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Abstract: The aim of this paper is to propose a new algorithm for Web services ranking. The proposed algorithm relies
on a tree data structure that is constructed based on the scores of Web services. Two types of scores are
considered, which are computed by respectively selecting the edge with the minimum or the edge with the
maximum weight in the matching graph. The construction of the tree requires the successive use of both
scores, leading to two different versions of the tree. The final ranking is obtained by applying a pre-order
traversal on the tree and picks out all leaf nodes ordered from the left to the right. The performance evaluation
shows that the proposed algorithm is most often better than similar ones.

1 INTRODUCTION successive use of both scores, leading to two differ-
ent versions of the tree. The final ranking is obtained
Although the semantic matchmaking (Paolucci et al., by applying a pre-order traversal on the tree and picks
2002; Doshi et al., 2004: Bellur and Kulkarni, 2007; out all the leaf nodes ordered from the left to the right.
Fu et al., 2009; Chakhar, 2013; Chakhar et al., 2014;  The rest of the paper is organized as follows. Sec-
Chakhar et al., 2015) permits to avoid the problem tion 2 provides a brief review of Web services match-
of simple syntactic and strict capability-based match- ing. Section 3 shows how the similarity degrees are
making, it is not very suitable for efficient Web ser- computed. Section 4 presents the Web services scor-
vice selection. This is because it is difficult to distin- ing technique. Section 5 details the tree-based rank-
guish between a pool of similar Web services (Rong ing algorithm. Section 6 evaluates the performance
etal., 2009). of the proposed algorithm. Section 7 discusses some
A possible solution to this issue is to use some related work. Section 8 concludes the paper.
appropriate techniques and some additional informa-
tion to rank the Web services delivered by the seman-
tic matching algorithm and then provide a manage-
able set of ‘best’ Web services to the user from which 2 MATCHING WEB SERVICES
s/he can select one Web service to deploy. Several ap-
proaches have been proposed to implement this idealThe main input for the ranking algorithm is a set of
(Manikrao and Prabhakar, 2005; Maamar et al., 2005; Web services satisfying the user requirements. In
Kuck and Gnasa, 2007; Gmati et al., 2014; Gmati this section, we briefly review three matching algo-
et al., 2015). rithms that can be used to identify this set of Web
The objective of this paper is to introduce a new services. These algorithms support different levels of
Web services ranking algorithm. The proposed al- customization. This classification of matching algo-
gorithm relies on a tree data structure that is con- rithms according to the levels of customization that
structed based on the scores of Web services. Twothey support enrich and generalize our previous work
types of scores are considered, which are computedin (Chakhar, 2013; Chakhar et al., 2014; Gmati et al.,
by respectively selecting the edge with the minimum 2014; Gmati et al., 2014).
or the edge with the maximum weight in the match- In the rest of this paper, a Web servige defined
ing graph. The construction of the tree requires the as a collection of attributes that describe the service.
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A Tree-based Algorithm for Ranking Web Services

Let SA denotes the set of attributes of serviand allow this, we use the concept of Attributes List that
S.A denotes each member of this set. 58 denotes  serves as a parameter to the matching process. An

the cardinality of this set. Attributes List, L, is a relation consisting of one at-
tribute, L.A that describes the service attributes to be
2.1 Trivial Matching compared. Let.A; denotes the service attribute value

in theith tuple of the relationL.N denotes the total

The trivial matching assumes that the user can spec-"umber of tuples irL.. We assume that the order of
ify only the functional specifications of the desired attributes inL is randomly specified.

service. LetS® be the Web service that is requested, Let Sh be the service that is request_(sﬁ\, be the
and<? be the Web service that is advertised. A suffi- Service that is advertised, ahde an Attributes List.
cient trivial match exists betwee® andS” if for ev- A sufficient partially parameterized match exists be-

ery attribute inSR A there exists an identical attribute  tweenS® andS* if for everyattribute inL.A there ex-
of S*.A and the similarity between the values of the ists an identical attribute @& andS" and the similar-

attributes does not fail. Formally, ity between the values of the attributes does not fail.
Formally,
Vi3 (A =S A)AURA =S A)) = Fail
= éuﬁTriviaIMatc;h(SQ.S“) 1<i §J§.N. @) Vidj k(LA = A = LAY AP A, S A - Fall 2)

