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Abstract: Due to increasing demand and growing cities, traffic prediction has been a topic of interest for many 
researchers for the past few decades. The availability of large amounts of traffic-related data and the 
emerging field of machine learning algorithms has led to a significant leap towards data-driven methods. In 
this paper, loop counter data are used to develop models that can predict traffic flow for several different 
prediction intervals into the future. In depth exploratory data analysis and statistical testing is performed to 
obtain good quality informative features. Several feature sets were compared by using different machine 
learning methods: Ridge Regression, SVR and Random Forests. The results show that in order to obtain 
good prediction results thorough feature extraction is just as or even more important than learning method 
selection. Good features enables us to use less complex methods, which run faster, are more reliable and 
easier to maintain. In conclusion, we address ideas regarding how predictions could be improved even 
further. 

1 INTRODUCTION 

Traffic congestion can have substantial effects on 
quality of life, especially in bigger cities. It is 
estimated that traffic congestion in United States 
causes two billion gallons of fuel to be wasted every 
year; 135 million US drivers spend two billion hours 
stuck in traffic every year. Altogether, 100 billion 
USD are spent because of fuel in the US alone. For 
an average American driver, this costs 800 USD per 
year (Liu et al., 2006). In addition to economic 
aspect (wasting money and time), there is also an 
ecological one. Pollution could be reduced 
significantly by reducing travel time and thus 
emissions. 

The above mentioned facts are the main reasons 
that governments are investing in Intelligent 
Transportation Systems (ITS) technologies that 
would lead to more efficient use of transportation 
networks. Traffic prediction models have become a 
main component of most ITS. Accurate real time 
information and traffic flow prediction are crucial 
components of such systems. ITS vary in 
technologies applied in; from advanced travel 
information systems, variable message signs, traffic 
signal control systems, to special user-friendly 
applications, such as travel advisors. The aim of all 

of these technologies is the same, to ease traffic 
flow, reduce traffic congestion and decrease travel 
time by advising drivers about their routes, time of 
departure, or even type of transportation 
(Stathopoulos and Karlaftis, 2003). 

The availability of large amounts of traffic-
related data, collected from a variety of sources and 
emerging field of sophisticated machine learning 
algorithms, has led to significant leap from 
analytical modelling to data driven modelling 
approaches (Zhang et al. 2011). The main concept of 
this paper is to investigate different machine 
learning algorithms and engineer features that would 
enable us predicting traffic state several prediction 
intervals into the future.  

2 RELATED WORK 

In general, traffic prediction studies can be 
categorized into three major categories: naïve 
methods, parametric methods and non-parametric 
methods (Van Lint and Van Hinsbergen, 2012). 
Naïve methods are usually simple non-model 
baseline predictors, which can sometimes return 
good results. Parametric models are based on traffic 
flow theory and are researched separately and in 
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parallel to non-parametric, more data-driven 
machine learning methods. 

A strong movement towards non-parametric 
methods can be observed in the recent years, 
probably because of increased data availability, the 
progress of computational power and the 
development of more sophisticated algorithms 
(Vlahogianni et al., 2014). Non-parametric does not 
mean models are without parameters; but refers to 
model’s parameters, which are flexible and not fixed 
in advance. The model’s structure as well as model 
parameters are derived from data. One significant 
advantage of this approach is that less domain 
knowledge is required in comparison to parametric 
methods, but also more data is required to determine 
a model. This also implies that successful 
implementation of data-driven models is highly 
correlated to the quality of available data. 

Non-parametric methods can be further 
subdivided into two subgroups: classical statistical 
regression approaches and data-driven machine 
learning approaches (Karlaftis and Vlahogianni, 
2011). From the group of statistical methods, the 
local linear regression algorithm yields surprisingly 
good results, especially on highway data (Rice and 
van Zwet, 2004). In contrast, traffic in urban areas 
can be much more dynamic and non-linear, mainly 
because of the presence of many intersections and 
traffic signs. In such environments, data-driven 
machine-learning approaches, such as neural 
networks (Van Hinsenberg et al., 2007) and SVR 
(Vanajakshi and Rilett, 2007), can be more 
appropriate, due to their ability to model highly 
nonlinear relationships and dynamic processes. In 
this research, we test methods from both groups: 

statistical regression approaches and more complex 
nonlinear algorithm. 

