
A Lightweight Tool for Anomaly Detection in Cloud Data Centres

Sakil Barbhuiya, Zafeirios Papazachos, Peter Kilpatrick and Dimitrios S. Nikolopoulos
School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT7 1NN, Belfast, U.K. 

Keywords: Anomaly Detection, Cloud Computing, Data Centres, Monitoring, Correlation.

Abstract: Cloud data centres are critical business infrastructures and the fastest growing service providers. Detecting
anomalies in Cloud data centre operation is vital. Given the vast complexity of the data centre system software
stack, applications and workloads, anomaly detection is a challenging endeavour. Current tools for detecting
anomalies often use machine learning techniques, application instance behaviours or system metrics distribu-
tion, which are complex to implement in Cloud computing environments as they require training, access to
application-level data and complex processing. This paper presents LADT, a lightweight anomaly detection
tool for Cloud data centres that uses rigorous correlation of system metrics, implemented by an efficient corre-
lation algorithm without need for training or complex infrastructure set up. LADT is based on the hypothesis
that, in an anomaly-free system, metrics from data centre host nodes and virtual machines (VMs) are strongly
correlated. An anomaly is detected whenever correlation drops below a threshold value. We demonstrate and
evaluate LADT using a Cloud environment, where it shows that the hosting node I/O operations per second
(IOPS) are strongly correlated with the aggregated virtual machine IOPS, but this correlation vanishes when
an application stresses the disk, indicating a node-level anomaly.

1 INTRODUCTION

Data centres that host Cloud computing services are
catalysts for the economy and for society. Despite
the success and proliferation of the Cloud computing
paradigm, hosting data centres face immense chal-
lenges in terms of managing the scale and complex-
ity of their hardware infrastructure and their system
software stack. The hosted workloads also become
increasingly complex and diverse. The complexity of
the data centre ecosystem gives rise to frequent dis-
ruption of service, which manifests as lack of respon-
siveness, lower than expected performance, or com-
plete disruption of service. Anomaly detection in data
centres is a recently emerged field of research which
explores methods to automate the detection and di-
agnosis of service disruption in data centres via the
monitoring of system generated logs and metrics.

Log analytic tools (Lou et al., 2010; Xu et al.,
2009) extract features from logs and use statistical
learning techniques to automatically build models that
detect and diagnose system anomalies in data centres.
These models are not easy to understand by human
operators as they may detect problems in a high di-
mensional feature space without providing meaning-
ful explanations for the detected problems. Besides,
learning-based tools require a log parser for mining

the console logs in order to create the features of the
model. Log parsers require the source code of hosted
applications in order to recover the inherited syntax
of logs, and source code may not always be acces-
sible for legacy applications. As an alternative to us-
ing console logs, a number of anomaly detection tools
use system metrics (Tan et al., 2012; Wang, 2009;
Ward and Barker, 2013; Kang et al., 2010; Jiang et al.,
2009). Such metrics can be collected with minimum
overhead and without requiring access to the source
code of hosted applications.

Some tools (Wang, 2009; Kang et al., 2010) use
system metrics for detecting anomalies in Cloud data
centres and are developed to take the elasticity of
Cloud computing environments into consideration.
These tools provide higher accuracy and effective-
ness of detection. However, implementing them in
a large-scale Cloud system is complex as the tools
are configured in multiple layers of data monitoring
and analysis. EbAT (Wang, 2009) implements metrics
distribution, entropy time series construction, and en-
tropy time series processing across multiple monitor-
ing layers, before deploying an online tool for detect-
ing anomalies. Peerwatch (Kang et al., 2010) extracts
correlated behaviours between multiple instances of
individual applications and then applies those ex-
tracted correlations to identify anomalies. The use of

343Barbhuiya S., Papazachos Z., Kilpatrick P. and S. Nikolopoulos D..
A Lightweight Tool for Anomaly Detection in Cloud Data Centres.
DOI: 10.5220/0005453403430351
In Proceedings of the 5th International Conference on Cloud Computing and Services Science (CLOSER-2015), pages 343-351
ISBN: 978-989-758-104-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



application-level metrics in anomaly detection algo-
rithms may raise enormously the volume of data to
process in a large-scale system.

This paper introduces LADT (Lightweight
Anomaly Detection Tool), a lightweight tool
which monitors system-level and virtual machine
(VM)-level metrics in Cloud data centres to detect
node-level anomalies using simple metrics and
correlation analysis. LADT addresses the complexity
of implementing efficient monitoring and analysis
tools in large-scale Cloud data centres, by collecting
and storing the metrics generated by nodes and VMs
using Apache Chukwa (Rabkin and Katz, 2010). The
LADT algorithm performs correlation analysis on
the collected data using Apache Pig (Olston et al.,
2008) and MapReduce jobs in order to complete the
analysis in a timely manner.

