
Graph Database Application using Neo4j
Railroad Planner Simulation

Steve Ataky Tsham Mpinda, Luis Gustavo Maschietto, Marilde Terezinha Santos Prado
and Marcela Xavier Ribeiro

Universidade Federal de São Carlos, Rodovia Washington Luis, São Carlos, Brazil

Keywords: Graph Database, Relational Database, Railroad Planner, Simulation, Neo4j, Cypher.

Abstract: Such as relational databases, most graphs databases are OLTP databases (online transaction processing) of
generic use and can be used to produce a wide range of solutions. That said, they shine particularly when the
solution depends, first, on our understanding of how things are connected. This is more common than one may
think. And in many cases it is not only how things are connected but often one wants to know something about
the different relationships in our field - their names, qualities, weight and so on. Briefly, connectivity is the
key. The graphs are the best abstraction one has to model and query the connectivity; databases graphs in turn
give developers and the data specialists the ability to apply this abstraction to their specific problems. For this
purpose, in this paper one used this approach to simulate the route planner application, capable of querying
connected data. Merely having keys and values is not enough; no more having data partially connected through
joins semantically poor. We need both the connectivity and contextual richness to operate these solutions.
The case study herein simulates a railway network railway stations connected with one another where each
connection between two stations may have some properties. And one answers the question: how to find the
optimized route (path) and know whether a station is reachable from one station or not and in which depth.

1 INTRODUCTION

A graph database is a database specifically dedicated
to the storage type of graph data structures. It is there-
fore necessary to store only the data in the nodes and
arcs. By definition, a basic graph is any storage sys-
tem providing an adjacency between neighboring el-
ements without indexation: any neighboring entity is
directly accessible by a physical pointer. The types of
graphs that can be stored vary, the undirected graph
”single standard” to hyper-graph, including of course
the propertygraphs.

Such a database therefore meets generally the fol-
lowing criteria (Domenjoud, 2012): i) Optimized
storage for data represented in a graph, with the op-
tion to store the nodes and arcs; ii) Optimized stor-
age for reading and clickstream data in the graph (or
Traversal), without using an index to browse rela-
tions; iii) Flexible data model for certain products: no
need to explicitly create an entity for nodes or edges,
unlike the rigid model tables in a relational database;
iv) Integrated API to use some standard algorithms of
graph theory (shortest path, Dijsktra, A *, calculating
centrality ...).

A graph database is optimized for searching oper-
ator data locality, from one or more root nodes, rather
than global searches.

2 CURRENT POSITION

The NoSQL movement reached its heyday in recent
years, particularly as it seeks to address several issues
that relational databases do not respond adequately:
� availability to handle very large volumes and Par-

titioning;
� flexibility scheme;
� difficulty to represent and process complex struc-

tures such as trees, graphs, or relationships
in large numbers (In the databases ecosystem,
graphs bases are often positioned mainly in the
last two points:);

� process highly connected data;
� easily manage a complex and flexible model;
� deliver outstanding performance for local read-

ings, for graph traversal;

399Ataky Tsham Mpinda S., Maschietto L., Santos Prado M. and Ribeiro M..
Graph Database Application using Neo4j - Railroad Planner Simulation.
DOI: 10.5220/0005469003990403
In Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS-2015), pages 399-403
ISBN: 978-989-758-096-3
Copyright c
 2015 SCITEPRESS (Science and Technology Publications, Lda.)



3 GRAPH DATABASE,
RELATIONAL DATABASE AND
OTHER NoSQL

(Jones, 2012) coined the term ”relational hubs” to de-
scribe the differences. According to Alistair we are
at a crossroads. One of the paths leads to the ap-
proach adopted by most NoSQL databases, in which
the data are highly denormalized and we rely on the
application to gather with typically high latency and
understanding. The other path leads to the approach
adopted by the graphs databases in which we use
the expressive power of the graph to build a flexible
model and connected to the problem in question we
then request with low latency to better understand.

Relational databases are included. As the graphs
databases, relational databases have a model centered
around the queries. But this model is not as powerful
as bases graphs. In particular, it does not create on
the fly arbitrarily large structures, semantically rich
and connected. To create any broad structure with
a relational database we need to plan our knuckles
in advance. To authorize changes, you end up cre-
ating a lot of columns that can be zero. Result: Tables
”dotted” fanciful joins (expensive), object-relational
impedance problems even with simple applications.

Furthermore, a graph database is adapted to the
use of graph-type data structures like trees or derived,
especially if it is to exploit the relationships between
data. The case of perfect use of a search is to start
with one or more nodes and browse the graph. It is al-
ways possible to make myEntity.findAll type of read-
ings (”find all the entities of a kind”), but in this case
it is necessary to use an indexing system, which can
be internal as appropriate to the graph (super-nodes
for indexing) or above the graph (via Apache Lucene
for example).