3 DATA 

The data used in this research is collected by a single 
traffic counter sensor, installed inside the bypass of 
Ljubljana, the capital city of Slovenia. 
Measurements are available via a web API service 
(http://opendata.si/promet/), as a real-time data 
stream, refreshed every 5 minutes. Our collected 
database consists of 6-month record set of sensor 
data (from January 2014, to July 2014), amounting 
to 46,447 records. 

Every record consists of a timestamp, descriptive 
information about the sensor (location, region, 
direction, etc.), and the five different measurements 
used in this research: 
 Flow: the number of vehicles passing certain 

reference point, per hour. 
 Gap: average time gap (in seconds) between 

vehicles, per hour. 
 Occupancy: occupancy of the road in the 

value of 1/10th of one percent, e.g. value 57 
from the data converts to 5.7 %. 

 Speed: average speed (km/h) of vehicles, per 
hour. The speed of every vehicle is almost 
impossible to track and is, therefore, estimated 
from other parameters. 

 Traffic status: Numeric status of the traffic. 1 
being “normal traffic”, and 5 being “heavy 
traffic with congestion”. 

 

Figure 1: Traffic loop sensor data for randomly selected week. 
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3.1 Data Preprocessing 

Upon the first audit of the collected measurements, 
we determined that many records were duplicated 
during the 5-minute intervals. Since the timestamp 
was duplicated as well, we can assume these are 
actually missing values, probably due to service 
downtime.  
With further sanity checking of data, it became clear 
that several entries also contain clearly wrong or 
invalid values. For example, we know that the 
“TrafficStatus” parameter can have only values 
between 1 and 5, but in our data, some values was 0. 
After checking this records’ data, we have 
determined that other measurements for this record 
had been corrupted as well; therefore, all such 
records were marked as invalid samples. 

Missing data and records flagged as invalid data, 
were handled with partial listwise deletion approach. 
There are two reasons for this choice. First, since the 
gaps in our missing data can be very long (from a 
couple of hours to a couple of days), it is not trivial 
to replace missing values, and we could induce too 
much uncertainty by replacing missing records. 
Second, after cleaning data with partial deletion 
method, we have reduced the number of records in 
the data set by 37%, but we are still left with a 
reasonable large amount of data (29,215 samples) to 
train and test our prediction models, on a much 
cleaner and more representative data set. 

3.2 Exploratory Data Analysis 

By visually exploring the data of one randomly 
selected week from our dataset (Figure 1), we can 
distinguish daily patterns over the week. The 
difference between traffic by day and traffic by night 
is clearly seen. Another interesting observation is 
that working days during the week have highly 
similar pattern, while patterns for the weekend are 
different. A distinguished peak in the morning 
(morning rush hour), followed by another peak 
(afternoon rush hour), can also be observed. 

Another interesting finding that can be observed 
from the graph below is the anomaly seen on 
Wednesday during the afternoon rush hour. We can 
observe a drop in the flow and speed parameters, 
which means that the speed and traffic flow were 
unusually low for that time at the day. Furthermore, 
we can see that occupancy was very high at that time 
and that the traffic status changed from status 4 to 5. 
This is most probably due to traffic congestion 
(traffic jam or accident). This is also the most 
informative type of information to predict. 

3.2.1 Traffic Flow during the Week 

In the previous chapter, it was determined that traffic 
during the weekend is significantly different than on 
weekdays, which is intuitively understood to be true. 
This implies that it would be useful to include this 
information (whether it is weekend or weekday) in 
the form of a new feature, when training our model. 
What about traffic during the days in the week? 
Would it also be useful to have the day of the week 
as a feature?  

