operand will evaluate to true. Our proposed 
semantics guarantee that no multiple possible 
executions found by using the non-deterministic 

choice. In the last case, the process O1S1(ino1, outo1, 
m


) sends a message “m1” and behaves like O1S2(ino1, 
outo1, m


) or it sends a message “m2” and behaves 

like O1S3(ino1, outo1, m


). 

4.4 Option CombinedFragments 

The opt CombinedFragment (see Fig. 5) represents a 
choice of behavior where either the sole operand 
happens or nothing happens. Thus, we translate it like 
we have proceeded in the alt CombinedFragment 
considering only one operand. The execution 
semantics of a lifeline “O1” enclosed by an opt 
CombinedFragment is given by the process: 

 

Figure 5: Mapping of opt CombinedFragment. 

O1S1(ino1, outo1, m


) 

def

  

 ino1(x).([x= m1] O1S2(ino1, outo1, m


) + 1i
[x= mi] O1S1(ino1, 

outo1, m


)) 

 outo1<m1>.O1S2(ino1, outo1, m


)  

4.5 Loop CombinedFragments 

The loop CombinedFragment (see Fig. 6) is 
composed of only one operand which is repeated a 
number of times limited by a lower and an upper 
value or with no bounds specified. Here, we represent 
the two last cases with a guard that must be evaluated 
to true to enter the operand for simplicity. We 
consider that no explicit guard is defined at the 
moment, thus, we apply an implicit true guard in the 
operand (see interaction constraints mapping for 
explicit guard). In the π-calculus, we use a recursive 
approach to model the loop combinedFragment by 
invoking the parent process O1S1(ino1, outo1, m


) at 

each execution end of the operand. The execution 
semantics of a lifeline “O1” enclosed by a loop 
CombinedFragment is given by the process: 
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Figure 6: Mapping of loop CombinedFragment. 

O1S1(ino1, outo1, m


)
def

  
ino1(x).([x= m1] O1S2(ino1, outo1, m


).O1S1(ino1, outo1, m


) +

 1i
[x=  mi] O1S1(ino1, outo1, m


)) 

 outo1<m1>.O1S2(ino1, outo1, m


).O1S1(ino1, outo1, m


) 

In the first case, the process O1S1(ino1, outo1, m


) 
waits on channel “ino1(x)” to receive an event “m1”,  
it then evolves to another process O1S2(ino1, outo1,  
m


) which in its turn proceeds, after their execution, 
as the parent process O1S1(ino1, outo1, m


). Otherwise, 

if the receipt event is different from “m1”, it proceeds 
as itself. In the second case, the process O1S1(ino1, 
outo1, m


) sends a message “m1”  and evolves to 

another process O1S2(ino1, outo1, m


) which in its turn 
proceeds, after their execution, as the parent process 
O1S1(ino1, outo1, m


).We consider here that the loop 

terminates when the implicit condition evaluates to 
false. 

4.6 Parallel CombinedFragments 

The par CombinedFragment (see Fig. 7) is composed 
of at least two operands that execute in parallel. The 
different events of different operands can be 
interleaved as long as the ordering imposed by each 
operand is preserved. In the π-calculus, we use the 
parallel choice to model the par combinedFragment. 
The execution semantics of a lifeline “O1” enclosed 
by a par CombinedFragment is given by the process: 

O1S1(ino1, outo1, m


)
def

  
ino1(x).([x= m1] O1S2(ino1, outo1, m


) +

1i [x= mi] O1S1(ino1, outo1, 

m


)) |  ino1(y).([y= m2] O1S3(ino1, outo1, m


)+
2i [y= mi] 

O1S1(ino1, outo1, m


)) 

ino1(x).([x= m1] O1S2(ino1, outo1, m


)+
1i [x= mi] O1S1(ino1, outo1, 

m


)) |  outo1<m2>.O1S3(ino1, outo1, m


) 

outo1<m1>.O1S2(ino1, outo1, m


) | ino1(x).([x= m2] O1S3(ino1, outo1, m


)+ 

2i [x= mi] O1S1(ino1, outo1, m


))  

outo1<m1>.O1S2(ino1, outo1, m


) |  outo1<m2>.O1S3(ino1, outo1, m


)   

 

 

Figure 7: Mapping of par CombinedFragment. 

In the first case, the process O1S1(ino1, outo1, m


) 
waits in parallel to receive multiple events (receipt 
events) and depending on what is received (m1 or m2) 
it evolves in parallel to either O1S2(ino1, outo1, m


) or 

O1S3(ino1, outo1, m


). In the second case, the process 
O1S1(ino1, outo1, m


) waits until it receives the 

message “m1” to proceed to another process 
O1S2(ino1, outo1, m


), and in parallel, it sends a 

message “m2” and evolves to another process 
O1S3(ino1, outo1, m


). The third case is similar to the 

second case, because the operands act as parallel. In 
the last case, the process O1S1(ino1, outo1, m


) sends 

a message “m1” and behaves like O1S2(ino1, outo1, m


) and in parallel, it sends a message “m2” and behaves 

like O1S3(ino1, outo1, m


). 