Conversely, relational databases are well suited to
findAll queries through the internal structures of ta-
bles, especially if it is to perform aggregations of op-
erations on all the rows in a table.

Despite their names, they are, however, less effec-
tive on the holding relationships, which must be op-
timized by the index creation, including foreign key.
As mentioned previously, a graph database offers the
ability to browse by physical pointers relations where
foreign keys offer only logical pointer.

4 SOME GRAPH DATABASE
APPLICATION

Social networks modeling has obviously in recent

years become one of the most visible when using the
graph databases. LinkedIn comes easily to display
the degree of separation between each contact, which
is ultimately only the distance between nodes in the
graph representing people and their relationships. Al-
though very interesting, this problem is not very com-
mon because of the small number of actors in this
market.

Use cases that should reveal most common are
(Figuiere, 2010): i) modeling a set of knowledge
about people, and a market-sector organizations or
more generally ecosystem; ii) the specific business
data representation such as cinema (films, actors, di-
rectors, and so on), publishing (books, authors, pub-
lisher, and so on) or the description of all the parts
of an industrial machine how they are interconnected;
iii) In any case, such a database will be conveniently
integrated into a heterogeneous environment Persis-
tence (thus speaks of ”polyglot persistence”) that
would address the various problems the best solution,
etc.

5 Neo4j

Neo4j is a graph database in Java designed to be em-
bedded in an application or accessed in client/server
via a REST API. The graph manipulation in Java
Neo4j is very natural with its API: Node and Rela-
tionship are the major classes used to model a graph
while adding a set of properties for each node and re-
lationship.

Imagine a social networking application such as
Facebook, Linkedin and Viadeo in which the user can
bind with friends. This user wants to know what
friends he has in common with other friends. With
a graph, he could easily see the relationship. Here is
a basic example (Figure 1):

Figure 1: example of social network relationship.

The implementation of the below scheme in a re-
lational database is not easy. There are several ways
to do so, as the pattern Querie to make resolutions,

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

400



but it is complicated to use. To solve these problems
several type of graph databases exist, including the fa-
mous base Neo4j and HyperGraphDB and InfoGrid.

In a graph we can store two types of information:
nodes and links, or , in other words, nodes and edges.
Each node can have multiple links that point to other
nodes. It is through this that relationships can be be-
tween nodes. They will thus allow us to organize
them. In addition, each node can have multiple prop-
erties or attributes for stoker as key / value our data.

In brief: A graph store data in nodes that have
properties. The nodes are organized by relations that
have they same properties. A traversal allow navigat-
ing in the graph from a node and identifies roads or
paths with as nodes ordered according options. An
index is mapped by the properties of nodes and rela-
tionships.

And where is Neo4j? The database used to man-
age all types of objects, nodes, relationships and in-
dexes. And through the algorithms, internal and ex-
ternal tools such as Apache modules Lucuene, Cypher
or Gremlin recovery of our data is easier.

Developing applications on Neo4j is a breeze.
These language guides help you connect to Neo4j
from your preferred programming language. In this
work we used Java language.

6 CYPHER

Neo4j is generating much interest among NoSQL
database users for its features, performance and scal-
ability, and robustness. The software also provides
users with a very natural and expressive graph model
and ACID transactions with rollbacks(PANZARINO,
2014). However, utilizing Neo4j in a real-world
project can be difficult compared to a traditional rela-
tional database. Cypher fills this gap with SQL, pro-
viding a declarative syntax and the expressiveness of
pattern matching. This relatively simple but powerful
language allows you to focus on your domain instead
of getting lost in database access. With cypher, very
complicated database queries can easily be expressed
through.

7 CASE STUDY

In our case study (figure2) we are simulating a rail-
way network railway stations connected with one an-
other and each connection between two stations has a
property: the distance. The question is: how one can
find the optimized path and know whether a station is

reachable from one station or not. To do so, we need
to use two approaches:

1 breadth-first (Figure 3) search (BFS), earch al-
gorithm that begins at the root node and ex-
plores all the neighboring nodes. Then for each
of those nearest nodes, it explores their unex-
plored neighbor nodes, and so on, until it finds the
goal. In Neo4j-Cypher, one is traversing the nodes
given some additional criteria only relations with
a property visibility=public should be traversed,
aiming at filtering nodes.;

2 in addition of BFS, one is using Dijkstra algorithm
(Figure 4) to calculate the shortest route from one
station to another. It picks the unvisited vertex
with the lowestdistance, calculates the distance
through it to each unvisited neighbor, and updates
the neighbor’s distance if smaller. Mark visited
(set to red) when done with neighbors.