= SuffPartiallyParamMatofs?,S") 1<i<L.N.
where:p(SLA;, SRA)) (j=1,---,N) is the similarity
degree between the requested Web service and the a
vertised Web service on thieh attributeA;. Accord-
ing to this definition, all the attributes of the requested
serviceS should be considered during the matching ]
process. This is the default case with no support of
customization.
The trivial matching is formalized in Algorithm1. . Ajoorithm 2: Partially Parameterized Matching.
This algorithm follows directly from Sentence (1).

chcording to this definition, only the attributes spec-
fied by the user in the Attributes List are considered
during the matching process.

The partially parameterized matching is formal-
d in Algorithm 2 that follows directly from Sen-
tence (2).

Input : R, // Requested service.
S\, // Advertised service.

Algorithm 1: Trivial Matching. L, // Attributes List.
1 [h!] Output: Boolean, // fail/success.
Input : SR, // Requested service. 1 while (i < L'N) do
S, I/ Advertised service. 2 Wh'le‘ (I <$N)do
Output: Boolean, // fail/success. s if (STA) =LA) then
2 while (i < §'N) do 4 |_ AppendStA| to rAttrSet;
3 AppendSR A to rAttrSet; 5 je—j+1;
hile (k< $*.N) d -~

4 | white (k< S'N) do 6 | while (k< S'N)do

5 if (S*Ac=SA) then ;

6 | Appendsh.A, to aAttrSet; ! if ($.Ac=LA) then

’ ’ 8 |_ AppendS*. A, to aAttrSet;

7 k«—k+1; 0 K kil

g L et 10 Pi—it1;

i < -
1?) Wh"eif(t _rs:t i\lr)sti?[t] aAttr Set [t]) = Fail) then 11 while (t < L.N) do
(ot ot - 12| if (urAttrSet[t],aAttr Set [t]) — Fail) then
11 |_ return fail; )
13 |_ return fail;
12 te—t+1;
— 14 t+—t+1;

13 return success;
15 return success;

The definition of the semantic degrees used in

Sentence (1) and Algorithm 1 (and also in the two 2.3 Fully Parameterized Matching
other matching algorithms presented later) is given in

Section 3. The fully parameterized matching supports three cus-
) ) ) tomizations by allowing the user to specify: (i) the list
2.2 Partially Parameterized Matching of attributes to be considered:; (i) the order in which

these attributes are considered; and (iii) a desired sim-
In this case, the user can specify the list of attributes ilarity degree for each attribute. In order to support all
to consider during the matching process. In order to the above-cited customizations, we used the concept
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of Criteria Table, introduced by (Doshi et al., 2004). 3.1 Similarity Degree Definition

A Criteria TableC, is a relation consisting of two
attributes,C.A andC.M. C.A describes the service A semantic match between two entities frequently in-
attribute to be compared, a@dM gives theleastpre-  volves a similarity degree that quantifies the semantic

ferred similarity degree for that attribute. L@t and  distance between the two entities participating in the
C.Mi denote the service attribute value and the desired match. The similarity degreg(-, -), of two service at-

)

degree in théth tuple of the relationC.N denotes the  tributes is a mapping that measures the semantic dis-

total number of tuples i€. tance between the conceptual annotations associated
Let S? be the service that is request&, be the  with the service attributes. Mathematically,

service that is advertised, adtbe a Criteria Table.

A sufficient fully parameterized match exists between | ;: AxA—  {Exact, Plug-in, Subsumption, Container,

St andS? if for everyattribute inC.A there exists an Part-of, Fai}

identical attribute oSR andS" and the values of the whereA is the set of all possible attributes. The

attributes satisfy the desired similarity degree as SPEC-yefinitions of the mapping between two conceptual

ified inC.M. Formally, annotations are given in (Doshi et al., 2004; Chakhar,
Vidjk(CA = STA;] = SLA) AUSTA; SV A) ZCM; ©) 2013; Chakhar et al., 2014).
= SuffFullyParamMatctfs?, %) 1<i<C.N. A preferential total order is established on the
According to this definition, only the attributes speci- above mentioned similarity maps: ExaetPlug-in
fied by the user in the Criteria Tabzare considered - Subsumption- Container~ Part-of~ Fail; where
during the matching process. The fully parameterized a - b means thaa is preferred oveb.
matching is formalized in Algorithm 3 that follows

directly from Sentence (3). 3.2 Similarity Degree Computing

Algorithm 3: Fully Parameterized Matching.

