
Functional Requirements Categorization
Grounded Theory Approach

Richa Sharma1 and K. K. Biswas2
1School of Information Technology, IIT Delhi, Delhi, India

2Department of Computer Science and Engineering, IIT Delhi, Delhi, India

Keywords: Functional Requirements, Requirements Engineering, Software Engineering, Grounded Theory.

Abstract: The ever-increasing complexity of information system is making the requirements analysis an intricate and
challenging task. The challenge is further intensified in the absence of well-defined body of knowledge as to
which requirements must be looked for. Though the requirements are broadly classified as functional and
non-functional requirements; however, a special concern is required for functional requirements as the
information system, envisioned for an organization, is expected to meet the functional behaviour of that
organization. We have used Grounded Theory approach to explore the granular level of functional
requirements analyzed during requirements analysis. Based on this qualitative study, we propose a
classification scheme for functional requirements in this paper.

1 INTRODUCTION

Software Engineering emerged as a well-defined
discipline laying down the foundations for software
development in the late 1960’s with the famous
NATO conferences (Naur and Randell, 1968),
(Buxton and Randell, 1969). It was realized that the
software is easy to modify than hardware (Boehm,
2006). This realization paved way to various
programming paradigms having differing viewpoints
to analyse the software systems to be developed. The
procedural approach of structured programming
(Royce, 1970) emphasized analysing the ‘as-is’
processes of the organization. On the contrary,
object-oriented programming approach (Booch,
1998) brought a new dimension of data abstraction
to the analysis of the system. In late 1990’s,
productivity concerns led to the emergence of agile
model of software development that radically
changed the requirements analysis related activities
(Boehm, 2006). Thus, ever-increasing demand on
complexity, scalability and productivity of software
kept bringing changes to requirements discovery and
analysis. Realizing the crucial role of requirements
to the design and development of the software,
requirements discovery and analysis activities came
to be recognized as “Requirements Engineering”
(RE) with the publication of selected papers on RE
(Thayer and Dorfman, 1990) and establishment of

regular conferences on RE by IEEE Society. Since
then, activities involved in RE, process models for
these activities, various forms of expressing the
requirements and frameworks for analysing the
requirements have been explored by various
researchers and practitioners. However, the proposed
as well as practiced methodologies to ensure
consistent, correct, complete and unambiguous
requirements have not been able to exhibit the three
defining parameters of engineering approach,
namely repeatability, quantifiability and systematic
thought-process. An attempt to associate these
parameters with RE activities calls for a fundamental
question – what are the possible types or categories
of the requirements that a requirements analyst or
RE practitioner must engineer (analyse and
validate)? Though a relatively simple and easy
answer to this question would be – functional
requirements and non-functional requirements
(NFRs); however, this answer raises next question –
are there further granular levels of each of these
categories of requirements? In an attempt to find an
answer to this question, we found a lot of work
dedicated to NFR-study in this context with limited
work for functional requirements. We are, therefore,
interested in exploring granular levels of functional
requirements.

We have adoped Grounded Theory (GT)
approach (Glaser and Strauss, 1967; Glaser, 1978)

301Sharma R. and Biswas K..
Functional Requirements Categorization - Grounded Theory Approach.
DOI: 10.5220/0005472103010307
In Proceedings of the 10th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2015), pages 301-307
ISBN: 978-989-758-100-7
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)

for the purpose of our study because GT approach
enables exploring those areas that have not been
thoroughly researched for. Secondly, GT allows
studying a phenomenon through rigorous analysis of
data. Both of these propositions of GT approach
makes it a suitable choice for our study. Though we
are clear with our interest area but we do not want to
be guided by any literature study or experiences.
Instead, we want data, the requirements specification
documents in our case, only to guide us.

The organization of rest of the paper is as
follows: section 2 briefly discusses the need
(interest) for functional requirements categorization.
In section 3, we present an introduction to GT
followed by the details of our study including coding
and analysis of data. We present a sample of GT
process application to illustrate how the results of
functional requirements classification were obtained.
We discuss the limitations and challenges of the
study in section 4 followed by the conclusion in
section 5.

