
Facilitating the Reactive Web
A Condition Action System using Node.js

Alexander Gröflin, Dominic Bosch, Martin Guggisberg and Helmar Burkhart
High Performance and Web Computing Group, University of Basel, Spiegelgasse 1, CH-4051 Basel, Switzerland

Keywords: Reactive Web, Condition Action System, Event Aggregation, Node.js.

Abstract: The orchestration of the Web is a big issue for Web users all around the world. Web users have a high interest
in services, which are able to personalise and customise the Web. However, for Web reactivity there exists only
a few limited solutions that allow the aggregation of Web resources. This paper takes a look at existing event-
based methods that build upon Event-Condition-Action (ECA) Rules and Complex Event Processing (CEP).
Moreover, this paper illustrates the architecture of a fully functioning Condition Action System prototype for
the creation of reactivity in between Web resources. In a proof of concept, we could detect and determine the
change interval of electronic newspaper headlines. With the proposed system, we are able to orchestrate Web
resources e.g. Detecting Web Changes.

1 INTRODUCTION

The invention of the Web is without doubt one of the
most influencing technological developments with re-
spect to economy, education and social life. While the
first decade of Web existence is characterised by the
proliferation of home and business websites includ-
ing web-shops, the last decade transformed the Web
to a manifold information service. Service-Oriented
Architectures (SOA) and Web services have been pro-
posed for quite a time. While business services turned
out to be successful from the economic side, the Web
still has unused potentials in terms of programmable
automation, customisation and personalisation.

Web users find themselves mashing up data and
functionality from different Web resources and ser-
vices manually, e.g. a press release provokes a Twit-
ter post. Consequently, Web users use the Web with-
out full automation. Manual use of services always
implies a delay of reaction; real-time orchestration of
services is limited. Great value would be added for
Web users if specific interaction had been automat-
ically achieved e.g. detecting and reacting on cer-
tain updates. This would require an instrument for
the identification and filtering of changes, the adop-
tion of time constraints, composition and placement
of the outcome in the users preferred Web resource or
service (Windley, 2012).

To achieve this reactivity, users need Mashup plat-
forms and tools with which they are able to auto-

mate tedious tasks and to react on certain events in
a predefined way. There have been several steps un-
dertaken to create such tools and platforms in or-
der to tackle basic automation (Akbar et al., 2014).
For example, IFTTT (https://ifttt.com/) or Zapier
(https://zapier.com) focus on a one to one connection
between Web services at the same time e.g. weather
change triggers a Twitter tweet. A shortcoming of
these platforms is that events, which have occurred in
several distributed systems, cannot be detected as part
of one rule. It is certainly not possible to create cus-
tom event listeners and actions. For additional cus-
tomisation, these service providers have to set up such
a service connection for each Web resource them-
selves. Furthermore, selecting more actions on one
single trigger is not possible. They rather create a
tunnel from one Web service to another, than creat-
ing reactivity in between several resources.

A variety of languages for Web service orches-
tration has been reported in the last years, e.g. (Di-
jkman et al., 2008), (Wohed et al., 2003). Most of
these languages address workflows, business collabo-
rations and long running interactions for well-defined
processes. Our goal was to create a Condition Ac-
tion System with focus on real-time reaction, which
allows inbuilt coding for the reactivity between Web
resources (Blackstock and Lea, 2014).

In this paper, we assess event-based technologies
to create a reactive system, which is able to orches-
trate Web resources. In addition, we demonstrate the

89Gröflin A., Bosch D., Guggisberg M. and Burkhart H..
Facilitating the Reactive Web - A Condition Action System using Node.js.
DOI: 10.5220/0005446800890095
In Proceedings of the 11th International Conference on Web Information Systems and Technologies (WEBIST-2015), pages 89-95
ISBN: 978-989-758-106-9
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Proposed scheme of a system in which a user
aggregates Web resources. Observed changes in these re-
sources form events that are processed in a reactivity entity.
The output is an action that control Web resources. Person-
alised settings allow a user-specific orchestration of Web
resources e.g. Facebook, Google Mail, and Twitter etc.

architecture of a prototype system, show web tech-
nologies used, and address the issue how to create
and to detect events for a more efficient Web expe-
rience. Our approach takes the direction towards the
reactive Web. In Section 2, we outline the need for
an orchestration of Web resources and describe the
Event-Condition-Action (ECA) paradigm. Section 3
describes a particular use case. In Section 4, we
present the architecture of our Condition Action Sys-
tem prototype, its functionalities and a proof of con-
cept. Conclusively, Section 6 specifies a conclusion.