In order to answer this question, we performed a 
statistical T-test, with the assumption (null 
hypothesis) that traffic flow during weekdays is the 
same. Since the traffic flow parameter is non-
normally distributed, we performed Man-Whitney 
U-test in order to test our null hypothesis. The p-
value, which determines statistical significance of a 
hypothesis, was computed between all combinations 
of days in the week. A small p-value (smaller than 
the critical value, usually 0.05) means that we can 
reject the null hypothesis; otherwise we cannot reject 
it. 

The results are presented in the form of a heat 
map in Figure 2. We can see that the only 
combinations for which we cannot reject our null 
hypothesis (p-value > 0.05) are the days from 
Tuesday to Thursday. However, we can reject our 
null hypothesis for all other days, meaning that 
traffic is significantly different for these days. 
According to these results, it would make sense to 
also include the day of the week as a feature in to 
our model. 

 

Figure 2: P-values from Man-Whitney test. 
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3.2.2 Average Traffic Flow 

Another assumption, obtained from the data 
analysis, is that the traffic state on a certain day and 
time is similar to traffic one week ago at the same 
time. From the historical data, we have calculated 
the averaged traffic status for our target variable (i.e. 
flow) according to day and time over one week. In 
the Figure 3, we can see the result and a comparison 
between these data and one randomly selected 
weekly data. It can clearly be seen that average 
traffic is already a very good fit. In fact, this simple 
naïve predictor is still widely used in various 
practical applications, such as routing or travel time 
estimation (Van Lint and Van Hinsbergen, 2012). 
We will use this information as a feature when 
training models and as a baseline predictor when 
comparing different methods. 

 

Figure 3: Traffic flow average for one week. 

3.3 Feature Engineering 

It is a well-known fact that feature engineering is a 
key to success in applied machine learning. Feature 
engineering is the process of transforming raw data, 
into features that better represent the underlying 
problem to the predictive models. Better the 
features, better the results. The best way to extract 
good representative features, is by exploring and 
understanding, which is what we did in previous 
section. 

We have already discovered that there exists a 
relationship between datetime and other attributes. 
Since it can be difficult for a model to take 
advantage of datetime native form (2014-01-01 
01:00:00), we want to decompose a datetime into 
consistent parts, that may be more informative for 
the model. We introduce four new features: 
 HourOfDay [0 - 23] 
 DayOfWeek [0 - 6] 
 Month [0 -12] 
 Weekday/Weekend [0 - 1] 

From previous empirical experiences, it can also 
be beneficial for some models, to convert these 
ordinal variables into dummy/indicator (categorical) 
variables (i.e. “DayOfWeek” feature 3 is 
transformed to 0001000). 

Another important information, derived from 
outcomes of previous chapter, is weekly traffic is 
very similar. Therefore, traffic average (according to 
time and day of week) can represent normal traffic 
surprisingly well. This information can be used as 
feature, that informs what is the traffic status on 
average, on specific time in the future. For this 
purpose we create extra feature: 
 AvrFlow 

Although good feature engineering is very 
important in order to achieve high-quality prediction 
results, the actual success is a combination between 
the model that we choose, the data, and the extracted 
features that we use. In order to obtain the best 
combination, 4 different datasets were created 
(which contains which features can be seen in Table 
1) 

Table 1: Features and datasets used in further analysis 
(white circles indicates dummy features): (1) 
only_measurements, (2) with_datetime, (3) 
dummy_datetime, (4) with_avr_dummy. 

Features Data set 
1 2 3 4 

Flow ● ● ● ● 
Gap ● ● ● ● 
Occupancy ● ● ● ● 
Speed  ● ● ● ● 
TrafficStatus ● ● ● ● 
HourOfDay  ● ○ ○ 
DayOfWeek  ● ○ ○ 
Month  ● ○ ○ 
Weekday  ● ○ ○ 
AvrFlow    ● 

4 METHODS OF PREDICTION 

In this research, we have tested three different data 
driven methods, from a well-known machine 
learning library scikit-learn (version 0.15) 
(Pedregosa et al., 2011): 
 Ridge Regression: Computationally non-

demanding and fast method; can perform 
surprisingly well, with proper feature 
engineering. 

