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Abstract: A directional testing model of space block is studied for effective utilization of optical equipment as 
theodolite, which gives out the influencing range of testing error on the calculated results. Thus, gists for 
guaranteeing actual measuring accuracy and improving testing efficiency are provided. And, the open 
question in accurate measurement of space block direction can be solved. In this paper, angular information 
of two different marker points on space block are used for directional testing, through which a partial 
derivative based error propagation model is built. The rationality and credibility of this model is verified by 
Monte Carlo simulation. Besides, its calculation results are validated through conventional variance test 
method in the end. The validation results indicate the rationality and credibility of the partial derivative 
based error propagation model. The error propagation model can be used to study measuring error 
distributions on different areas of space block, which lays a firm foundation for optimizing measuring 
stations distribution, and guarantees measure precision. 

1 INTRODUCTION 

Research on error modeling and directional testing 
of space block is primarily focus on measurement 
calculation of accurate space block axis direction 
and its error propagation model, which is significant 
for precision measurement. And takes on wide 
applied range. For example, initial azimuth angle 
alignment and maintainance for high accuracy 
inertial navigation system (INS) require adjusting, 
assessment and calibration on the system. Besides, 
as to some long range ground-based weapons with 
indirect aiming, their shooting accuracy depend 
directly on loaded initial azimuth data and 
corresponding calibrated azimuth directional 
accuracy. 

In this paper, the 'space body' refers to the 
system that has higher directional requirements. 
Such as the gun barrel axis direction of remote 
launched weapon system, the axis direction of 
guided weapon with inertial navigation system, the 
different parts of ship stitched in accordance with 
the accurate direction, the different parts of bridge 
connected in accordance with the accurate direction, 
etc. The direction testing of these systems is mainly 

done by measuring the direction of its axis. 
Direction testing for space block axis are 

generally divided into contact and non-contact types, 
each with corresponding measuring method. As for 
non-contact testing type, double theodolites based 
(Zeng and Lai, 2011) and unit-set total station based 
(Zeng et al, 2013) measuring methods are 
frequently-used at present. Some double theodolites 
based measuring methods bring range information 
into angle calculation (Shi, 2014). 

In most case, space blocks are vehicle-mounted 
or ship-based, whose azimuth pointing direction can 
not be given out directly by high precision 
orientation equipment as turntable. Therefore, 
measurement and calibration of high precision 
azimuth pointing direction could only be obtained 
through non-contact testing with optical equipments 
as theodolite. In pointing direction testing of space 
block, factors as electromagnetic environment, 
installation site, movement process, even 
atmospheric environment on carrier platform have 
effects on testing results. 

Conventional measuring methods for 
propagating errors include derivative propagation 
method and Monte Carlo method. Conventional 
derivative algorithm takes on different 
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computational efficiency for different angel measure 
model. Statistical based Monte Carlo method is 
suitable for problems difficult to analytical method 
(Shang and Yang, 2009), whose merits include 
immune to system complexity and unrestricted by 
probability distribution types (Liu and Zhao, 2013). 
Although it can improve computational efficiency 
under limited calculation counts(Zhang et al, 2010), 
certain stochastic bias would always exit compared 
to result of  derivative propagation model, which 
restricts its application on systems requiring high 
precision measurement. 

In actual testing process, there are many errors 
influencing test results, such as theodolite precision 
(Fang et al, 2013), tri-axial mechanical error in 
machining and installation (Li and Wang, 2010), 
shaft encoder error, human operation error, etc. So, 
no matter in Monte Carlo simulation or in partial 
derivative error propagation calculation, rational 
error source choice is of vital importance. 

Common used method in test scheme selection is 
to choose an optimal specific station site (Zhang et 
al, 2011). In actual testing process, when optimized 
station distribution regions for different working 
conditions of system under test are given out, we 
just need to select station site on the public area. In 
this way, frequent setting up of instruments is 
avoided, which not only guarantees measure 
precision, but also improves working efficiency. 

In conclusion, a directional testing model of 
space block for effective utilization of optical 
equipment as theodolite would be studied in this 
paper, which would give out the error influencing 
model for making rational testing scheme, reducing 
error influence and realizing high precision 
measurement. Thus, pointing direction measurement 
model of space block and corresponding error 
propagation model are built, whose simulation 
model are realized by object-oriented programming 
language C++. The rationality of error propagation 
model is demonstrated through simulation, which 
provides some basis for further research. 