As a use case, we deploy LADT to add a new di-
mension in anomaly detection for Cloud data centres,
namely correlation analysis between node-level disk
I/O metrics and VM-level disk I/O metrics. LADT
implements a simple algorithm, which uses Pearson’s
correlation coefficient. When the average correlation
coefficient value for a number of consecutive time in-
tervals drops below a threshold, an alarm is raised
to indicate an anomaly. The metrics data required in
this use case are limited to disk I/O activity data and
the algorithm to detect the anomalies is lightweight.
The major contribution of LADT over other tools in
this context is the ability to efficiently monitor and
detect anomalies in a Cloud data centre without re-
quiring complex algorithms, application source code
availability, or complex infrastructure set up.

We evaluate LADT in a lab-based Cloud ecosys-
tem, where it continuously collects and stores system
metrics from all nodes and VMs. The tool shows that
the disk I/O metrics in each hosted node are strongly
correlated with the aggregate VM disk I/O metrics,
but this correlation vanishes when a disk-stressing ap-
plication is introduced in a node, indicating a node-
level anomaly.

The remainder of the paper is organised as fol-
lows. Section 2 presents background and related work
in anomaly detection. Section 3 and Section 4 pro-
vide detail of the LADT architecture and algorithm,
respectively. Experimental results are presented and
discussed in Section 5. Section 6 concludes the paper
and discusses future work.

2 BACKGROUND AND RELATED
WORK

In this section we describe the challenges of detecting

anomalies in Cloud data centres. A number of differ-
ent tools and methods are considered and placed into
separate categories based on the input they analyse.
We consider two cases for monitoring and detecting
anomalies: console log based anomaly detection and
anomaly detection based on system metrics.

2.1 Anomaly Detection Challenges

Cloud data centres are implemented as large-scale
clusters with demanding requirements for service per-
formance, availability and cost of operation. As a re-
sult of scale and complexity, data centres exhibit large
numbers of system anomalies caused by operator er-
ror (Oppenheimer et al., 2003), resource over/under
provisioning (Kumar et al., 2007), and hardware
or software failures (Pertet and Narasimhan, 2005).
These anomalies are inherently difficult to identify
and resolve promptly via human inspection (Kephart
and Chess, 2003). Thus, automatic system monitor-
ing that captures system state, behaviour and perfor-
mance becomes vital. Computer system logs are the
main source of information for anomaly detection.
Logs can be of two types: structured or unstructured.
Unstructured logs are free-form text strings, such as
console logs, which record events or states of inter-
est and capture the intent of service developers (Lou
et al., 2010), whereas structured logs are numerical
logs, such as logs of system metrics, which capture
workload and system performance attributes, such as
CPU utilisation, memory usage, network traffic and
I/O.

2.2 Console Log based Anomaly
Detection

Analytic tools for anomaly detection based on console
logs, such as SEC (Rouillard, 2004), Logsurfer (The
and Prewett, 2003) and Swatch (Hansen and Atkins,
1993) check logs against a set of rules which define
normal system behaviour. These rules are manually
set by developers based on their knowledge of system
design and implementation. However, rule-based log
analysis is complex and expensive because it requires
significant effort from system developers to manu-
ally set and tune the rules. Moreover, modern sys-
tems consisting of multiple components developed by
different vendors and the frequent upgrades of those
components make it difficult for a single expert to
have complete knowledge of the total system and to
set the rules effectively. This complexity has given
rise to statistical learning based log analytic tools such
as the works of Lou et al. (Lou et al., 2010) and Xu
et al. (Xu et al., 2009), which extract features from

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

344



console logs and then use statistical techniques to au-
tomatically build models for system anomaly identifi-
cation.

Lou et al. (Lou et al., 2010) propose a statisti-
cal learning technique which consists of a learning
process and a detection process. The learning pro-
cess groups the log message parameters and then dis-
covers the invariants among the different parameters
within the groups. For new input logs, the detection
process matches their invariants among the parame-
ters with learned invariants from the learning process.
Each mismatch in the invariants is considered to be
anomalous. Xu et al. (Xu et al., 2009) propose a new
methodology to mine console logs to automatically
detect system problems. This first creates feature vec-
tors from the logs and then applies the PCA (Principal
Component Analysis) algorithm on the feature vec-
tors to detect anomalies. However, the learning based
tools require a custom log parser for mining the con-
sole logs in order to create the features for the learned
model. The log parsers require source code of the
hosted applications to recover the inherent structure
of the logs.