 SVR: Regression Support Vector Machine is 
sophisticated non-linear machine-learning. 
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Figure 4: Feature importances for different data sets. We can observe how additional features change importances. 

 method, but can be computationally intense 
and slow. 

 Random Forests: An ensemble method that 
operates by constructing multitude of 
decision trees. Usually needs some 
parameter tuning to avoid over-fitting to 
their training data. 

In order to train models for comparison purposes, 
we also need a target value, for which we want to 
predict values. Since traffic flow is the most 
informative attribute, in this research we used traffic 
flow as a target attribute. We also need to specify the 
prediction interval. For most part of this research, 5 
hour interval was used. Target values were obtained, 
by copying target attribute time series data, and 
lagging it according to selected prediction interval 
(in this case, 5 hours into the future). However, if 
there is a need to predict any other attribute from the 
database, or change the prediction interval, this is a 
trivial task. At the end of this paper (results section), 
performance with other prediction intervals have 
been tested as well. 

4.1 Method Comparisons 

The performance of the above-described methods 
with default parameter values was measured over a 
range of different testing datasets (presented in 
Feature Engineering chapter) by using measure of 
fitness – coefficient of determination, denoted as R2. 
This is a standard measure of accuracy for 
regression problems. Values can range between -1 
and 1, where score of value 1 implies a perfect fit 
(Draper and Smith, 1998). When performing 
comparison tests, cross validation method was used 
(shuffled split, with 3 iterations, and testing size of 
20 % of given data set). All tests also include a 
baseline predictor used for comparison (average 
traffic flow of one week, presented in Average 
Traffic Flow chapter). 

Comparing models over different datasets shows 
how feature enrichment consistently improves 

prediction scores with all methods (Figure 5). The 
first major improvement in prediction performance 
can be observed when using dataset with additional 
features derived from datetime information (dataset 
called with_datetime). Comparing to results where 
only traffic measures are used (only_measurements), 
R2 score is approximately tripled for all methods. 
This shows the significance of date time 
information, which is intuitive, and it would be 
absurd not to use it when dealing with time series 
data. The importance of datetime-related features 
can also be observed by performing a feature 
importance test Figure 4, in which “HourOfDay” 
feature is rated as the most important, followed by 
“DayOfWeek” and “Weekend” features, also 
extracted from datetime information. 

 

Figure 5: Methods and feature sets comparisons. 

Another interesting improvement can be observed 
with the Ridge Regression method, when using 
dummy datetime features (dummy_datetime). 
According to previous experiences, this 
improvement was expected, but it is interesting to 
observe how the performance of the SVR model has 
drastically decreased in comparison to the SVR 
model that uses dataset in which datetime features 
were not categorized (with_datetime).  Losing the 
order information of datetime variable values by 
splitting them into separate independent variables 
effectively nullifies their usefulness to SVR, as the 

Traffic�Flow�Prediction�from�Loop�Counter�Sensor�Data�using�Machine�Learning�Methods

123



score drops back down to the same value as without 
datetime information. Even when “avrFlow” is 
available, the dummy features decrease the 
performance in comparison to the baseline. 

However, it is interesting that none of the above 
mentioned results have over scored the baseline 
predictor. In short, the reason for such good result of 
the baseline method is the choice of a fairly long 
prediction horizon, i.e. 5h into the future. This is 
explained in greater detail later in the Results 
section.  

But the most important result is that by using 
dataset where localized average flow as a feature 
(feature set with_avr_dummy), Random Forests and 
the Ridge Regression method have been able to 
outperform the baseline method. The dominant 
importance of the new feature “AvrFlow” can be as 
well observed in Figure 4. From this figure we can 
observe how feature importance has changed with 
different datasets and it is clear that the “AvrFlow” 
feature is by far the most important feature, when 
predicting 5 hours into the future. 