2 DOUBLE-THEODOLITES 
BASED MEASURING METHOD 

Directional testing of space block is basically 
angular variation measurement of a spacial line 
segment between start and stop position, which can 
be classified into contact and non-contact types. 
Contact measurement can be realized through 
turntable or installed high precision INS, and setting 

up theodolite directly on space block can also be 
used. 

In order to solve the disadvantages in contact and 
non-contact types of measurement, we take full 
advantage of angle information from non-contact 
double theodolites intersection measurement to build 
angle calculation model without distance parameter. 
In addition, the corresponding error propagation 
model is studied, whose calculated results are used 
to prove the feasibility and rationality of the built 
model. 

2.1 Angle Calculation Model  

With known connection line of two theodolites and 
pointing direction of standard base line, directional 
information of space block can be obtained from its 
azimuth and elevation angles relative to base line of 
theodolites. As shown in Figure 1, theodolite 1 
should measure azimuth angles 1 , 2 and elevation 

angles 1 , 2  on maker points a, b. While theodolite 

2 should measure azimuth angles 1 , 2  on maker 

points a, b. Thus, the calculation model can be 
described as follows: model inputs include 
theodolites measured angles 1 , 2 , 1 , 2 , 1 , 

2  on maker points, while model outputs include 

azimuth angle  and elevation angle  of space 
block to theodolites base line. 

 

Figure 1: Schematic diagram of azimuth and elevation 
angle calculation. 

Calculation model:  

1y =  1122 tantantantan     

2y =  2211 tantantantan     

3y = 2121 tantantantan     

a = )arctan(
3

21

y

yy 
 (1)

 

1x =  1122 sintansin     

2x =  2211 sintansin     

3x =  22
2

1
2 sinsin     
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xxxx
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
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Where a  denotes Azimuth angle of space block.    
denotes elevation angle of space block. 

2.2 Calculation Model Validation 

Pointing direction of vehicle-mounted space block is 
measured and calculated with this method, where 
some vehicle takes on INS. Comparing the 
calculated azimuth and elevation angles with those 
given by direction-finding system (as shown in 
Table 1 and Table 2), we can see that the calculation 
results meet the requirement, which indicates the 
rationality of the built angel measure model. 

Table 1: Comparison of azimuth angles from calculation 
model and direction-finding system. 

No. 
X1 

(mrad) 
X2 

(mrad) 
error  

(mrad) 
1 5782.353 5782 0.353 
2 5332.291 5332 0.291 
3 232.468 232 0.468 
4 232.587 232 0.587 

 

In Table 1, X1 is calculated azimuth pointing direction of 
space block. X2 is pointing direction of vehicle-mounted 
direction-finding system. 

Table 2: Comparison of elevation angles from calculation 
model and direction-finding system. 

No. 
X3 

(mrad) 
X4 

(mrad) 
error  

(mrad) 
1 890.707 890 0.707 
2 890.674 890 0.674 
3 750.024 750 0.024 
4 890.022 890 0.022 

 

In Table 2, X3 is calculated elevation pointing 
direction of space block. X4 is pointing direction of 
vehicle-mounted direction-finding system. 

3 ERROR PROPAGATION 
CALCULATION MODEL 

Thus, we establish the angel measure model and 
corresponding measuring method for pointing 

direction of space block based on non-contact type 
of method with double-theodolites, which is mainly 
used in pointing direction testing of space block with 
complex carrier platform. In actual testing process, 
system software control precision and hardware 
factors as carrier motion state, atmospheric 
environment, electromagnetic environment, servo 
system precision of carrier platform, sensor 
accuracy, backlash, base-ring deformation influence 
measurement precision for pointing direction of 
space block. Meanwhile, influences of theodolite 
error and pointing error on measurement precision 
are not negligible. All the influencing factors are 
displayed through space block pointing direction 
error of measurement calculation model.  
Determining the induced error of different 
influencing factors on pointing direction of space 
block is an important problem for precision 
measurement of pointing direction, which also plays 
an important role in subsequent research on optimal 
station distribution. As to optimizing of station 
distribution scheme, optimum seeking of a specific 
station site is a common used method. By now, no 
literature has been found on how to get a feasible 
station distribution region with satisfied precision 
according to error distribution range.  