2 MOTIVATION

Requirements taxonomy has been of interest to RE
researchers and practitioners. We are of the view
that the interest in identifying types of requirements
stems from the fact that requirements only form the
basis for subsequent phases of software
development. Information system development and
testing relies on the quality of the requirements
captured. Unterkalmsteiner et al., (2014) have
suggested alignment of RE and software testing
taxonomy while bridging the gaps between these
two phases of software development. Despite the
indispensable role played by software requirements
in development and testing, efforts in exploring
types of requirements have majorly concentrated
towards NFRs like (Chung and Leite, 2009; Slankas
and Williams, 2013) except for one instance of
functional requirements (Ghazarian, 2012). An
empirical study by Kamata et al., (2007) on current
RE supports our observation that functional
requirements need an in-depth and extensive
exploration to refine RE processes and
methodologies.

We believe that just as NFR classification has
initiated focused studies for different types of NFRs
(Cysneiros et al., 2005; Liu et al., 2003; Breaux and
Anton, 2008), resulting in better comprehension of
them, an understanding of functional requirements at
a granular level will prove helpful in bringing
engineering perspective to not only RE but also to

complete software development. A well-established
classification scheme for functional requirements
will make both requirements elicitation and analysis
more focussed. Along with NFRs, the granular level
of functional requirements will enable quantification
of requirements. This, in turn, will bring quantified
and systematic approach to other phases of software
development. Though these points will require
validation-studies to prove the expected benefits;
nevertheless, the vital role played by requirements
motivated us to conduct qualitative research for
functional requirements categorization.

3 GROUNDED THEORY
APPROACH

3.1 Brief Introduction

Grounded theory is a general methodology for
developing theory that is grounded in data
systematically gathered and analysed (Glaser and
Strauss, 1967; Glaser, 1978). A central feature of
this analytic approach is a general method of
comparative analysis; hence, it is often referred to as
constant comparative method. This methodology
allows researchers to generate new concepts by
carefully studying and analyzing data. The sources
of data can be interviews, recordings, field
observations as well as documents etc.

Though initially proposed for sociology context,
GT has been used as a research method by several
researchers like (Coleman and Connor, 2007;
Crabtree et al., 2009; Hoda et al., 2012) etc. to
explore and study various problems in context of
Software Engineering. Crabtree et al. and Coleman
and Connor have studied software process
improvement using GT approach. Hoda et al. have
applied GT approach to study the practices of self-
organizing Agile teams.

With difference in opinions of the proposers of
GT, there are two major variants of the approach,
namely Glaserian (1978) and Straussian (Strauss and
Corbin, 1990). Glaser is of the view that the theory
should emerge from the data during analysis,
whereas Strauss and Corbin emphasize systematic
coding technique by listing all possible meanings of
the data. Glaser suggests avoiding literature review
before starting the study, whereas, Strauss and
Corbin advise that there should be some literature
exposure prior to the study. Strauss and Corbin
support framing research questions prior to the study
though Glaser refrains from doing so and advocates

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

302

analysing the data without preconceived notions.
Though both the views have been used successfully
for different problems in Software Engineering, we
found Glaserian version more appropriate for our
study. First, our area of interest is such that we
would like to go with the coding paradigm of Glaser
– “What do we have here?” instead of asking –
“What if?” (Coding approach suggested by Strauss
and Corbin). Secondly, we do not have any
particular research question formulation except for
exploring the nature of functional requirements. The
absence of literature in our area of interest also
motivated us to go by Glaser’s approach. We did not
refer to the only related existing work (Ghazarian,
2012) until the end of study. We present the details
of our study in following sub-sections.

3.2 Data Collection

GT approach considers – ‘everything is data’.
Following this premise, we referred to requirements
documents from different domains as source of
information for our study. Software systems range
from safety-critical, mission-critical to enterprise
applications, web-based systems to mobile
application and, considering requirements from
different types of systems (population in context of
GT) could possibly be bewildering. We, therefore,
restricted ourselves to enterprise-wide applications
that can be desktop or web-based applications like
an ERP system, financial applications, and retail
applications etc. in order to arrive at substantive
formulation of our exploration of functional
requirements.

