
the two measures country by country. Thus our 
approach seems perform chloropleth multimaps. 
To conclude, our geovisualization methods based 
on chorems do not always replace classical 
geovisualization methods of SOLAP tools, but they 
appear useful when dealing with phenomena that can 
be represented as chorems. 
However, usability test should be provided to 
quantify the advantage of using chorem maps 
instead of SOLAP maps. They represent our future 
work. 
6  CONCLUSIONS AND FUTURE 
WORK 
SOLAP systems allow decision-makers to on-line 
explore warehoused spatial data by means of 
SOLAP operators, which aggregate numerical 
indicators, to produce reports composed of pivot 
tables, graphical displays and thematic maps. 
However, when the analysed spatial phenomena are 
complex, advanced geovisualization techniques are 
need. On the other hand, it has been recently shown 
that chorem maps represent an excellent 
geovisualzation technique to summarize and reveal 
hidden spatial phenomena. However, chorem 
systems are based on pre-defined maps, which limit 
potentiality of spatial decision-making process. 
Thus, the goal of this paper is to introduce a 
framework being capable to merge the interactive 
analysis capability of SOLAP systems and the 
potentiality of a chorem-based visual notation in 
terms of visual summary.  
In detail, we propose a set of methods to on-line 
extract and visualize chorems on the top of a SDW. 
We also propose an implementation of our 
framework using a general architecture based on 
standards.  
As future work, we plan to investigate other 
chorems as defined in (Lardon et al., 2005). We also 
plan to define a usability study to evaluate in a 
quantitative way the pro and cons of the usage of 
chorems instead of classical SOLAP 
geovisualization methods from a visualization point 
of view. 
REFERENCES 
Bédard, Y, Rivest, S., Proulx, M-J., 2006. Spatial on-line 
analytical processing (solap): Concepts, architectures, 
and solutions from a geomatics engineering 
perspective, Data Warehouses and OLAP: Concepts, 
Architecture, and Solutions 14, p. 298–319. 
Bimonte, S., 2014. A generic geovisualization model for 
spatial OLAP and its implementation in a standards-
based architecture, Ingénierie des Systèmes 
d'Information, 19(5), p. 97-118. 
Bimonte, S., Kang, M., Trujillo, J., 2013.  
Integration of Spatial Networks in Data Warehouses: 
A UML Profile, ICCSA (4) 2013, p. 253-267. 
Boulil, K., Bimonte, S., Pinet, F., 2015. Conceptual Model 
for Spatial Data Cubes: A UML Profile and its 
Automatic Implementation, journal of Computer 
Standards & Interfaces, 38, p. 113-132. 
Brunet, R., 1986. La carte-modele et les choremes, 
Mappemonde, 4, p. 4–6. 
De Chiara, D., Del Fatto, V., Laurini, R., Sebillo, M., 
Vitiello, G., 2011. A chorem-based approach for 
visually analyzing spatial data, J. Vis. Lang. Comput, 
22(3), p. 173-193. 
Deffontaines J.P., Cheylan J.P., Lardon S., 1990. Gestion 
de l’espace, des pratiques aux modèles, Mappemonde, 
1990/4, 48p.  
Del Fatto V., 2009. Visual Summaries of Geographic 
Databases by Chorems. PhD thesis. 
Del Fatto, V., Laurini, R., Lopez, K., Sebillo, M., Vitiello, 
G., 2008. A chorem-based approach for visually 
synthesizing complex phenomena, Information 
Visualization, 7(3-4), p. 253-26. 
FAO, 2015. http://data.fao.org/statistics. Geomondrian, 
2015. 
http://www.spatialytics.org/fr/projets/geomondrian/ 
Inmon, W., 1992. Building the data warehouse. Wellesley, 
MA, USA. 
Lardon S., Osty P. L., 2000. Time-space dimensions of 
farmers’ practice: methodological proposals from 
surveys and modelling of sheep farming. Case studies 
in Southern Massif Central, France, Fourth European 
Symposium. European Farming and Rural Systems 
Research and Extension into the next Millenium. 
Environmental, Agricultural and Socio-economic 
Issues. 
Lardon S. Piveteau V., 2005. Méthodologie de diagnostic 
pour le projet de territoire: une approche par les 
modèles spatiaux. Géocarrefour: Revue de Géographie 
de Lyon, 80(2), p. 75–90. 
Lebourg, M-N., Lardon, S., Cot, C., De Nayer, A., 
Lacroix, C., Dumont, A., 2014. La méthode de 
diagnostic partagé: comprendre et analyser un 
territoire avec les représentations spatiales 
schématiques pour produire le «Dire de l’État», 
AgroParisTech Clermont-Ferrand et DREAL Poitou-
Charentes. 
MacEachren A, Gahegan M, Pike W., 2004. 
Geovisualization for Knowledge Construction and 
Decision Support, IEEE Comput. graphics and appl., 
24(1), p. 13-17. 
Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H., 
2006. Challenges in visual data analysis, Information 
Visualization (IV 2006), IEEE Press. 
AFirstFrameworkforMutuallyEnhancingChoremandSpatialOLAPSystems
47