On above-mentioned conditions, corresponding 
angel measure model is built first in this paper. 
Then, relevant error model is studied on its 
scientificity and rationality in simulation, which lays 
a solid foundation for subsequent study on error 
distribution range, Thus, it provides good pre-study 
for choosing a big enough station distribution area 
under required precision. 

3.1 Random Error Propagation 
Calculation of Azimuth Angle 

In equation (1), let 

Y

X
A tan  . 

Where X is numerator, Y is denominator. 
Taking partial derivatives, the results are shown 

in the following: 
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Substituting above results into error propagation 
expression, we get equation (3). 

2
4

2
3

2
2

2
1 2121     (3)

Where, 0.0116 mrad are taken for
1 , 2 , 

1 ,
2 . 

Where  denotes azimuth error calculated by 

partial derivative model. 

3.2 Random Error Propagation 
Calculation of Elevation Angle 

In equation (2), let 

Y

X
A tan  

Where X is numerator, Y is denominator. 
Taking partial derivatives, the results are shown 

in the following: 
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Substituting above results into error propagation 
expression, we get equation (4). 
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2
1 212121     (4)

Where, 0.0116 mrad are taken for
1 ,

2 ,
1  , 

2 ,
1 ,

2 . 

Where  denotes elevation error calculated by 

partial derivative model; 

4 MONTE CARLO SIMULATION 

Partial derivative based error propagation model 
describes the error transmission in calculation 
model, which causes influence on model outputs by 
computing process. It takes on concise form, and 
theoretically should be the expected value after an 
infinite number of actual testing. So, it is impractical 
to validate the error propagation model through 
limited actual measurements. Besides, the 
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calculation model takes on 6 input variables, whose 
combination modes are extremely complicated in 
actual working process. Therefore, model validation 
is very difficult. In this paper, we use Monte Carlo 
method to validate the rationality and scientificity of 
error propagation model. It takes on wide 
universality and uses direct simulation, which is 
very suitable for problem difficult to analytical 
method. 

4.1 Working Steps of Monte Carlo 
Method 

The working steps of Monte Carlo are following: 
(1) Simulating sufficient large size of normal 

distributed observed value of theodolite. 
(2) Substituting the simulated data into pointing 

direction calculation model of space block to get the 
corresponding elevation and azimuth angles, 
calculating the statistical results of azimuth 
propagation error and elevation propagation error. 

(3) Validating error propagation calculation 
model. 

4.2 Analysis of Model Input Error 

Many error sources influence measurement 
calculation results in this method. For example, 
common used electronic theodolite in actual testing 
has many errors influencing test results, such as 
mechanical errors in machining and installation of 
vertical axis, pitch axis, and optical axis, shaft 
encoder error, human operation error, etc. Generally, 
precision of measurement results is mainly 
determined by theodolite accuracy. 

Therefore, error sources having major influence 
on model input and general character are selected, 
such as angel measure error of theodolite, centering 
alignment error and sighting error.  

Table 3: Error sources and their distribution law. 

No. 
Error source  Distribution law Standard 

deviation 

1 1  Normal 
distribution 

2.5" 

2 2  
Normal 

distribution 
2.5" 

3 1  
Normal 

distribution 
2.5" 

4 2  
Normal 

distribution 
2.5" 

5 1  
Normal 

distribution 
2.5" 

6 2  
Normal 

distribution 
2.5" 

Generally, angel measure error of theodolite is 
2", centering alignment error and sighting error is 
1.5", whose composite error is shown in the 
following expression. 

 = 22 5.12  =2.5" 

Model inputs are constructed according to above 
distribution law and statistic character of error 
source. Then calculation model (1), (2) are used to 
carry out Monte Carlo simulations from 1 to 780. 
So, statistical calculation for propagated error of 
azimuth and elevation angles can be obtained 
serially. Under same calculation conditions, 
propagated error of azimuth and elevation angles can 
also be calculated from the built error propagation 
model. Thus, we can make a comparison for two 
calculation results. 

Calculation example 1: vertical distance of 
theodolites is 3m, with 4m lateral deviation to the 
right, the calculating results for propagated error of 
azimuth and elevation angles when Monte Carlo 
simulation runs up to 780 times. 