4.2 Learning Curves 

By visualizing learning curves, we can have a better 
look at developed models and diagnose whether our 
model is performing well, or if it can be improved. 
Figure 6 shows how SVR models need many more 
examples to attain a good prediction score, while the 
Ridge Regression and Random Forests methods 

outperform it event when much less data is 
available. According to the slope of the curve, we 
can also assume that for these two methods, it does 
not seems that the scores would improve with more 
samples.  

The fact that training and cross validation scores 
are almost the same, can indicate that the model 
suffers from high bias (is under-fitted). This 
situation can be observed for Ridge Regression 
performance with the “only_measurements” dataset 
in Figure 6. Usually, this happens when we have an 
abundance of data but too few features. One 
standard way to improve the performance of such 
model is by adding more features. Indeed, we can 
observe that Ridge Regression prediction score has 
increased significantly by adding additional features.  

By looking at the Random Forests learning 
curves, we can observe the gap between the training 
and cross validation scores, which might indicate 
that we are dealing with high variance (over-fitting). 
In such cases, we might improve our model by 
obtaining more training examples, by trying smaller 
sets of features, or by decreasing complexity. Since 
we do not have more training examples, we will 
attempt to improve our model by taking into account 
two other suggestions, by tuning the model 
parameters.  

Parameter optimisation was done by performing 
a grid search over several different options for 
different parameters: number of trees (n_estimators), 
number of features (max_features), and minimum

 

Figure 6: Learning curves for several methods and different feature sets. 
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number of samples in newly created leaves 
(min_samples_leaf). The best parameter set was 
found with 100 trees and with a minimum of 10 
samples in leaves. With this optimisation, we have 
significantly reduced the size of the decision trees 
(from 26,013 to 2,207 nodes) and decreased 
complexity, which makes this model simpler and 
faster. This optimisation also resulted in a slightly 
better prediction score (Occam’s razor). 

Additionally, a well-known Ada Boost method 
was also tested in order to determine if we could 
significantly improve our score of the Random 
Forests model. Indeed, the score was improved even 
further from 0.93 to 0.94. Since this add-on also 
significantly slowed down the performance, we 
decided not to use it, but this result indicates we 
could possibly improve our score even further. 

5 RESULTS 

The last 20% of the original data set was reserved 
for evaluation purposes (15 May–30 Jun). What we 
can clearly see from the results (Table 2) is the 
general trend of how an additional feature set 

consistently improves prediction performance over 
all tested methods.  

Table 2: R2 score results for different models and datasets: 
(1) only_measurements, (2) dummy_datetime, (3) 
with_avr_dummy. 

Method Data set 
1 2 3 

Historical Average 0.91 0.91 0.91 
Ridge Regression -0.08 0.80 0.92
Random Forests 0.30 0.88 0.91 
SVR 0.27 0.27 0.84 

The results show that all models performed best 
by using the “with_avr” feature set. By using this 
testing dataset, Ridge Regression was the best 
method (0.92), followed by Random Forest (0.91) 
and baseline-average flow (0.91). Unlike in previous 
cross validated test, when Random Forest was the 
best prediction model, now Ridge Regression 
performed better. This might infers that Random 
Forest is indeed slightly over fitted. However, it is 
again interesting to observe how well the baseline 
method performed again in comparison to other 
machine learning methods. 

 

Figure 7: Visualizing predictions from different models, with different feature sets. 
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Figure 8: Error (MAE) comparison for different prediction horizons. 