2.3 System Metric based Anomaly
Detection

A number of anomaly detection tools use system met-
rics (Tan et al., 2012; Wang, 2009; Ward and Barker,
2013; Kang et al., 2010; Jiang et al., 2009), which can
be collected with minimum overhead and without re-
quiring any access to the source code of hosted appli-
cations. Using system metrics for detecting anomalies
has advantages over traditional log-based anomaly
detection tools due to consideration of elasticity and
workload evolution in Cloud computing, but also due
to provisioning, scaling, and termination of services
in short periods of time. Some of these tools are based
on feature selection and machine learning outlier de-
tection to flag anomalies (Azmandian et al., 2011).

EbAT (Wang, 2009) is a tool that uses entropy
based anomaly detection. EbAT analyses metric dis-
tributions and measures the dispersal or concentration
of the distributions. The metrics are aggregated by en-
tropy distributions across the Cloud stack in order to
form entropy time-series. EbAT uses online tools like
spike detection, signal processing and subspace meth-
ods to detect anomalies in the entropy time-series.
The tool incurs the complexity of analysing the met-
ric distributions and also requires third party tools to
detect anomalies.

PeerWatch (Kang et al., 2010) uses canonical cor-
relation analysis (CCA) to extract the correlations be-
tween multiple application instances, where attributes

of the instances are system resource metrics such as
CPU utilisation, memory utilisation, network traffic
etc. PeerWatch raises an alarm for an anomaly when-
ever some correlations drop significantly. As a re-
sult of analysing the application instance behaviours
and correlating them, this tool is capable of detecting
application-level or VM-level anomalies. However,
this approach requires statistical metrics analysis and
knowledge of the hosted applications, which is a lim-
itation in large-scale Clouds, where hundreds of dif-
ferent types of applications run on the VMs.

Varanus (Ward and Barker, 2013) uses a gossip
protocol, which is layered into Clouds, groups and
VMs in order to collect system metrics from the VMs
and analyse them for anomalies. This approach al-
lows in-situ collection and analysis of metrics data
without requiring any dedicated monitoring servers to
store the data. However, setting up a dedicated gos-
sip protocol across thousands of VMs in a large-scale
Cloud environment and maintaining the gossip based
overlay network over each of the VMs is a challeng-
ing task.

The metric-based black box detection technique
presented in (Tan et al., 2012) uses the LFD (Light-
Weight Failure Detection) algorithm to detect sys-
tem anomalies. LFD raises an alarm when there is a
lack of correlation between two specific system met-
rics. The anomaly indicates a system problem and
each such problem is associated with a specific sys-
tem metrics pair. LFD is a lightweight algorithm with
lower complexity than EbAT, PeerWatch and Varanus.
Furthermore, LFD does not require any training or
source code and understanding of hosted applications.
The LFD follows a decentralised detection approach,
where each node analyses its own system metrics in
order to achieve higher scalability. However, this
may also limit LFD in large-scale Cloud data centres,
where it may not be feasible to implement LFD on
each node individually, due to overhead.

In this paper we address the limitations of ex-
isting system anomaly detection tools by introduc-
ing LADT. LADT uses Apache Chukwa (Rabkin and
Katz, 2010) for collecting metrics data from all nodes
and VMs in a data centre, and HBase (Vora, 2011)
for storing the data in servers to allow centralised
monitoring of Cloud systems. LADT implements a
new correlation algorithm to perform the correlation
analysis on the centrally stored metrics data. The
LADT algorithm correlates node-level and VM-level
metrics, which is a new approach to correlation anal-
ysis in detecting Cloud system anomalies. Further-
more, the LADT algorithm deals with the synchro-
nisation problem between the node and VM gener-
ated metrics timestamp. This problem arises due to

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

345



latency in storing the VM-level metrics in the moni-
toring server and results in poor correlation analysis.
LADT is lightweight as it uses a simplified infrastruc-
ture set-up for metrics data monitoring and the LADT
algorithm uses the simple Pearson correlation coeffi-
cient for analysing the metrics data. We program the
algorithm using Apache Pig (Olston et al., 2008) to
leverage MapReduce jobs in order to achieve higher
throughput. We use disk I/O metrics from both nodes
and VMs in an actual Cloud set-up to detect I/O per-
formance anomalies.

3 LADT ARCHITECTURE

The following sub-sections describe the architecture
of the LADT tool and its functionality.