Table 4: Calculating results of calculation example 1. 

Model 1 Model 2 

1 10 50 100 500 780 

0.023 0.019 0.02 0.025 0.023 0.024 

0.044 0.065 0.039 0.045 0.043 0.044 
 

Calculation example 2: vertical distance of 
theodolites is 3 m, with 4 m lateral deviation to the 
left, the calculating results for propagated error of 
azimuth and elevation angles when Monte Carlo 
simulation runs up to 780 times. The first line is 
elevation angle calculation results, the second line is 
azimuth angle calculation results, and both units are 
mrad. 

Table 5: Calculating results of calculation example 2. 

Model 1 Model 2 

1 10 50 100 500 780 

0.025 0.024 0.028 0.024 0.024 0.025 

0.031 0.022 0.035 0.029 0.032 0.032 
 

In Table 4 and Table 5, Model 1 is partial derivative 
based error propagation model. Model 2 is Monte 
Carlo model. The second line is counts of 
calculation. The third line is elevation angle 
calculation results, the fourth line is azimuth angle 
calculation results, and both units are mrad. It can be 
seen from Table 4 and Table 5 that with the increase 
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of Monte Carlo simulation times, the calculated 
propagated error approaches the result of partial 
derivative based error propagation model. Some 
results are in accordance with those of partial 
derivative based error propagation model, while 
some show certain fluctuation. As in Table 4, 
propagated error of elevation angles with 780 times 
simulation is 0.024, yet partial derivative based error 
propagation model gives 0.023. Namely, there exists 
minor difference. In the following, we proceed with 
credibility analysis of above-mentioned two models, 
and proving the rationality of partial derivative 
based error prorogation calculation model. 

5 RESULTS CALCULATION AND 
ANALYSIS OF TWO MODELS 

Since it is inefficient and impractical to validate the 
rationality of partial derivative based error 
propagation model with large numbers of actual test, 
Monte Carlo model for error propagation is built. 
According to statistical property of Monte Carlo 
method, high credible results can be obtained with 
large enough size of simulation tests. That is, its 
consistency to partial derivative based error 
propagation model can be checked by certain 
numbers of Monte Carlo simulations. So, the 
rationality of partial derivative based error 
propagation model can be validated. Thus, the 
problem is summarized into consistency check for 
calculation results of Monte Carlo model and partial 
derivative based error propagation model under 
certain confidence level, where they belong to same 
population with unknown mean and variance. 

5.1 Chi-square Test for Two Error 
Propagation Models 

Suppose X1, X2, ... Xi represent actual measured 
values or calculated values in Monte Carlo 
simulation.  X denotes samples following normal 
distribution N(μ, σ2), X and 2

S are sample mean and 

variance respectively, construct following statistics. 

2 =
2

2)1(






Sn 

 

2

2)1(






Sn 

～ )1(2 n  

Where aS  denotes propagation error calculated by 

Monte Carlo simulation.  denotes propagated 

azimuth error calculated by partial derivative based 
error propagation model. Then the problem can be 
describes as follows: for a given confidence level 1-

α, rejection region W:    2  2

2
a or 2  2

21 a
  

Hypothesis testing H:   whether =   
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21
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2

2
aaP


   =a 

Where  denotes propagated azimuth error 

calculated by error propagation model.  denotes 
overall propagation error calculated by simulation 
samples (i.e. standard deviation of population). 

Hypothesis testing for elevation propagation 
error can be carried out according to that of azimuth 
angle. Chi-square tests for propagated error of 
azimuth and elevation angles in calculation example 
1 are realized according to methods introduced 
above. With a given confidence level 1-α = 0.99, 
statistics and its rejection region are calculated from 
simulation counts 2 to 781. Sequences L1 and L3 in 
Figure 2 and Figure 3 are curves corresponding to 
simulation counts, where rejection region lies above 
L1 and below L3. 
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Figure 2: Chi-square test results for propagated error of 
simulated azimuth angle under confidence level 99%. 
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Figure 3: Chi-square test results for propagated error of 
simulated elevation angle under confidence level 99%. 
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Chi-square test statistics and rejection region 
under confidence level 99% are shown in Figure 2 
and Figure 3, where horizontal axis represents 
simulation counts, and vertical axis represents value 
of Chi-square statistics. Sequence L2 is Chi-square 
statistics under test, L1 and L3 are boundaries of 
rejection region, as shown in Figure 2 and Figure 3. 
L2 lies between L1 and L3, namely outside rejection 
region, so we can take  =  . The same results can 

be obtained for propagated error of simulated 
elevation angle. 