Our study is based on the analysis of
requirements specification documents of five
enterprise-wide projects drawn from different
domains including academics, finance and health-
care. The requirements are captured in the
specification documents in the form of either
section-wise free-flow text or in the form of
structured textual use-cases (Cockburn, 2000). Three
of the documents studied are in the free-flow textual
form, and the rest two documents follow structured
use-case format. The details on the size and the
nature of textual representation of the studied
requirements documents are presented in table – 1.
The size of documents expressed in the form of use-
cases corresponds to the requirements stated in
‘process flow’, ‘extended flow’ and ‘alternate flow’
sections of a use-case. We refer to each of these
documents by numbers (eg. doc1, doc2 etc.) instead
of their original names for confidentiality reasons.

Table 1: Requirements Corpus Details.

Document Type of Text Size
Doc1 Free-flow 248
Doc2 Free-flow 798
Doc3 Free-flow 1164
Doc4 Use-case 390
Doc5 Use-case 460
Total 3060

3.3 Coding and Analysis

The analysis of data commenced with the first step
of open coding. The task of open coding was carried
out by the authors of this paper in conjunction with
four graduate subjects who have taken course on
‘Software Engineering’. Since it is not easy to code
the size of data as mentioned in table – 1
individually, therefore, we took this task as group
exercise. Secondly, individual coding can possibly
be subjective. To remain objective in our study, we
preferred to go for group-sessions while coding and
analyzing.

3.3.1 Open Coding and Constant
Comparison

The guiding question to code each of the
requirements statements was: “what does the
requirements statement represent?”. The open codes
were constantly compared statement by statement
and also, document by document to allow
reasonably fair understanding of open codes in terms
of similarity and dissimilarity.

Constant comparison analysis resulted in
emergence of categories, each having certain
distinguishing properties. To illustrate how the
process of constant comparison resulted in
emergence of categories, let us consider an example
of user-privilege category:

RQ1: The system shall only allow a user with an
Authorized Official (AO) role to create a new
submission.

The open codes for user-privilege category in
this statement are underlined: available entities and
role, concept of new submission; associated
privileges.

RQ2: The system administrator can create and
activate a normal user or patient or disable a
selected normal user.

For RQ2 also, we present the underlined open codes
for user-privilege category: system entities,
permissible functions.

We constantly compared the open codes to find
the category they represent. Few more codes that led

Functional�Requirements�Categorization�-�Grounded�Theory�Approach

303

to the emergence of user privileges category include:
eligible operations, actions permitted.

Theoretical memoing accompanied the task of open
coding. Memos are written records of how the
codes, their relationship and agreement to an
emerging category are identified. Memos also help
in finding out the properties that are relevant to a
particular category when theoretical coding and
theoretical sorting are carried out. Memos played an
important role in our case too during theoretical
coding. An example of final memo of user-privilege
category is presented in appendix-A.

3.3.2 Selective Coding

We moved to selective coding phase as our
understanding of emerging categories and open
codes gained clarity. We started selectively coding
for the emergent core category after performing
open coding for three of the documents listed in
table 1. In the words of Glaser (1978) too, selective
coding should be performed at a stage where one can
“delimit coding to only those variables that relate to
core category in sufficiently significant ways to be
used in parsimonious theory.”

Table 2: Open coding and Emergent Core Categories.

Sl. No. Open Codes Core Category

1.

System Entities
Entity Modeling

Requirements
Available Roles

Concept
Abstraction

2.

Information Display

User Interface
Requirements

Information Layout on
GUI

Look and feel of page
Navigation Details

3.

Permissible function
User Privileges
Requirements

Associated privileges
Eligible operations
Actions permitted

4.

Accessing Data on GUI

User Interaction
Requirements

Steps to manipulate data
from GUI

Display Error/Info
Message

5.
Business Logic

Business Workflow
Requirements

Sequence of operations
Business Procedure

6.

Regulatory norms Business
Constraints

Requirements

Policies/Guidelines

Technical Concern

7.

Remote Communication External
Communication
Requirements

External Trigger

External Interface

Selective coding and simultaneous referring to
theoretical memos helped in saturating each of the

core categories. Table 2 presents the open codes that
helped in saturating core categories for functional
requirements.

3.3.3 Theoretical Coding

Theoretical coding, though, is not necessarily
required in Glaser’s opinions; but we preferred to
apply Glaser’s recommendations on theoretical
coding families (Glaser, 1978). Theoretical coding
helped in gaining confidence that the emergent
categories indeed are related and represent one of
the meaningful and recommended theoretical codes
(Glaserian family of codes). We found the ‘Type’
family best describing our categories. The
discovered ‘types’ of functional requirements are
described in detail in the following sub-section.