Figure 2: Railroad simulation.

Figure 3: DFS in Cypher.

8 EXPERIMENT AND RESULTS

The projects implementation using Java language
with Neo4j database access can occur in two different
ways: using JDBC connection driver (Java DataBase
Connectivity) or with the use of connection class be-
longing to Neo4j libraries imported with build depen-
dencies in MAVEN project specified in the pom.xml
file.

Graph�Database�Application�using�Neo4j�-�Railroad�Planner�Simulation

401



Figure 4: Dijkstra’s algorithm in Cyphe for finding the
shortest path between Amazonas and Minas considering
both direction.

Figure 5: Running the code above (Figure 3 and 4), we will
get such cypher output, that shows the shortest path between
Amazonas an Minas and the cost (depht and distance).

For connection to Neo4j with JDBC one must im-
port the JDBC connection driver for the project and
start the Neo4j service on the local machine on the
default port 7474 (http: // localhost: 7474 /) if the
project is under local basis. Thus, requests for access
to the database management system occur by using
already established connection on the local machine,
i.e, this process avoids the opening and closing the
connection each request performed by the developed
system.

Using the JDBC driver, it is possible to use
Cypher, the specific language for data manipulation
in Neo4j environment and return results using Result-
set. The process occurs using established connection
for both queries (MATCH) and inserts (CREATE) in
the database. This process denotes a shorter duration
compared to the process using EmbeddedDatabase
method of GraphDatabaseFactory class.

The use of the method GraphDatabaseFactory of
the EmbeddedDatabase class creates a file if it does
not exist, which will store the data managed by Neo4j
and opens the connection. When the database already
exists the connection is established in all required pro-
cess. In such cases it is always necessary to initiate
a connection and at the end of the process to close
it. This task causes an excessive consumption of time
compared to using JDBC connection driver.

Importantly, for the use of the method Embedded-
Database Neo4j service should not be started out of
the application, therefore, the application tries to es-
tablish a connection that is already established, this
attempt will result in a blocked connection error.

Although it seems a good option to use JDBC con-
nection driver due to the gain in response time, some
methods belonging to Neo4J library may not be used,
in the case of searches for depth and using dijkstra
algorithms. This fact is because the dijkstra algo-
rithm, for example, requires the identification of an
initial node to check nodes related and as the search
for JDBC returns the data nodes as String and not as
Node object, it would be impossible to identify and
begin the search. Now with the use of Neo4j libraries
one can open the connection and perform a search us-
ing the ExecutionResult class that will receive the re-
turn of the data as a list of Nodes objects.

9 CONCLUSION AND FUTURE
WORKS

The resulting model and associated queries are simply
projections of questions you want to ask about your
data. With Cypher, language query Neo4j, the com-
plementarity of these projections becomes apparent:
the paths used to create the structure of the graph are
the same as those used for querying.

One noted that this application, even though it be
possible to be implemented with relational databases,
the performance would not be as good as the graph
one. Moreover, it has been observed the when pro-
cessing many concurrent transactions, the nature of
the graph data structures helps distribute the transac-
tional cost through the graph. Usually as the graph
grows, the transactional conflict disappears. In other
words, the higher the graph, the larger the flow rate is
important, which is an interesting result.

As future works, it is being developed and im-
plemented some strategies capable of replacing some
meta-heuristic for railway and railroad optimization
since both of scenarios can be represented as graphs.
Moreover, some prediction techniques, such as esti-
mate the planning that better fit for some period of
time based on similar past plannings or datas are be-
ing implemented as well.

REFERENCES

Domenjoud, M. (2012). Bases de donnes graphes : un tour
dhorizon. France.

Figuiere, M. (2010). cember 5th, 2014 MICHAL FIGU-
IRE, NoSQL Europe : Bases de donnes graphe et
Neo4j. http://blog.xebia.fr/2010/05/03/nosql-europe-
bases-dedonnees-graphe-et-neo4j/, acessed on De-
cember 6th, 2014.

ICEIS�2015�-�17th�International�Conference�on�Enterprise�Information�Systems

402



Jones, A. (2012). http://www.infoq.com/fr/articles/graph-
databases-bookreview, acessed on December 5th,
2014.

PANZARINO, O. (2014). Learning Cypher, Onofrio Pan-
zarino. Packt, 1st edition.

Graph�Database�Application�using�Neo4j�-�Railroad�Planner�Simulation

403