5.2 Propagated Error Variation Range 
Analysis of Two Models 

According to above-mentioned results, 
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Thus, we can get the confidence interval of aS  
under confidence level 1-α = 0.99: 


























)1(

)1(

)1(

)1( 22

21
2

2

n

n

n

n aa 



  

Table 6: Calculating results of calculation example 3. 

Project 
name 

Monte Carlo simulation (counts) 

10 50 100 500 780 

Azimuth lower 
limit 

0.009 0.024 0.029 0.037 0.038 

Azimuth upper 
limit 

0.110 0.069 0.061 0.051 0.049 

Elevation lower 
limit 

0.003 0.126 0.015 0.019 0.020 

Elevation upper 
limit 

0.066 0.037 0.032 0.027 0.026 

 

Calculation example 3, given 1-α = 0.99, confidence 
interval to different simulation counts are calculated 
for calculation example 1 according to above 

method, whose results are shown in Figure 4 and 
Figure 5.  

The calculation result unit of Table 6 is mrad.  
According to confidence intervals of azimuth and 
elevation angles for calculation example 1 under 
different simulation counts given in Table 6, we can 
see that the calculated propagation error by Monte 
Carlo simulation in Table 4 lie in confidence 
interval. 

In Figure 4 and Figure 5, horizontal coordinates 
denote simulation counts, vertical coordinates 
denote propagated error (expressed with mean 
square error), upper curve (sequence L1)  and  lower 
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Figure 4: Simulation results comparison for propagated 
error of azimuth angle under confidence level 99%. 
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Figure 5: Chi-square test results for propagated error of 
simulated elevation angle under confidence level 99%. 

curve (sequence L3) are boundaries of confidence 
interval, middle line (sequence L4) is result 
calculated by partial derivative based error 
propagation model, scatter diagram (sequence L2) is 
propagation error corresponding to different 
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simulation counts. 
Propagated error of azimuth and elevation angle 

from Monte Carlo simulation and partial derivative 
based model are shown in Figure 4 and Figure 5, 
where boundary changes for calculation results of 
Monte Carlo simulation are also given out. The 
following conclusions can easily be drawn from 
Figures: the calculated propagation error from 
Monte Carlo simulation will tend to that of partial 
derivative based error propagation model as 
simulation counts increase; the calculated 
propagation error from Monte Carlo simulation 
always lie in confidence interval; values in 
confidence interval tend to those calculated by 
partial derivative based error propagation model 
with increment of simulation counts. Obviously, the 
calculated values from Monte Carlo simulation and 
partial derivative based model take on consistency. 
AS uncertainties always exist in Monte Carlo 
simulation, and high precision system requires both 
accuracy and consistency for calculation results. So, 
the more simulation counts, the better calculation 
results we can obtain from Monte Carlo method. 
Above Figures show that under confidence level 
99%, confidence interval gets short with increase of 
simulation counts. That is upper and lower 
boundaries of propagation error from Monte Carlo 
simulation converge to partial derivative based 
calculation value, which further demonstrates the 
rationality and credibility of the built partial 
derivative based  error propagation model. 

6 CONCLUSIONS 

Although Monte Carlo method takes on good 
operation, its calculation results have some 
uncertainty. While precision requirement of system 
under test is high, we need a propagated error 
calculation result with good consistency and high 
precision. So, thousands of simulating calculation is 
impracticable. The partial derivative based error 
propagation model built in this paper improves 
computational efficiency under required error 
propagation precision, whose rationality is validated 
by Monte Carlo simulation. 

In this paper, we studied a double-theodolites 
based non-contact pointing direction measuring and 
calculation method of space block, and built a partial 
derivative based error propagation model. Also, 
Monte Carlo statistical test method is used in error 
propagation modelling, which also validates the 
rationality of the established partial derivative based 
error propagation model. The results show that the 

partial derivative based model takes on high 
credibility, which provides basis for further research 
on calculated pointing direction error distribution of 
space block. Thus, it can be used in high precision 
directional testing of space block. 
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