3.1 Metrics Data Monitoring

LADT utilises an agent-based monitoring architecture
to retrieve system metrics from the hosting nodes and
VMs in a Cloud data centre. The monitoring agent
extracts system metrics from the nodes and VMs at
regular time intervals. The collector gathers the data
extracted by the agents. LADT uses the agents and
collectors provided by Apache Chukwa’s (Rabkin and
Katz, 2010) runtime monitoring. The Chukwa agent
collects CPU, memory, disk, and network information
from the hosting nodes using sigar (Sigar, 2014) and
from the VMs using Virt-Top (Virt-Top, 2014). The
Chukwa collector then collects the output generated
by the agents. The collector processes the data and
registers the input to HBase, which is installed in the
monitoring node.

Figure 1: LADT Architecture.

Figure 1 illustrates the architectural overview of
LADT. The tool installs one Chukwa agent for col-
lecting both node-level and VM-level metrics on each
monitored node in the data centre. LADT uses

Chukwa collectors running on data analysis servers,
for collecting node-level and VM-level metrics into
HBase. The correlation analysis on the stored met-
rics is performed with Pig Script. Each Chukwa agent
consists of adaptors which are dynamically loadable
modules that run inside the agent process. LADT
sends the metrics from the agents to the Chukwa col-
lectors via HTTP. The primary task of the collector is
to parse the collected data from the agent and store the
extracted information in an HBase database. HBase
runs on top of the Hadoop Distributed File System
(HDFS) (Shvachko et al., 2010).

3.2 Metrics Data Analysis

LADT runs the metrics correlation analysis on the
stored metrics using Apache Pig (Olston et al., 2008),
which in turn executes MapReduce jobs. A Pig Script
written in Pig Latin implements the LADT algorithm
to explore the correlation between the node-level and
VM-level metrics and to detect anomalies. The Pig
Script program first loads both the node-level and
VM-level system metrics from HBase. It then takes
the mean values of the metric samples in 15-second
windows. The program groups the mean values into
5-minute windows and calculates the Pearson Corre-
lation Coefficient between the node-level and VM-
level metrics in each group. Finally, the program
compares the correlation coefficient value with the
threshold value and generates an anomaly alarm if
it finds the coefficient value is below an adjustable
threshold level.

4 LADT Hypothesis and Algorithm

The underlying approach of LADT is based on the
premise of the LFD technique, which identifies two
metrics that are correlated during normal operation
but diverge in the presence of an anomaly.

4.1 LFD: The Baseline Method

LFD is a lightweight technique for anomaly detection
proposed by Tan et al. (Tan et al., 2012). The hypoth-
esis of LFD is that in an anomaly-free system, when-
ever an application requests service, the processing
alternates between two phases: the communication
phase and the compute phase. In the communication
phase, the application responds to requests received
from the user, reads data from the disk, or writes data
to the disk. In the compute phase, the application op-
erates on the received inputs or requests. At the op-
erational level, the compute phase is characterised by

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

346



user-space CPU activity, whereas the communication
phase is characterised by the behaviour of one or more
types of system-level resource consumption, includ-
ing kernel-space CPU time, disk I/O or network I/O.
Behavioural change between the two phases results in
a correlation between user-space CPU utilisation and
system resource consumption. The LFD also hypoth-
esises that in the case of an anomaly, there will be
a significant change in the relationship between the
compute phase and the communication phase. Hence,
there will be lack of correlation between user-space
CPU utilisation and system resource consumption,
based on which anomalies can be detected in the sys-
tem.

4.2 LADT Hypothesis

LADT formulates a new hypothesis, according to
which there is strong correlation between the node-
level and VM-level metrics in a Cloud system. Also,
that this correlation will drop significantly in the event
of any performance anomaly at the node-level and a
continuous drop in the correlation can indicate the
presence of a true anomaly in the node.

4.3 LADT Algorithm

We propose a new algorithm based on LFD, to corre-
late node-level and VM-level metrics. We use disk
I/O metrics as a running example. The algorithm
correlates disk I/O between the hosting node and the
VMs in order to detect anomalies in IaaS Cloud en-
vironments. LADT computes the Pearson correlation
coefficient (ρ) between the hosting node disk IOPS
and the aggregated VM disk IOPS. Pearson’s correla-
tion coefficient is the ratio of the covariance between
the two metrics to the product of their standard devi-
ations as described in Equation 1 and ranges between
-1.0 and 1.0.