3.4 Functional Requirements
Categories

We present brief descriptions of the emergent
categories of functional requirements with relevant
examples. These descriptions are drawn from the
final memo of each of these core categories:

1) Entity Modeling Requirements: An organization
is constituted by the entities (actors/business
users), who are responsible for smooth conduct
of organizational operations. These requirements
correspond to the domain model of the
organization. The business users are the ones
who act as agents for actions or operations in an
organization. The actions often make use of or,
often impact certain domain-relevant concepts.
These domain-relevant concepts are also
modeled as entities while implementing the
information system for an organization. The
relationships between various business users
often generate domain-relevant concepts. For
example: Consider the following requirements
statements representing entity-modeling
requirements:

RQ1: The system shall only allow a user with an
Authorized Official (AO) role to create a new
submission.

This statement illustrates business user, namely
authorized official (AO) and concepts namely
system, user and submission as possible entities
present.

RQ3: The system initiates the allocation of courses
to students based on their preferences.

In RQ3, allocation is an abstract concept relating the
entities – course and student.

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

304

2) User Interface Requirements: These
requirements correspond to the organization and
presentation of the information (including data
input and output) on the graphical user interface
which is used by the users to interact with the
information system. All those statements that
describe the layout of information on interface;
or, flow of information from one level to another
interface level belong to this category of
requirements. Following requirements statements
illustrate instances of user interface
requirements:

RQ4: Any entity/text on the user interface that is a
link should be in blue font and underlined.

RQ4 provides information on how an entity
should appear on the user interface of the
information system.

RQ5: Home page will provide links to Forms,
Resources and other tabs which are available on the
ABC Web application.

RQ5 provides information on the information
flow available on home page as links for an ABC
web application.

3) User Privileges Requirements: These
requirements relate to the description of various
roles played by the business users in the
organization and the permissible privileges
associated with that role. These requirements
inform the rights of the users, and not how those
rights are executed. Consider for example the
requirements statement, RQ1 above:

We observe that the entity (actor in this case), user is
associated with another entity: authorized official
(AO) role and the latter one has the right to create an
abstract concept: submission. This statement,
therefore, indicates information about the privileges
of business user – Authorized official (AO). Another
example illustrating the privileges associated with
‘system administrator’ user:

RQ2: The system administrator can create and
activate a normal user or patient or disable a
selected normal user.

4) User Interaction Requirements: These
requirements are closely related to user interface
requirements. However, their scope delves
deeper to the business users’ interaction with the
system. For example: to create an abstract entity
through user interface, the input information
needs to be provided; the validation checks for
the input information; any assistance, error or
prompt messages, together constitute the form of
interaction of a business user with an information

system. We mark the statements providing such
information as user interaction requirements. An
instance of this category of functional
requirements statements is as:

RQ6: The system shall allow the user to edit a
submission by clicking on the Facility column. The
system shall allow the Facility column to be clicked
only when the submission is still underway.

The above-mentioned statement indicates how the
‘submission’ concept will be edited through user
interface.

5) Business Workflow Requirements: These
requirements are representative of business rules,
policies and procedures. These requirements
state the business logic and rationale for flow of
actions stated either in the form of use-case or
free-flowing text. These business rules and
policies only provide justification to the business
users’ behavior within the organization. Consider
the following requirements statement for
example:

RQ7: Before submission a Certification Statement
must be signed by AO, certifying that the
information provided on the Web form is complete
and accurate.

The above statement tells that submission first needs
to be signed by AO, along with a justification for the
same. RQ7 also represents business workflow
requirement in addition to describing user
interaction requirements. The business logic
embedded in RQ7 provides rationale for the action-
flow of the entity – Primary Submitter.

6) Business Constraints Requirements: These
requirements correspond to the constraints added
to the information system apart from business
workflow logic. Such additional constraints often
arise because of organizational policy, external
regulatory bodies or market regulations in which
the organization is operating or possibly,
technical constraints. For example: a financial
system is governed by government and market
policies; a healthcare system has to follow
guidelines suggested by corresponding medical
regulatory bodies. Following statement
represents an example of business constraint
requirement:

RQ8: Since it is expected that users from all over the
world will be using the system, and since Microsoft
Windows is the most popular and widespread
platform, it is decided that the system should be able
to run on Windows XP, Windows 2000, and
Windows NT desktops.

