
REFERENCES 
Blum, C. (2005). Ant colony optimization: Introduction and 
recent trends. Physics of Life Reviews, 2(4), 353-373.  
Chang, G. W., Aganagic, M., Waight, J. G., Medina, J., 
Burton, T., Reeves, S., & Christoforidis, M. (2001). 
Experiences with mixed integer linear programming 
based approaches on short-term hydro scheduling. 
Power Systems, IEEE Transactions on, 16(4), 743-749.  
Chang, S.-C., Chen, C.-H., Fong, I.-K., & Luh, P. B. (1990). 
Hydroelectric generation scheduling with an effective 
differential dynamic programming algorithm. Power 
Systems, IEEE Transactions on, 5(3), 737-743.  
Dayhoff, J. E. (1990). Neural network architectures: an 
introduction: Van Nostrand Reinhold Co. 
Finardi, E. C., Silva, E. L. d., & Sagastizábal, C. (2005). 
Solving the unit commitment problem of hydropower 
plants via Lagrangian relaxation and sequential 
quadratic programming. Computational & applied 
mathematics, 24(3), 317-342.  
Fogel, D. B., & Fogel, L. J. (1996). An introduction to 
evolutionary programming. Paper presented at the 
Artificial Evolution. 
Franco, P., Carvalho, M., & Soares, S. (1994). A network 
flow model for short-term hydro-dominated 
hydrothermal scheduling problems. Power Systems, 
IEEE Transactions on, 9(2), 1016-1022.  
Garcia-Gonzalez, J., & Castro, G. A. (2001). Short-term 
hydro scheduling with cascaded and head-dependent 
reservoirs based on mixed-integer linear programming. 
Paper presented at the Power Tech Proceedings, 2001 
IEEE Porto. 
García-González, J., Parrilla, E., & Mateo, A. (2007). Risk-
averse profit-based optimal scheduling of a hydro-chain 
in the day-ahead electricity market. European Journal 
of Operational Research, 181(3), 1354-1369.  
Hwang, C.-R. (1988). Simulated annealing: theory and 
applications. Acta Applicandae Mathematicae, 12(1), 
108-111.  
Kennedy, J. (2010). Particle swarm optimization 
Encyclopedia of Machine Learning (pp. 760-766): 
Springer. 
Mariano, S., Catalao, J., Mendes, V., & Ferreira, L. (2007). 
Profit-based short-term hydro scheduling considering 
head-dependent power generation. Paper presented at 
the Power Tech, 2007 IEEE Lausanne. 
Martinez Ramos, J., Lora, A. T., Santos, J. R., & Expósito, 
A. G. (2001). Short-term hydro-thermal coordination 
based on interior point nonlinear programming and 
genetic algorithms. Paper presented at the Power Tech 
Proceedings, 2001 IEEE Porto. 
Meng, K., Wang, H. G., Dong, Z., & Wong, K. P. (2010). 
Quantum-inspired particle swarm optimization for 
valve-point economic load dispatch. Power Systems, 
IEEE Transactions on, 25(1), 215-222.  
Mezger, A. J., & de Almeida, K. C. (2007). Short term 
hydrothermal scheduling with bilateral transactions via 
bundle method. International Journal of Electrical 
Power & Energy Systems, 29(5), 387-396.  
Moscato, P. (1993). An introduction to population 
approaches for optimization and hierarchical objective 
functions:  A discussion on the role of tabu search. 
Annals of Operations Research, 41(2), 85-121.  
Park, J.-B., Jeong, Y.-W., Shin, J.-R., & Lee, K. Y. (2010). 
An improved particle swarm optimization for 
nonconvex economic dispatch problems. Power 
Systems, IEEE Transactions on, 25(1), 156-166.  
Shiina, T., & Watanabe, I. (2004). Lagrangian relaxation 
method for price-based unit commitment problem. 
Engineering Optimization, 36(6), 705-719.  
Victoire, T. A. A., & Jeyakumar, A. E. (2004). Hybrid 
PSO–SQP for economic dispatch with valve-point 
effect. Electric Power Systems Research, 71(1), 51-59.  
Whitley, D. (1994). A genetic algorithm tutorial. Statistics 
and Computing, 4(2), 65-85.  
Wood, A. J., & Wollenberg, B. F. (2012). Power 
generation, operation, and control: John Wiley & Sons. 
ParticleSwarmOptimizationofEconomicDispatchProblem:ABriefReviewTransfer
77