Input : R, // Requested service.
S*, /I Advertised service.

To compute the similarity degrees, we generalized
and implemented an idea proposed by (Bellur and

C. /I Criteria Table. Kulkarni, 2007). This idea starts by constructing a bi-

Output: Boolean, // fail/success. partite graph where the vertices in the left side corre-
1 while (i <C.N) do spond to the concepts associated with advertised ser-
2 while (j < $¥.N) do vices, while those in the right side correspond to the
3 if (ST.Aj =C.A)) then concepts associated with the requested service. The
4 L Appends*A; to rAtrSet; edges correspond to the semantic relationships be-
5 | it tween concepts. The authors in (Bellur and Kulka-
6 while (k < $*.N) do rni, 2007) assign a weight to each edge and then ap-
7 if (S*.Ac=C.A) then ply the Hungarian algorithm (Kuhn, 1955) to iden-
8 | Appends A, to aAttrSet tify the complete matching that minimizes the maxi-
9 | ke—k+1; mum weight in the graph. The final returned degree is
10 DET the one corresponding to the maximum weight in the
11 while (t <C.N) do graph. . . .
12| if (u(rAttrSet [t],aAttr Set [t]) < C.My) then We generalize this idea as follows. Let first as-
13 | retum fail sume that the output of the matching algorithm is a
" el list mServices of matching Web services. The generic

structure of a row ilmServices is as follows:

(LS ALS A, - WS A SR AN)),

The complexity of the matching algorithms are where: S is an advertised Web serviceR is
detailed in (Gmati, 2015). the requested Web servidd,the total number of at-
tributes anqu(S*.Aj, SRA)) (j = 1,---,N) is the sim-
ilarity degree between the requested Web service and

3 SIMILARITY DEGREE the advertised Web service on tfta attributeA,.
COMPUTING APPROACH Two versions can be distinguished for the defi-

nition of the listmServices, along with the way the
In this section, we first define the similarity degree Similarity degrees are computed. The first version of
used in the matching algorithms and then discuss howMServices is as follows:
it is computed. (S, Hmax(SH AL SRAL, -, max(S AN, STAN)),

15 return success;
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where: §*, SR andN are as defined above; and This normalization procedure assigns to each adver-
Hmax(S A, SRA)) (j=1,---,N) is the similarity de-  tised Web serviceS® the percentage of the extent
gree between the requested Web service and the adef the similarity degrees scale (i.e., max(S¢) —
vertised Web service on thj¢h attributeA; computed mink p.(SX)). It ensures that the scores cover all the

by selecting the edge with theaximum weight in range [0,1]. In other words, the lowest score will be
the matching graph. equal to 0 and the highest score will be equal to 1. We
The second version afiServices is as follows: note that other normalization procedures can be used
(S Hnin (P AL SRAL. -+ Hein( S An, SRA)), gsee ()Gmati, 2015) for more details on these proce-
ures).

where §*, S and N are as defined above; and
bmin(S A, SR A)) (j=1,---,N) is the similarity de- 4 2 Score Computing Algorithm
gree between the requested Web service and the ad- P 9 A9
vertised Web service on thj¢h attributeA; computed
by selecting the edge with thminimum weight in
the matching graph.

The computing of the normalized scores is opera-
tionalized by Algorithm 4. This algorithm takes as in-
put a listmServices of Web services each is described
by a set ofN similarity degrees wherl is the num-
ber of attributes. The data structurservices used

4 SCORING WEB SERVICES as input assumed to be defined as:

(3A7‘J<>(3A'A17§'A1)7 U 7IJ<>(3AAN,§AN))1

where: S is an advertised Web servic8 is the re-
quested Web servic8l the total number of attributes;

o € {min,max}, and, (A}, SRA)) (j =1,--+,N)

is the similarity degree between the requested Web
service and the advertised Web service onjtheat-

First, we need to assign a numerical weight to ev- tripute A; computed using one of the of two versions
ery similarity degree as follows: Failw;, Part-of: given in Section 3.2.

wp, Container:ws, Subsumption:wgy, Plug-in: ws
and Exactwg. These degrees correspond to the pos- Algorithm 4: ComputeNormScores.