Functional�Requirements�Categorization�-�Grounded�Theory�Approach

305

The above-statement reflects constraints because of
two reasons – first, market outreach of the
information system and second, technical constraint
that Microsoft Windows is most popular. One more
example showing constraint due to technical reason:

RQ9: The user must have JavaScript enabled for the
message prompts to occur.

7) External Communication Requirements: An
information system does not exist in isolation; it
often has to interact with other information
systems or, process information coming in from
another system or possibly, send information to
other systems. All those statements that describe
interaction of the information system with other
systems or agents outside its scope represent
external communication requirements. Consider
for example the requirements statements:

RQ10: Updates to the ABC database in the system
are commonly performed via Remote Data Transfer.
Remote data transfer is commonly accomplished
using FTP over the Internet.

The requirements statement, RQ10, is an
example of external communication requirements
where the database of the information system is
modified by an external trigger.

4 DISCUSSION

4.1 Limitation

GT is said to be limited to the scope of the context
under study. However, as recommended by its
originators Glaser and Strauss (1967), GT is an
effective tool for moving towards higher-level
‘general’ theory by comparative analysis of
substantive theories in different contexts. Our study
is also limited to the context of enterprise-wide
projects. A similar study in other contexts may result
in formalizing ‘general’ theory for functional
requirements classification.

A second limitation that can be thought of with
GT is that of subjective coding. We have mitigated
this limitation by carrying out open-coding and
memoing in group-sessions to come up with
objective opinions after lot of brain-storming.

4.2 Challenges

A major challenge in most of the GT-based studies
is that of data collection. However, we faced a very
different challenge in our study. During the course
of our study, we faced lot of dilemma while

discovering the emergent categories and finding a
core category. We observed considerable overlaps as
well as conflicts in the requirements statements at
the time of open coding. For example: the core
categories: user privileges and user interaction were
quite confusing in the beginning of the study.
Theoretical memos played a crucial role in
saturating these categories. The deliberations that
went in writing memos helped in extracting the
distinguishing features for each of these categories.
We faced similar such confusion with business
workflow and business constraints categories; the
confusion was again resolved through theoretical
memoing and sorting.

4.3 Comparison with Ghazarian’s
Study

We referred to Ghazarian’s (2012) study, the only
relevant related work after completing our study.
Ghazarian’s work is based on an empirical study
with 12 proposed categories of functional
requirements. Ghazarian’s study reveals that most of
the functional requirements space is specified in
terms of small set of core requirement types,
namely: data input, data output, data persistence,
event trigger and business logic. Studying the
description of Ghazarian’s categories, we observed
that these are too specific in nature and are close to
the solution domain (developed code) and not the
problem domain (requirements specification).
Nevertheless, these categories form specific cases of
the core categories emerging in our study as evident
from the description of Ghazarian’s categories. For
example: data input and data input are specific cases
of entity-modeling requirements. Ghazarian too has
suggested that his proposed taxonomy of FRs may
further be partitioned to form more specialized
classes or grouped together to form generalized
classes, if required.

5 CONCLUSION

In this paper, we have presented substantive study of
functional requirements using GT approach in the
context of enterprise-wide applications. The study
has resulted in identification of seven types or
classes of functional requirements for such
applications. Though it may seem that these
categories are evident however a systematic study of
requirements specification has culminated in
grounding our observations in the requirements data.
We have compared our results with an empirical

ENASE�2015�-�10th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

306

study conducted earlier for functional requirements
space to find that generalization-specification
relationship exists between our study and that work.
We are confident that well-defined functional
requirements categorization will prove beneficial to
not just RE, but to the software development as well.
Future studies may extend our substantive theory to
a more ‘general’ theory for functional requirements.

REFERENCES

Naur, P. and Randell, B., 1968. Software Engineering
Report on a conference sponsored by NATO
SCIENCE COMMITTEE, Garmisch, Germany,
Scientific Affairs Division NATO, Belgium.

Buxton J. N. and Randell, B., 1969. Software Engineering
Techniques, Report on a conference sponsored by
NATO SCIENCE COMMITTEE, Rome, Italy,
Scientific Affairs Division NATO, Belgium.