ρN ,V =
covariance(N,V)

σNσV
(1)

where N = time-series of node disk IOPS
V = time-series of VM disk IOPS

Similar to the LFD algorithm, there are five tun-
able parameters in the LADT algorithm, which are
summarised in Table 1. LADT collects raw disk I/O
metrics with a 3 second period from both the nodes
and VMs. The metrics collection period is set to
more than a second in order to mitigate the timestamp
synchronisation problem between the node-level and
VM-level metrics, which arises as a result of latency
in storing VM-level metrics in the LADT monitoring
server. Before calculating the correlation coefficient

between the metrics, their mean values are taken in
small windows (LW = 5) in order to reduce noise. An
anomaly alarm is raised when the average ofD con-
secutive values of the correlation coefficient drops be-
low the thresholdT in order to detect the true anoma-
lies by considering a larger range of system behaviour.

We keep the same parameter values as the LFD
algorithm for four parameters (LW = 5,LS = 5,W =
60,D = 10) (Tan et al., 2012), which we experi-
mentally found to achieve best performance. How-
ever, the correlation window slide,S is changed from
12 to 60 as this amortises better the overhead of a
Pig (Hadoop) program, which is used to execute the
LADT algorithm. Therefore, each correlation coeffi-
cient value considers the lastLW ×W = 300 seconds
(5 minutes) of system behaviour.

5 EXPERIMENTAL EVALUATION

This section describes the workload and the exper-
imental set-up used to evaluate LADT. The section
also analyses our experimental results and the func-
tionality of the LADT tool.

5.1 Experimental Set-up

For evaluating LADT we have established a Cloud
testbed with three compute nodes: Host1, Host2, and
Host3 on three Dell PowerEdge R420 servers. Each
node is running CentOS 6.5 with the 2.6.32 Linux ker-
nel and has 6 cores, 2-way hyper-threaded, clocked at
2.20 GHz with 12GB DRAM clocked at 1600 MHz.
Each node includes a 7.2K RPM hard drive with 1TB
of SATA and an onBoard Broadcom 5720 Dual Port
1GBE network card. We run three VMs on each
compute node using KVM. Each VM runs the disk
I/O intensive Data Serving benchmark from Cloud-
Suite (Ferdman et al., 2012). Disk read/write met-
rics are generated every three seconds in the nodes
using sigar (Sigar, 2014) and in the VMs using Virt-
Top (Virt-Top, 2014).

The experiment runs over a time period of 60 min-
utes, where we inject an anomaly in Host1 at the end
of the first 30 minutes. We use a disk stressing ap-
plication which increases the disk read/write opera-
tions and runs for two minutes with a two minute
interval between runs for the remaining 30 minutes.
This anomaly reflects a Blue Pill or a Virtual Machine
Based Rootkit (VMBR) attack on a Cloud system,
where the attacker introduces fake VMs via a hidden
hypervisor on the victim hosting node to get access
to the hardware resources such as CPU, memory, net-
work or disk (Dahbur et al., 2011). This anomaly may

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

347



Table 1: Tunable parameters in LADT Algorithm.

LW , low-pass window width raw samples to take mean
LS, low-pass window slide raw samples to slide

W , correlation window width samples to correlate
S, correlation window slide samples to slide detection window

D, diagnosis window correlation coefficients to consider

also represent a distributed denial-of-service (DDoS)
attack, which forces the cloud service to consume sys-
tem resources such as processor power, memory, disk
space, or network bandwidth to an intolerable level
(Rajasekar and Imafidon, 2010).

Earlier research (Antunes et al., 2008) has already
used system resource-level anomaly analysis to deal
with such attacks. The work of Antunes et al. (An-
tunes et al., 2008) analyses system resource utilisation
to explore the normal system behaviour and builds a
model, based on which it detects the abnormal be-
haviours in the system, and subsequently, the attacks.
However, this approach to detecting attacks requires
a large amount of historical data and use of machine
learning techniques. In contrast, LADT can detect the
attacks using correlation analysis between the node-
level and the VM-level metrics.

LADT is implemented in the testbed, which uses
Chukwa agents in each of the hosting nodes to col-
lect both the hosting node and VM disk read/write
metrics. The tool stores the collected metrics in the
HBase running in the monitoring node, which is an
Intel Xeon E5-2650 server. Finally, in the monitoring
node, LADT analyses the stored metrics by running
the algorithm programmed in Pig Latin, which cal-
culates the correlation between the individual hosting
node disk I/O operations and the aggregated disk I/O
operations of all the VMs in that node, to detect the
anomaly injected in Host1.