In this section, we propose a technique to compute the
scores of the Web services based on the input data.

4.1 Score Definition

sible values OfIJo(SA-Aj,SR-Aj) with (j =1,---,N) Input : nBer vi ces, // List of Web services.
and Wheres?ﬁ, R andN are as defined above; and N, // Number of attributes.
= {min’max}_ In this paper, we assume that the Output: nBer vi ces, // List of Web services with normalized scores.
weights are computed as follows: ; tr%'le”gt h (nervices);
— L
w, > 0 (4) 3 while (t<r) do
- ’ . 4 simDegrees<— thetth row inner vi ces;
W = (Wifl : N) +1, i=2---,N; (5) 5 s«— Conput el ni ti al Scor e(simDegrees,N,w);
6 nBervi ces[t,N+2] «+—s;

whereN is the number of attributes. This way of
weights computation ensures that a single higher sim- _

o . R 8 b<«— nBervices[1,N+2];
ilarity degree will be greater than a seti&imilarity o te 1

degrees of lower weights taken together. Indeed, the 15 e t 1) do

7 a<+— nBervices[1,N+2];

weights values verify the following condition: 1 if (a> mBervi ces[t + 1,N +2])) then
i i 12 |_ a+— mBervicesft+1,N+2];
W > wi-N, Vi>j. (6) , _
13 if (b <nBervicest+1,N+2])) then
Then, the initial score of an advertised Web service 14 | be—mervicesit+1,N+2];
S is computed as followers: 15 te1:
i=N 16 while (t <r) do
0 (SA) — W. (7) 17 ns<— (nBervi ces[t,N+2] —a)/(b—a);
¢ i; 18 | nBervices[t,N+2]«—ns

19 returnnBervi ces;

The scores as computed by Equation (7) are notin the
range 0-1. Hence, we need to normalize these scores

by using the following pracedure: At the output, Algorithm 4 provides an updated

version ofmServices by adding to it the normalized
Po(S") — mink po(SX) scores of the Web services:

oL = max P.(SK) — ming po(SX) ® (o (AL S AL, o (S AN, SR AN, L (),
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wherep’, () is the normalized score of Web service then uses different node splitting functions to progres-
. sively split the nodes of each level into a collection of
The functionComputelnitialScore in Algorithm 4 new nodes. The tree construction process is designed
permits to compute the initial scores of Web services such that each of the leaf nodes will contain a sin-
using Equation (7). Functio@omputelnitialScore gle Web service. Let first introduce the node splitting
takes a rowsimDegrees of similarity degrees for a  functions.
given Web service and computes the initial score of o )
this Web service based on Equation (7). The list 5-2.1 Node Splitting Functions
simDegrees is assumed to be defined as follows:

The first node splitting function is formalized in Al-
(51 (A, SAL), o (A, SAN)), gorithm 5. This function receives in entry one node

wheres, SR N a“d.Ho(SA-AJ'zSR-Aj) (1=1---,N)  with alist of Web services and generates a ranked list
are as defined previously. It is easy to see that the listof nodes each with one or more Web services. The

simDegrees is a row from the data structureSer- function SortScoresMax andSortScoresMin in Algo-
vices introduced earlier. rithm 5 permit to sort Web services based either on

The complexity of the score computing algorithm - the maximum edge value or the minimum edge value,
is detailed in (Gmati, 2015). respectively. Functiosplit permit to split the Web

services irlLg into a set of sublists, each with a subset
of services having the same score. The instructions in
5 TREE-BASED RANKING OF lines 8-11 in Algorithm 5 permit to create a node for
each sublist irsublists. The algorithm outputs a list
WEB SERVICES T of nodes ordered, according to the scores of Web