2 AGGREGATION OF WEB
RESOURCES

In recent years, many mashup tools and platforms ap-
peared on the Web that enable Web users to create
reactive behaviour. One of the earliest attempts is Ya-
hoo! Pipes, which defines itself as a data mashup
tool (Yahoo!, 2010). It aggregates content from dif-
ferent RSS feeds. Desired data are selected from dif-
ferent feeds; the output also consists of a RSS feed or
data in JavaScript Object Notation (JSON). This also
means that the field of application is also very lim-
ited because it uses RSS as input. Real mashup tools
for example IFTTT or Zapier focus on directing the
data flow from one Web service to another. By or-
chestrating Web APIs real reactivity is being created
(Ovadia, 2014). Such an approach opens up the pos-
sibilities of automation in between different Web ser-
vices. However, the key problem with this conception
is that they do not offer generic access to any arbitrary
Web resource. Unfortunately, not every Web resource
has an accessible interface in these tools. This means

that these platforms have to provide the interface to
the desired Web services. Another problem of Web
mashups like IFTTT is the restricted programmabil-
ity. IFTTT does not allow Boolean operators, which
hinders solving expressive problems. Sometimes it
would be useful to react on more complex rules than
the simple If This Then That scheme. Concluding,
these services rather interconnect existing services
and remove the need for any coding (Blackstock and
Lea, 2014).

2.1 Event-Condition-Action (ECA)
Paradigm

Increasing amount of literature emerges on reactivity
related to the Web (Paschke, 2014), (Hausmann and
Bry, 2013), (Paschke et al., 2012). The rationale be-
hind these studies is an event-based system, which in
turn rely on ECA Rules. ECA Rules consist of three
different parts:

� Event: An identifier which detects events

� Condition: An expression which determines
whether an action should be triggered or not

� Action: A set of instructions which describe the
reactive behaviour

Event-based characteristics allow users to make
use of loosely coupled Web services, which signifi-
cantly improves scalability in information exchange
and distributed workflows. It semantically decouples
space, time and synchronisation between event pro-
ducer and event consumer (Hasan et al., 2012). Thus,
the resulting goal is to remove ”explicit dependencies
between the interacting participants” (Eugster et al.,
2003). Simple events occur at a single point in time
(e.g. a website update). Event-based systems may re-
act on simple events, but this is often not enough to
detect meaningful situations among different Web re-
sources. A composition of events reflects a complex
event, which is multi-layered and has a distinct dura-
tion. It would enable Web users to detect meaningful
situations consisting of simple events and reacting on
them.

2.2 Retrieving Events using Webhooks

Webhooks are services, which report state changes
in a push manner (Trifa et al., 2010). Thus,
they allow real-time propagation of events. Exist-
ing manifestations of Webhooks are available for
server to browser communication, such as Comet
(Duquennoy et al., 2009) or Server-Sent Events
(http://dev.w3.org/html5/eventsource/). The instant

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

90



delivery of information whenever it gets available
makes this notion valuable for real-time handling.

In principle, Webhooks consist of an URI, which
points to a Web resource and a sender. It forwards
data as soon as it gets available within the pub-
lish/subscribe pattern (Eugster et al., 2003). When-
ever an event occurs, new data is delivered via a Web-
hook, which passes it along to a specific URI. There-
fore, Webhooks use Web services as callbacks on re-
mote Web APIs (Benslimane et al., 2008) e.g. de-
livering event data to predefined Web resources. An
open server-to-server publish/subscribe protocol is
PubSubHubbub (https://code.google.com/p/pub sub-
hubbub/), which uses Webhooks to announce updates
from other servers with interesting content. Through
push notifications and instant event propagation it is
possible to create a reactive real-time system.

2.3 Evolutionary Event Aggregation

Complex Event Processing (CEP) is rather important
for event aggregation (Anicic et al., 2010) and may
be used for event compositions. CEP focuses on pre-
defined relations and temporal patterns, typically on
different streams of data or events. CEP processes
complex event patterns; in other words, it may de-
rive complex events from simple events. However,
we believe in an asynchrony event aggregation to-
gether with ECA Rules. This enables processing large
amounts of data and assembling compositions in real-
time.

ECA
Rules

Action
Dispatcher

Events Actions

Rule
Engine

Event
Trigger

Data

Event
Aggregation

ECA
Rules

Event
Listener

Web

Service
Web

Service

WebService

Figure 2: Condition Action System connects to Web ser-
vices. Web services deliver data to the Event Trigger or
events to the Event Listener. Subsequently, the Rule Engine
processes events according to predefined ECA Rules and
instructs the Action Dispatcher for further actions.

After all, ECA Rules may help the Rule Engine
to detect aggregated data changes in order to dispatch
predefined actions. The last piece in our scheme is
the Action Dispatcher, which is responsible for the
binding of data flow and actions between heteroge-
neous Web resources. An Action Dispatcher allows
flexible coupling with Web Resources, similar to the

Event Trigger module. Event Trigger and Action Dis-
patcher are abstractions of the communication flow in
between Web services and resources.