5.2 Results and Discussion

We provide experimental results for each host in time-
series of total disk I/O operations per second (IOPS)
and correlation coefficient values between the node
disk IOPS and aggregated disk IOPS of all the VMs
in the node. We present the normalised values of the
IOPS, which are the mean values in small windows of
15 seconds, including 5 samples of metrics data (the
frequency of metrics collection is 3 seconds). The
correlation coefficient values are calculated in corre-
lation windows of 5 minutes, covering 5 minutes of
metrics data. Hence, there are 12 correlation intervals
in the 60 minutes of experiment.

The results presented in Figure 2 shows that
Host1’s disk IOPS remains around 400 for the first
30 minutes and starts fluctuating in the next 30 min-

utes as a result of the injected anomaly, whereas the
aggregated disk IOPS of the VMs remains below 200
throughout the experiment. The reason for the lower
values of the aggregated disk IOPS of the VMs is
the use of the extra software layer of the hypervisor,
which is interposed between guest operating systems
and hardware (Li et al., 2013). The hypervisor mul-
tiplexes I/O devices by requiring guest operating sys-
tems to access the real hardware indirectly and hence
induces an overhead in the I/O context.

The correlation analysis for Host1 in Figure 2
clearly shows that there is a strong correlation be-
tween the hosting node IOPS and the aggregated
IOPS of the VMs for the first half of the experi-
ment, where the correlation coefficient values are of-
ten above 0.5 with an average value of 0.6. However
the correlation value drops below 0.0 suddenly at the
sixth interval when the disk stress starts. The coeffi-
cient value remains very low throughout the second
half with an average value of -0.02. This is a clear re-
flection of the injected anomaly in Host1, which dis-
torts the correlation between the hosting node IOPS
and aggregated IOPS of the VMs.

Mean Value Intervals

IO
P

S

0 50 100 150 200 250

0
20

0
40

0
60

0
80

0
10

00

Correlation Intervals

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: (Top) Time-series of node disk IOPS (dashed)
and aggregated VM disk IOPS (solid) in Host1. (Bottom)
Correlation coefficients between the two time-series mea-
surements.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

348



Figure 3 shows that for Host2, the node IOPS and
aggregated IOPS of the VMs are steady and their cor-
relation coefficient average value is 0.4. The low av-
erage is due to the temporary drops, which happen
because of the fluctuation in the overhead of I/O oper-
ations in the VMs (Li et al., 2013). Similar behaviour
is exhibited by Host3 (Figure 4), where in fact there
are more correlation coefficient values above 0.5 and
a better average coefficient value of 0.5.

Mean Value Intervals

IO
P

S

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0

Correlation Intervals

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3: (Top) Time-series of node disk IOPS (dashed)
and aggregated VM disk IOPS (solid) in Host2. (Bottom)
Correlation coefficients between the two time-series mea-
surements.

Experimental results also reveal that when using
LADT for disk I/O metric data collection and corre-
lation analysis, a latency of 10 minutes is observed,
where a 5 minute latency is required to hold a his-
torical metrics data set of a 5 minute window and
5 additional minutes are used to analyse the metrics
data. This latency is comparable to the latency of on-
line data centre service troubleshooting tools (Wang,
2009) and, as yet, benefits from no optimisation of the
analysis workflow at the server, which we are explor-
ing in ongoing work.

5.3 LADT Overhead

Our next experiment assesses LADT in terms of
the overhead that it introduces on hosted application
VMs, because of the LADT agents that collect met-
rics simultaneously with the execution of application
workloads. To investigate this we executed a test
where a single VM runs a data serving benchmark for

Mean Value Intervals

IO
P

S

0 50 100 150 200 250

0
10

0
30

0
50

0
70

0
Correlation Intervals

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4: (Top) Time-series of node disk IOPS (dashed)
and aggregated VM disk IOPS (solid) in Host3. (Bottom)
Correlation coefficients between the two time-series mea-
surements.

the duration of 10000 data operations with a rate of
200 operations/sec. With an agent running concur-
rently with the data serving benchmark, and during
an execution interval of 50 seconds, the average up-
date and read latencies of the benchmark were 0.21
ms and 8.28 ms, respectively. With no agent running
and during the same 50 second execution interval, the
average update and read latencies were 0.21 ms and
6.97 ms, respectively. In both cases we observed the
expected response time from the benchmark and any
differences observed in the average latencies of the
update and read operations were justified by the vari-
ability introduced by the storage medium.