With additional analysis, we have encountered that 
this is due to the relatively long predictive horizon 
that we have chosen (5 hours into the future). Figure 
8 show the prediction error (Mean Absolute Error - 
MAE) results for three different models: two naïve 
predictors and a linear regression model for several 
prediction horizons (from 5 minutes to 12 hour into 
the future). The first naïve predictor is the current 
status predictor, which takes only current 
measurements into account and assumes that traffic 
will remain constant. The second is the localized 
average traffic status, which was used as a baseline 
in previous tests. The third model is Ridge 
Regression, since it has been found to be the best 
predictor in comparison to other methods in this 
section.  

From Figure 8 we can observe how current status 
measurements works better than average status for 
short-term predictions (prediction horizon less than 
1h), while the average status works better for long-
term predictions, which is intuitively true, since the 
current status has less influence on the long term. 
The results also illustrate how the prediction error 
increases with larger prediction horizons. This is 
obvious as well, since larger forecast intervals 
correspond to larger uncertainty. 

However, the most significant point from this 
figure is that linear regression outperforms both 
naïve methods for all prediction horizons. This is 
because this method indirectly includes both models 
outputs (current status and average status) as 
 

 

Figure 9: Traffic data with prediction errors. 

inputs, and learns how to weight them according to 
specific prediction horizons. Therefore, it makes 
more accurate predictions. 

By analysing predictions with the largest error 
(Figure 9), we can conclude that most of them are 
caused by anomalous traffic patterns, such as 
holidays, or very low or high traffic (probably due to 
traffic accidents or possibly bad weather). Since 
average traffic is considered to be the most 
important feature in our model (due to long 
prediction interval - 5h), it is to be expected that we 
experience the largest errors with anomalies. By 
using additional data sources that could describe 
such anomalous traffic, we could probably increase 
our prediction accuracy. Examples of such 
additional data sources would be information about 
holidays, weather prediction reports, traffic status 
reports, etc. 

6 CONCLUSIONS 

In this research, we have compared the performance 
of three machine learning methods (Ridge 
Regression, SVR, and Random Forests) used for 
predicting traffic flow. Feature engineering was also 
described and recognized as a key component for 
good results. 

The results show that simple naïve methods, such 
as historical average, are surprisingly effective when 
making long-term predictions (more than one hour 
into the future), while using current traffic 
measurements as naïve method for prediction works 
well when making more short term predictions (less 
than 1h). This is to be expected, since current traffic 
situation effect more on traffic in the nearby future, 
then on traffic in a few hours or days. What is more 
important is, that results shows, that by using 
machine learning methods which includes both; 
historical averages and current values, predictions 
are better than both previously mentioned naïve 
predictors, for all prediction horizons (short term 
and long term). 
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Also noteworthy is the fact that by constructing 
high quality features, simple methods, such as linear 
regression can work as well or even better than other 
more sophisticated algorithms (such as Random 
Forests, SVR, etc.). By using less complex models, 
optimal model parameters are found more readily, 
the models run a lot faster, and they are easier to 
understand and maintain.  

We also state that the main disadvantage of 
models presented in this research, is its inability to 
predict unusual traffic events. Even though common 
traffic status is informative for a commuter in a new 
environment, unusual traffic is the most informative 
information for local commuter who is aware of 
usual traffic. The main reason for this disadvantage 
is that current models uses only historical traffic 
data. Since, some of unusually traffic events are 
caused by other related events (such as nearby traffic 
accidents, bad weather, holidays, etc.), we believe 
that by including additional data sources in the 
model, prediction of such events could be 
significantly improved. 

Therefore, our future plan is to collect several 
quality traffic related data sources (such as weather 
forecasts, traffic alerts, special days statuses, bigger 
social events, etc.) and fuse them with loop counters 
data in order to generate better traffic prediction 
models. We intend to test different data fusion 
approaches, such as: early (or full) integration; 
which transforms data sources into a single feature-
based table, late (or decision) integration; where 
each data source give rise to a separate model and 
predictions are later fused, and intermediate (or 
partial) integration, where data are fused through 
inference of a single joint model with a recent matrix 
factorization based algorithms, providing very good 
results in the field of bioinformatics (Žitnik and 
Zupan, 2013). 
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