3 CONDITION ACTION SYSTEM
IMPLEMENTATION

We have developed a Condition Action System proto-
type, which fulfils our architectural model for a re-
active Web. Since Web service communication is
latency-driven, we assumed asynchronous commu-
nication and scalability mechanisms to be core fea-
tures for our prototype system. Another key aspect
is the programmability of Events, which means that
JavaScript code can be programmed and ran in the
system straightaway (See 3.2 Web Change Detection
Rule).

Figure 3: Web users create Event Rules in order to define
the desired reaction out of all available Events. Specific
Conditions and Actions are programmable during the cre-
ation of an Event Rule. Administrators may either create
(program) Events or Actions.

3.1 Detection Interval

New information confronts us all over the Web. Un-
fortunately, we waste a lot of time until we realise
that these updates have happened. The challenge re-
mains to be the fastest to know about these updates.
Manual capturing of this knowledge implies a mas-
sive delay in reaction and it is certainly not in real-
time. Great value would be added for academics and
businesses but also for Web users if desired informa-
tion from any source had been automatically retrieved
within seconds of a change. Detecting and reacting
to Web changes would require an instrument for the

Facilitating�the�Reactive�Web�-�A�Condition�Action�System�using�Node.js

91



identification, the capturing, the aggregation and the
placement of knowledge in the users preferred way.

Sometimes Web users become aware of knowl-
edge within seconds. More frequently, new informa-
tion stays undetected for several hours when not days
e.g. a deadline extension. To capture such events our
Condition Action System provides reaction mecha-
nisms regarding time.

Figure 4: The Condition Action System focuses on reac-
tion times within the red boundaries. An interval time must
be set for the detection of events and is limited to seconds,
minutes, hours or days. Different areas are in scope of the
system e.g. reports, weather forecast and press releases.

3.2 Web Change Detection Rule

Many documents in the Web are dynamically modi-
fied over time. Some might change in an interval of
a few minutes e.g. reports on news portals (minutes),
while other content changes much slower e.g. entries
on encyclopaedia sites such as Wikipedia (days). To
detect these changes, a Condition Action System must
keep track of the document for example with the help
of a history. This would allow to compare Web re-
sources and in case of a specific change, it would trig-
ger an action.

Consequently, Web users have to set up a detec-
tion rule, which checks a website (URI) for changes.
The idea is to detect for example a paper submission
deadline for a conference. On a date change on the
website, the system sends the new submission date to
an email address.

The rule has to use an Event Trigger, we name
it DetectWebsiteChange, which actually identifies
changes on a defined website. The rule only encom-
passes the URI and the HTML tag e.g. an id or a class.
If the Condition Action System detects a change, a
mail will be sent to the provided email address. Be-
low the Web change detection rule is represented in
the JSON format:

{
"id": "Web Detection Rule",
"event": {
"DetectWebsiteChange->byId": {

"uri": "http://webist.org",
"id": "DOM element"

}
},

"conditions": [],
"actions": {
"OnWebsiteChange->writemail": {
"receipient": "mail@address.com",
"text": "Deadline has changed!"

}
}

}

The JSON rule code requests the Event Trig-
ger DetectWebsiteChange to look for changes on the
given URI and selects the HTML element with the
given id attribute. As soon as a change in this partic-
ular HTML element is detected, it is pushed forward
as an event. In this case, conditions and actions are
taking over. If for example the action write mail is
correctly configured for this rule, a mail will be sent
with the changed deadline. For the means of customi-
sation, actions can also access data from events.

3.3 Condition Action System
Architecture

The Condition Action System prototype consists of
five modules (see Figure 5):

� Poller: Loads Event Trigger modules and for-
wards their emitted events to the Event Queue.
Event Trigger modules poll for changes in the
Web and transform them into events.

� Event Listener: Listens on local URIs of active
Webhooks for events and forwards them to the
Event Queue.

� Event Queue: Acts as an event buffer.

� Rules Engine: Processes events from the Event
Queue whenever they get available.

� User Request Handler: The user interfaces to ad-
ministrate Event Triggers, Webhooks, Rules and
Action Dispatchers.

These modules deal with event and action objects.
An event object has a time and source attribute while
an action has a target URI and additional configura-
tion parameters. Condition objects consist of a logical
statement with on event based parameters.