5.4 Further Analysis

We observe that during normal operation there is a
strong correlation between the node disk IOPS and
aggregated disk IOPS of the VMs in all three host-
ing nodes. However, the correlation becomes weaker
during some intervals for short periods. This happens
because in these intervals the overhead on the VM I/O
operations resulting from accessing the disk indirectly
via the hypervisor (Li et al., 2013) rises unpredictably
and degrades the VM IOPS with respect to the cor-
responding node IOPS. Although the correlation co-
efficient value drops in some intervals even when the
hosts are in a stable expected state, this drop is not as
significant as it is in the case of an anomaly. More-
over, the correlation coefficient average drops below

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

349



0 when an anomaly occurs, whereas the average co-
efficient value ranges between 0.4 and 0.6 when the
hosts are anomaly-free. We also observe that, even
though all three hosts are running identical workloads
in their VMs, both the IOPS and the correlation co-
efficient averages vary across the hosts. This again
happens because of the varying overhead in the IOPS
due to the hypervisor layer between the hosts and the
VMs.

We conclude that the correlation coefficient values
require normalisation in order to avoid false alarms
for anomaly, which could arise because of a fluctua-
tion in the overhead on VM IOPS. We detect the true
anomalies by considering a larger period of system
behaviour and this is done by taking the average of
D consecutive coefficient values and checking if it is
below the threshold value, T. The values of T and D
depend on how often the user wishes to get an alarm
for the anomalies. From the results, we observe the
anomaly as the security attack in Host1 when the cor-
relation coefficient value drops significantly and stays
low for a longer period of time.

6 CONCLUSION AND FUTURE
WORK

We presented LADT, a lightweight anomaly detection
tool for Cloud data centres. LADT is based on the
hypothesis that, in an anomaly-free Cloud data cen-
tre, there is a strong correlation between the node-
level and VM-level performance metrics and that this
correlation diminishes significantly in the case of ab-
normal behaviour at the node-level. The LADT al-
gorithm raises an anomaly alarm when the corre-
lation coefficient value between the node-level and
VM-level metrics drops below a threshold level. We
have demonstrated a lightweight distributed imple-
mentation of LADT using Chukwa and also demon-
strated that the tool can detect node-level disk per-
formance anomalies by correlating the hosting node
IOPS with the aggregated hosted VM IOPS. Such
anomalies may arise as a result of security attacks
such as distributed denial-of-service (DDoS). We also
demonstrated that LADT introduces acceptably low
overhead, while recognizing that the implementation
is amenable to optimisation along the entire path of
metrics collection, data aggregation and analysis.

We intend to conduct a detailed analysis of pos-
sible attack models of the system. LADT can
also detect CPU/memory/network related perfor-
mance anomalies, due to the performance implica-
tions of virtualisation and resource management soft-
ware stacks. We wish to explore these anomalies

in more detail, using both controlled and uncon-
trolled set-ups (i.e. production-level set-ups with un-
seen anomalies) in our Cloud testbed. We plan to
conduct a more thorough analysis of LADT perfor-
mance, scalability and intrusion minimisation with re-
spect to the hosted VMs. We are particularly inter-
ested in co-executing VMs with diverse characteris-
tics (e.g. CPU-intensive, I/O-intensive), and latency
sensitivity. Our aim is to understand whether adapt-
ing parameters such as the number of agent adaptors
in the hosts, the frequency of data collection per VM
in the hosts and the number of data aggregation tasks
and cores used by collectors is necessary to keep the
monitoring overhead low.

ACKNOWLEDGEMENTS

This work has been supported by the European Com-
mission and the Seventh Framework Programme un-
der grant agreement FP7-610711 (CACTOS).

REFERENCES

Antunes, J., Neves, N., and Verissimo, P. (2008). Detec-
tion and prediction of resource-exhaustion vulnerabil-
ities. In Software Reliability Engineering, 2008. IS-
SRE 2008. 19th International Symposium on, pages
87–96.

Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J.,
Aslam, J., and Kaeli, D. (2011). Virtual machine
monitor-based lightweight intrusion detection.ACM
SIGOPS Operating Systems Review, 45(2):38–53.

Dahbur, K., Mohammad, B., and Tarakji, A. B. (2011). A
survey of risks, threats and vulnerabilities in cloud
computing. InProceedings of the 2011 International
Conference on Intelligent Semantic Web-Services and
Applications, ISWSA ’11, pages 12:1–12:6, New
York, NY, USA. ACM.

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Al-
isafaee, M., Jevdjic, D., Kaynak, C., Popescu, A. D.,
Ailamaki, A., and Falsafi, B. (2012). Clearing the
clouds: a study of emerging scale-out workloads
on modern hardware. InProceedings of the seven-
teenth international conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’12, pages 37–48, New York, NY,
USA. ACM.