4.7 Interaction Constraints 

An Operand of the CombinedFragment must have an 
explicit or implicit guard expression that evaluates to 
true to enter it. If the operand has no guard, an implicit 
true guard is implied (as in previous sub-sections). If 
none of the operands has a guard that evaluates to 
true, none of the operands are executed and the 
remainder of the enclosing interaction fragment is 
executed. We consider that if there is a guard on a 
CombinedFragment, the lifelines enclosed by it must 
synchronize with the one bearing the guard before 
entering the CombinedFragment. Thus, the execution 
semantics of a lifeline “O1” enclosed by a 
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CombinedFragment and bearing the guard condition 
is given by the behavior of the process: 

O1S1(ino1, outo1, guard1, m


)
def

   

(ν true, false) (
2

n

i
 guard1<true>.O1S2(ino1, outo1, guard1, m


) +    

2

n

i
 guard1<false>.O1S3(ino1, outo1, guard1, m


)) 

And the execution semantics of the other lifelines 
“Oi” (i=2..n) enclosed by the CombinedFragment is 
given by the processes: 

OiS1(inOi, outOi, guard1, m


)

def

 guard1(z).([z=true] OiS2(inOi, outOi, 

guard1, m


)  + [z=false] OiS3(inOi, outOi, guard1, m


)) 

The process corresponds to the lifeline bearing the 
guard evaluates it and sends in parallel to the 
processes corresponding to the other lifelines the 
results of evaluation. These last are waiting to receive 
the evaluation results to behave like processes inside 
or outside the operand. 

4.8 Sequence Diagrams 

We have now all the ingredients to define a π-calculus 
representation for a full sequence diagram using the 
parallel merge of the behavior of different lifelines 
processes as follows:  

SDname 
def

  (ν ds


) jIji, iSO   
OiSj is the process corresponds to the object Oi at the 

state Sj on its lifeline. “ ds


” are different channels 
used. Thus, the behavior of the process corresponds 
to the sequence diagram SDname is given by 
assembling, as a process, the whole system formed by 
a restricted composition of different processes 
correspond to different objects. These last will evolve 
dynamically by message passing between themselves 
until no event is triggered. 

5 VERIFICATION OF SEQUENCE 
DIAGRAMS 

5.1 Mobility Workbench Tool (MWB) 

The mobility workbench MWB (Victor et al., 1994) 
allows the automation of the analysis of π-calculus 
specifications, thus, it can be used for: 

 Model checking of sequence diagrams to check 
the   correctness  from  certain  properties  such  as 

deadlock, livelock…etc. 
 Equivalence checking between different sequence 

diagrams by verifying the equivalence between 
theirs corresponding π-calculus process 
expressions. 

 Interactive simulation of process execution. 

5.2 Example 

Figure 8 presents an example that we have chosen in 
order to show the capabilities of our approach. It 
seems that it is a simple example, but the week 
sequencing leads to non-intuitive meanings of the 
example diagrams. In fact, events that do not belong 
to the same lifeline and they are not related by a path 
of messages can occur independently. This is for 
example the case of “e3” with regard to “e1” and “e2” 
in “SD1”. A message occurs above or below a 
CombinedFragment does not mean necessarily that it 
produced before or after those inside the 
CombinedFragment. This is the case for example of 
“r4” with regard to “r1” and “r3” in “SD2”, but this is 
not the case of “r2” with regard to “r1” and “r3” 
because they share lifelines “B1” and “B2”. In 
addition, due to the weak sequencing, an empty box 
is equivalent to no box. This is for example the case 
of the lifeline “B3”with regard to the alt 
CombinedFragment in “SD2”. Thus, the two 
diagrams have the same behavior. 
 

 
Figure 8: Example of two UML SDs. 

According to the mapping defined above, we 
generate the π-calculus specifications corresponding 
to the two diagrams (Sd1, Sd2). After that, we upload 
them into the MWB tool to start the verification task. 
Figure 9 shows that no deadlocks are found in the two 
diagrams. It indicates also that the two diagrams (i.e. 
theirs π-calculus code) are weak open bisimilar (they 
have the same observed behaviour). The figure, in 
addition, illustrates the ability of the execution 
simulation of a diagram in this tool (i.e. the second 
diagram).  
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Figure 9: Verification results. 

6 CONCLUSIONS 

In this paper we have proposed a systematic mapping 
of UML2 sequence diagrams into the π-calculus 
formalism. We have deliberately taken the choice of 
the π-calculus because besides its rich theory and 
background especially for systems with dynamic 
structures, it is well adapted to capture the 
interleaving semantics of the interactions. This allows 
automatic analysis and verification of these diagrams 
using π-calculus analytic tools such as the mobility 
workbench (MWB). Our approach provides the 
mapping of basic elements as well as the mostly used 
CombinedFragments. The mechanism adopted in the 
mapping is simple and effective. It is a lifeline based-
semantics; this means that the sequence diagram 
behavior is described by the free merge of their 
lifelines behaviors. A lifeline behavior is event-
oriented and we consider two events on the lifelines; 
the receipt event and the send event. By this way, the 
approach gives flexibility and clarity in the 
verification task and each one who would like to use 
our approach could write very expressive properties.  

In our future works, we plan to extend our 
approach by the translation of the rest 
CombinedFragments of sequence diagrams and to 
automate the mapping to maximize the potential 
impact of the work.  
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