. " ; services in each node, from the left to the right.
In this section, we propose a new algorithm for Web

services ranking. Algorithm 5: Node splitting.
i . Input : Node // A node.
51 PrlnCIple NodeSpl i t ti ngType, // Node splitting type.
Output: L, // List of ranked nodes.
The basic idea of the proposed ranking algorithm is 1 L<®
. - . 2 Lo < NodemServScores;
to use the two types of scores introduced in Section * o .
3.2 to first construct a tre&€ and then apply qre-  If (NodeSpl | 111 ngType = "M’ then
' pply @ 4 |_ Lo — Sort Scor esMax(Lo);

order tree traversabn T to identify the final and best

ranking. The construction of the tree requires thus to
use the score computing algorithm twice, once using
the minimum weight value and once using a the maxi-
mum weight value (see Section 3.2). In what follows,
we assume that the input of the ranking algorithmis

5 else
6 |_ Lo « Sort Scor esM n(Lo);

7 SubLists <« Split(Lo);
8 for (for each elem irBubLi st s) do

9 create node,
” ! - h n.addelen);
a list of matching Web servicesServScores defined 1 L.adde);
as follows:

12 returnL;

(‘QﬂAv p:‘nin(SA)a p;nax(SA))v

where: S is an advertised Web service; ap(g,,(S)
andpl.«(S) are the normalized scores §f that are
computed based on the minimum weight value and
the maximum weight value, respectively.

The tree-based ranking algorithm given later in 52.2 Tree Construction Algorithm
Section 5.3 is composed of two main phases. The ob-

jective of the first phase is to construct the fleeThe  The tree construction process contains four steps:
objective of the second phase is to identify the final 1. Construction of Level 01n this initialization

The second node splitting function is formalized
in Algorithm 6. This functions permits to split ran-
domly a node into a set of nodes, each with one Web
service.

ranking using a pre-order tree traversafion step, we create a root nodeontaining the list of Web
) services to rank. At this level, the tréecontains only
5.2 Tree Construction the root node.

2. Construction of Level 1 Here, we split the
The tree construction process starts by defining a rootroot node into a set of nodes using the node splitting
node containing the initial list of Web services and function (Algorithm 5) with the desired sorting type
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(i.e. based either on the maximum edge value or the
minimum edge value). At the end of this step, a new
level is added to the tre€. The nodes of this level
are ordered from left to right. Each node of this level
will contain one or several Web services. The Web
services of a given node will have the same score.

3. Construction of Level .2 Here, we split the
nodes of the previous level that have more than one
Web services using the node splitting function (Algo-
rithm 5) with a different sorting type than the previous
step. At the end of this step, a new level is added to
the treeT. The nodes of this level are ordered from
left to right. Each node of this level will contain one
or several Web services. The Web services of a given
node will have the same score.

4. Construction of Level 3 Here, we apply the
random splitting function given in Algorithm 6 to ran-
domly split the nodes of the previous level that has
more than one Web service. At the end of this step, a
new level is added to the trde All the nodes of this
level contain only one Web service.

Algorithm 6: Random Node Splitting.

Input : Node // A node.
Output: L, // List of ranked nodes.
L« 0;
Lo < NodemServScores;
i< |L[;
Z Lo:
whilei > 0do
select randomly a servigefrom Z;
create node ;
n.addelem);
L.addn);
i—i—-1;
Z++Z\{n};

© 0 N O s W NP

B
Pk o

-
N

returnL;

Figure 1 provides an example of a tree constructed
based on this idea.

Root containing a list of all services

First Ranking

Second Ranking

Nodes containing services of the same rank

Leafs

Best Ranked leafs Worst Ranked Leafs

Figure 1: Tree structure.

We may distinguish two version for the tree con-
struction process. The first version, which is shown in
Algorithm 7, uses the node splitting based on the Max

A Tree-based Algorithm for Ranking Web Services

node splitting based on the Min to generate the nodes
of the third level. The second version, which is not
give in this paper, uses an opposite order.