Hansen, S. E. and Atkins, E. T. (1993). Automated system
monitoring and notification with swatch. InProceed-
ings of the 7th USENIX Conference on System Admin-
istration, LISA ’93, pages 145–152, Berkeley, CA,
USA. USENIX Association.

Jiang, M., Munawar, M. A., Reidemeister, T., and Ward,
P. A. (2009). System monitoring with metric-
correlation models: Problems and solutions. InPro-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

350



ceedings of the 6th International Conference on Au-
tonomic Computing, ICAC ’09, pages 13–22, New
York, NY, USA. ACM.

Kang, H., Chen, H., and Jiang, G. (2010). Peerwatch: A
fault detection and diagnosis tool for virtualized con-
solidation systems. InProceedings of the 7th Inter-
national Conference on Autonomic Computing, ICAC
’10, pages 119–128, New York, NY, USA. ACM.

Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing.Computer, 36(1):41–50.

Kumar, V., Cooper, B. F., Eisenhauer, G., and Schwan,
K. (2007). imanage: Policy-driven self-management
for enterprise-scale systems. InProceedings of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware, Middleware ’07, pages 287–307, New
York, NY, USA. Springer-Verlag New York, Inc.

Li, D., Jin, H., Liao, X., Zhang, Y., and Zhou, B. (2013).
Improving disk i/o performance in a virtualized sys-
tem. J. Comput. Syst. Sci., 79(2):187–200.

Lou, J.-G., Fu, Q., Yang, S., Xu, Y., and Li, J. (2010). Min-
ing invariants from console logs for system problem
detection. InProceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIXATC’10, pages 24–24, Berkeley, CA, USA.
USENIX Association.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. (2008). Pig latin: A not-so-foreign lan-
guage for data processing. InProceedings of the 2008
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’08, pages 1099–1110, New
York, NY, USA. ACM.

Oppenheimer, D., Ganapathi, A., and Patterson, D. A.
(2003). Why do internet services fail, and what can be
done about it? InProceedings of the 4th Conference
on USENIX Symposium on Internet Technologies and
Systems - Volume 4, USITS’03, pages 1–1, Berkeley,
CA, USA. USENIX Association.

Pertet, S. and Narasimhan, P. (2005). Causes of failure in
web applications. Technical report, CMU-PDL-05-
109.

Rabkin, A. and Katz, R. (2010). Chukwa: A system for re-
liable large-scale log collection. InProceedings of the
24th International Conference on Large Installation
System Administration, LISA’10, pages 1–15, Berke-
ley, CA, USA. USENIX Association.

Rajasekar, N. C. and Imafidon, C. (2010). Exploitation of
vulnerabilities in cloud storage. InProceedings of the
First International Conference on Cloud Computing,
GRIDs, and Virtualization, pages 122–127.

Rouillard, J. P. (2004). Refereed papers: Real-time log file
analysis using the simple event correlator (sec). In
Proceedings of the 18th USENIX Conference on Sys-
tem Administration, LISA ’04, pages 133–150, Berke-
ley, CA, USA. USENIX Association.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The hadoop distributed file system. InPro-
ceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST
’10, pages 1–10, Washington, DC, USA. IEEE Com-
puter Society.

Sigar (2014). https://support.hyperic.com/display/sigar/home.
Tan, J., Kavulya, S., Gandhi, R., and Narasimhan, P.

(2012). Light-weight black-box failure detection for
distributed systems. InProceedings of the 2012 Work-
shop on Management of Big Data Systems, MBDS
’12, pages 13–18, New York, NY, USA. ACM.

The, J. P. and Prewett, J. E. (2003). Analyzing cluster log
files using logsurfer. Inin Proceedings of the 4th An-
nual Conference on Linux Clusters.

Virt-Top (2014). http://virt-tools.org/about/.
Vora, M. (2011). Hadoop-hbase for large-scale data. In

Computer Science and Network Technology (ICC-
SNT), 2011 International Conference on, volume 1,
pages 601–605.

Wang, C. (2009). Ebat: Online methods for detecting utility
cloud anomalies. InProceedings of the 6th Middle-
ware Doctoral Symposium, MDS ’09, pages 4:1–4:6,
New York, NY, USA. ACM.

Ward, J. S. and Barker, A. (2013). Varanus: In situ mon-
itoring for large scale cloud systems. InProceed-
ings of the 2013 IEEE International Conference on
Cloud Computing Technology and Science - Volume
02, CLOUDCOM ’13, pages 341–344, Washington,
DC, USA. IEEE Computer Society.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan,
M. I. (2009). Detecting large-scale system prob-
lems by mining console logs. InProceedings of
the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 117–132, New
York, NY, USA. ACM.

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

351