Boehm, B., 2006. A view of 20th and 21st century
Software Engineering, In Proceedings of the
International Conference on Software Engineering
(ICSE’06), Shanghai, China, pp. 12-29.

Royce, W. W., 1970. Managing the development of large
Software Systems, In Technical Papers of Western
Electronic Show and Convention, Los Angeles, USA,
1970, pp. 328-338.

Booch, G., 1998. Object-oriented Analysis and Design
with Applications, 2nd ed, CA, Addison-Wesley.

Thayer, R. H. and Dorfman, M. (eds.), 1990. System and
Software Requirements Engineering, IEEE Computer
Society Press, Los Alamitos, CA, 1990.

Glaser, B.G. and Strauss, A.L., 1967. The Discovery of
Grounded Theory: strategies of qualitative research,
Aldine Transactions, New Brunswick, USA.

Glaser, B.G., 1978. Theoretical Sensitivity: Advances in
the methodology of Grounded Theory. Mill Valley,
CA: Sociology Press.

Unterkalmsteiner, M., Feldt, R. and Gorschek, T., 2014, A
Taxonomy for Requirements Engineering and
Software Test Alignment, ACM Transactions on
Software Engineering and Methodology, 23 (2).

Chung, L. and Leite, J.C.S. do Prado, 2009. On Non-
functional Requirements in Software Engineering, In
Conceptual Modeling: Foundations and Applications,
A. T. Borgida, V. K. Chaudhari, P. Giorgini and E. Yu
(eds.), Springer, pp. 363-379.

Slankas, J. and Williams, L., 2013. Automated Extraction
of Non-Functional Requirements in Available
Documentation, In International Workshop on Natural
Language Analysis in Software Engineering
(NaturaLise), co-located with ICSE-2013, pp. 9-16.

Kamata, M. I., Yoshida, A. Y., Yoshida, H. and Aoki, N.,
2007. Figure Out the Current Software Requirements
Engineering - What Practitioners Expect to
Requirements Engineering? In Proceedings of 14th

Asia-Pacific Software Engineering Conference
(APSEC 2007), pp. 89-96.

Cysneiros, L.M., Werneck, V. and Kushniruk, A., 2005.
Reusable Knowledge for Satisficing Usability
Requirements, In Proceedings of 13th IEEE
International Requirements Engineering Conference.

Liu, L., Yu, E. and Mylopoulos, J., 2003. Security and
Privacy Requirements Analysis within a Social
Setting, In Proceedings of 11th IEEE International
Requirements Engineering Conference, pp. 151-161.

Breaux, T.D. and Anton, A.I., 2008, Analyzing Regulatory
Rules for Privacy and Security Requirements, IEEE
Transactions on Software Engineering, 34(1), pp. 5-20

Coleman, G. and Connor, R.O., 2007. Using grounded
theory to understand software process improvement: A
study of Irish software product companies,
Information and Software Technology, 49(6), pp. 654-
667.

Crabtree, C. A., Seaman, C. B. and Norcio, A. F., 2009.
Exploring language in software process elicitation: A
grounded theory approach, In Proceedings of 3rd
International Symposium on Empirical Software
Engineering and Measurement, pp. 324-335.

Hoda, R., Noble, J. and Stuart, M, 2012. Developing a
grounded theory to explain the practices of self-
organizing Agile Teams, Empirical Software
Engineering, 17(6), pp. 609-639.

Strauss, A. and Corbin, J., 1990, Basics of Qualitative
Research: Grounded Theory Procedures and
Techniques, Sage Publications, Newbury Park CA.

Cockburn, A., 2000, Writing Effective Use Cases, Addison
Wesley.

Ghazarian, A., 2012. Characterization of Functional
Software Requirements space: the law of
Requirements taxonomic growth, In Proceedings of
20th IEEE International Requirements Engineering
Conference, pp. 241-250.

APPENDIX

Final Memo: User-privilege Requirements

Privileges indicate the rights enjoyed by some
authority. While privileges are associated with the
roles that represent some authority, but these roles
reflect the concepts of the domain and roles should
be considered along with domain model. Roles are
noun-concepts, whereas, privileges are action-
concepts – emphasizing the actions under the
purview of the authoritative role, i.e the description
of the role. How these privileges or actions are
carried out is a different consideration.

Functional�Requirements�Categorization�-�Grounded�Theory�Approach

307