Algorithm 7: Tree Construction (Max-Min).
1[h]

Input : mServScores, // Initial list of services with their scores.
Output: T, // Tree.
create nodé&lode
NodeaddmServScores);
addNodeas root of the tred@;
Fi rst Level Nodes < NodeSplitting(Node’ Max );
for each node nin Fi r st Level Nodes do
addn; as a child of the root;
if ny is not a leafthen
SecondLevel Nodes « NodeSplitting(Node’ Min’);
for each node snin SecondLevel Nodes do
addn, as a child ofng;
if ny is not a leafthen
Thi rdLevel Nodes «
RandomNodeSplitting(ny);
for each node fin Thi r dLevel Nodes do
|_ addng as a child ofy;

returnT;

=

6

5.3 Tree-based Ranking Algorithm

We propose here a new algorithm for implementing
the solution proposed in Section 5.1. The idea of the
algorithm is to construct first a trédeusing one of the
algorithms discussed in the previous section and then
scanning through this tree in order to identify the final
ranking. The identification of the best and final rank-
ing needs to apply eree traversalalso known asree
search) on the treel. The tree traversal refers to the
process of visiting each node in a tree data structure,
exactly once, in a systematic way. Different types of
traversals are possible: pre-order, in-order and post-
order. They differ by the order in which the nodes are
visited. In this paper, we will use the pre-order type.

The idea discussed in the previous paragraph is
implemented by Algorithm 8. The main input for this
algorithm is the initial listmServScores of Web ser-
vices with their scores. This list is assumed to have
the same structure as indicated in Section 5.1. The
output of Algorithm 8 is a liskinalRanking of ranked
Web services.

The functions ComputeNormScoresMax and
ComputeNormScoresMin are not given in this paper.
They are similar to functiorComputeNormScores
introduced previously in Algorithm 4. The scores
in function ComputeNormScoresMax are computed
by selecting the edge with thmaximum weight

to generate the nodes of the second level and then then the matching graph while the scores in function
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ComputeNormScoresMin are computed by selecting
the edge with theninimum weight in the matching
graph.

Algorithm 8: Tree-Based Ranking.
: mServScores, // List of matching services with their scores.
N, // Number of attributes.
SplittingOrder,// Nodes splitting order.
Output: Fi nal Ranki ng, // Ranked list of Web services.
T« 0
mServScores < Conput eNor mScor esMax(mServScores,N) ;
mServScores < Conput eNor nScor esM n(mServScores,N) ;
if (SplittingOrder ='MaxM n’) then
|_ T « Construct Tr eeMaxM n(mServScores) ;

Input

a ~ W N P

else
7 |_ T < Const ruct Tr eeM nMax(mServScores) ;

(2]

8 Fi nal Ranki ng < TreeTraversal (T);
9 returnFi nal Ranki ng;

Algorithm 8 can be organized into two phases.

6 PERFORMANCE EVALUATION

In what follows, we first compare the tree-based al-
gorithm presented in this paper to the score-based
(Gmati et al.,, 2014) and rule-based (Gmati et al.,
2015) ranking algorithms and then discuss the effect
of the edge weight order on the final results.

The SME2 (Klusch et al., 2010; Kister and
Konig-Ries, 2010), which is an open source tool for
testing different semantic matchmakers in a consistent
way, is used for this comparative study. The SME2
uses OWLS-TC collections to provide the matchmak-
ers with Web service descriptions, and to compare
their answers to the relevance sets of the various
queries.

The experimentations have been conducted on a
Dell Inspiron 15 3735 Laptop with an Intel Core 15
processor (1.6 GHz) and 2 GB of memory. The
test collection used is OWLS-TC4, which consists of

The first phase concerns the construction of the tree 1083 Web service offers described in OWL-S 1.1 and
T. This phase is implemented by the instructions in 42 queries.

lines 1-7. According to the type of nodes splitting or-
der (Max-Min or Min-Max), Algorithm 8 uses either
function ConstructTreeMaxMin (for Max-Min order)
or function ConstructTreeMinMax (for Min-Max or-
der) to construe the tree.

Figures 2a and 2b show that the tree-based rank-
ing algorithm has better average precision and recall
precision than score-based ranking algorithm. Figure
2.c shows that the tree-based ranking algorithm has a
slightly better average precision than rule-based rank-

The second phase of Algorithm 8 concerns the ing algorithm. Figure 21 shows that rule-based rank-

identification of the best and final ranking by apply-
ing a pre-order tree traversal on the tieeThe pre-

order tree traversal contains three main steps: (1) ex-

ing algorithm is slightly faster than tree-based ranking
algorithm.
The tree-based ranking algorithm is designed to

amine the root element (or current element); (2) tra- work with either the Min-Max or Max-Min versions

verse the left subtree by recursively calling the pre- of the tree construction algorithm. As discussed in
order function; and (3) traverse the right subtree by Section 5.2.2, the main difference between these ver-
recursively calling the pre-order function. The pre- sionsis the order in which the edge weight values are
order tree traversal is implemented by Algorithm 9. used. To study the effect of tree construction versions
on the final results, we conduced a series of experi-
ments using the OWL-TC test collection. We evalu-

Algorithm 9: Tree Traversal.

Input : T,/ Tree. ated the two versions in respect to the Average Preci-
Output: L, //Final ranking. sion and the Recall/Precision metrics.
1Le0 The result of the comparison is shown in Fig-
2 Gurrfode = T.R _ ures 2e and 2f. According to these figures, we con-
3 if Curr Node contains a single Web serviteen . "
4 Letcurr Servi ce be the single Web service Gur r Node; CIL_jde that MIn_M_aX _VerS|0n outpgrforms the Max-
5 L L. Appendur r Ser vi ce); Min. However, this final constatation should not be

taken as a rule since it might depend on the consid-

for each child f ofCur r Node do .
ered test collection.

7 |_ Traverse (f,Cur r Node);

[=2]

8 returnL;

7 RELATED WORK

Algorithm 9 takes as input a trée and generates
the final ranking list.. Algorithm 9 scans the tre€
and picks out all leaf nodes @f ordered from the left
to the right.

The complexity of the tree-based ranking algo-
rithms are detailed in (Gmati, 2015).

We may distinguish three basic Web services rank-
ing approaches, along with the nature of information
used for the ranking process: (i) ranking approaches
based only on the Web service description informa-
tion; (ii) ranking approaches based on external infor-
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Figure 2: Performance analysis.

mation; and (iii) ranking approaches based on the userconstraints make the system more complex. The au-
preferences. thors in (Segev and Toch, 2011) extract the context

The first ranking approach relies only on the of Web services and employ it as an additional infor-
information available in the Web service descrip- mation during the ranking. The general problem with
tion, which concerns generally the service capability this type of approaches is that the use of external in-
(IOPE attributes), the service quality (QoS attributes) formation can only be performed in some situations
and/or the service property (additional information). where the data is available, which is not always the
This type of ranking is the most used, since all the case in practice.
needed data is directly available in the Web service  The third ranking approach is based on the user
description. Among the methods based on this ap- preference. In (Beck and Freitag, 2006), for instance,
proach, we cite (Manoharan et al., 2011) where the the authors use some constraints specified by the user.
authors combine the QoS and the fuzzy logic and pro- A priority is then assigned to each constraint or group
pose a ranking matrix. However, this approach is cen- of constraints. The algorithm proposed by (Beck and
tered only on the QoS and discards the other Web Freitag, 2006) uses then a tree structure to perform the
service attributes. We also mention the work of (Sk- matching and ranking procedure.
outas et al., 2010) where the authors propose a rank-
ing method that computes a dominance score between
services. The calculation of these scores requires a
pairwise comparison that increases the time complex—8 CONCLUSION
ity of the ranking algorithm.

The second ranking approach uses both the WeblIn this paper, we proposed a new algorithm for Web
service description and other external information services ranking. This algorithm relies on a tree data
(see, e.g., (Kuck and Gnasa, 2007)(Kokash et al., structure that is constructed based on two types of
2007)(Maamar et al., 2005)(Manikrao and Prabhakar, Web services scores. The final ranking is obtained
2005)(Segev and Toch, 2011)). For instance, the au-by applying a pre-order traversal on the tree and picks
thors in (Kuck and Gnasa, 2007) take into account out all leaf nodes ordered from the left to the right.
additional information concerning time, place and lo- The tree-based algorithm proposed in this paper is
cation in order to rank Web services. In (Kokash compared two other ones: score-based algorithm and
et al., 2007), the authors rank Web services on the rule-based algorithm. The performance evaluation of
basis of the user past behavior. The authors in (Maa-the three algorithms shows that the tree-based algo-
mar et al., 2005) rely their ranking on the customer rithm outranks the score-based algorithm in all cases
and providers situations. However, these additional and most often better than the rule-based algorithm.
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