On start-up, the Condition Action System loads all
stored rules and for each rule it loads all related Ac-
tion Dispatchers. The system also notifies the Poller
in case of a new rule, which in turn loads an Event
Trigger. Subsequently, the Event Listener loads all
stored Webhooks and starts to listen for new events.
At this stage, the Condition Action System is up and
running and accepts administration requests for Event
Triggers, Webhooks, Rules and Action Dispatchers.
If an event occurs, data is forwarded to the Event

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

92



Passively
Retrieve Events

Dispatch
Actions

Dequeue

Events

Enqueue

Events

Actively
Detect Events

Create / edit
Action Dispatchers

Action Dispatcher
Administration

Load Event Triggers
for new / updated Rules

Event
ListenerPoller

Create / edit
Event Triggers

Store / load

Event Trigger
Administration

New / updated Rule
notification

Create / edit
Rules

Store / load Store / load

Load Action Dispatchers
for new / updated Rules

Web

Event
Triggers Rules Action

Dispatchers

User Request
Handler

Rules Engine

Rules
Administration

Webhooks

Store / load

Load Rules
on Startup

Load Webhooks
on Startup

Create / edit
Webhooks

Create new
Webhooks

Webhook
Administration

Event
Queue

Figure 5: Architecture of the Condition Action System. In the upper part of the figure, the core functionalities of the Condition
Action System are shown. Poller and Event Listener forward events to the Event Queue. The Rules Engine evaluates events
one after the other. In the middle of the figure, the personalised configuration is persisted in databases. Configuration of the
whole system is manageable via a user interface, which is shown in the lower part.

Queue. Whenever a rule is met, the Poller and the
Rule Engine start up the required Event Triggers or
Action Dispatchers. The Event Queue processes all
incoming events in which ECA Rules may be applied.

3.4 Technologies Used

XML and JSON are standard formats for information
exchange between Web services. Both formats de-
scribe data in tree structures, which our Condition Ac-
tion System can use. Furthermore, it is a communica-
tion format, which the system uses for the structure of
events. The event-driven architecture was built upon
the recent adoption of server side JavaScript through
Node.js and its both human and machine-readable
JSON communication format.

Three platforms for the prototype system were
tested. Early testing instances were on a 64-bit, i5 2.3
GHz dual-core system with 3GB of DDR3 SDRAM
and 100GB of storage capacity running with Linux

3.2 kernel, Node.js version 0.8.24 and the in-memory
key-value store database redis 2.7.105.

One instance was running on a virtual machine
with 64-bit Intel Xeon 2 GHz single-core CPU, 1GB
RAM and 120GB disk space as well as Node.js ver-
sion 0.8.24 and redis 2.7.105. The prototype system is
running on Amazon Elastic Compute Cloud Instance
with a single-core 64-bit CPU, 1GB of memory and
8GB of attached storage, which runs on a Linux 3.2
kernel, Node.js version 0.10.2 and redis 2.8.7.

As shown in the architecture schema below, the
prototype system is a centralised solution. Thanks to
the asynchronous communication paradigm, an im-
plementation of several parallel running systems in
the amazon cloud will be a minor next step and bring
scalability for a larger use.

A list of important node.js libraries used for the
prototype is given here:

� Cheerio: Parsing of a webpage and access to its
structure, similar to jQuery.

Facilitating�the�Reactive�Web�-�A�Condition�Action�System�using�Node.js

93



� CoffeeScript: Domain specific programming lan-
guage used as a transcompiler to JavaScript.

� Express: Eased running of a server instance in
terms of request mapping to handler functions and
folder structures.

� Gulp: Stream-based workflow automation.

� Import.io: Webpage querying over their API with
helps of personalised masked generated via their
own browser.

� JS-select: Selectors for data nodes in tree struc-
tures.

� Request: Enables communication between
servers.

3.5 Proof of Concept

One key problem with Web resources is that users
(customers) cannot verify the quality of these ser-
vices. With the help of our prototype system, a mea-
surement can be realised. Such a system may check
whether the website is reachable and may pay atten-
tion to relevant changes. As a result, a reactive system
creates a reliable source for the quality of Web appli-
cations and services e.g. uptime and downtime.

The prototype system has been used to test vari-
ous scenarios. A first proof of concept has focused
on two Swiss electronic newspapers. Over a period
of one week, the Condition Action System collected
data from their websites in order to observe the fre-
quency of headline changes. What is interesting in
this particular data set is that the headline of the clas-
sical newspaper, which is available on the Web and
as well on ordinary paper, changed on average after
two to six hours. The other news website, which has
a web presence only, tends to change the headline on
average within two hours and therefore in a higher fre-
quency. In addition, we were also able to determine a
webserver failure of one news portal, which lead to a
20-minute long service disruption. This example out-
lines the potentials of the web change detection sce-
nario (see Section 3.2).

Many documents in the Web are dynamically
modified over time. Some might change in an inter-
val of a few minutes e.g. news on news portals, while
other content changes much slower e.g. entries on en-
cyclopaedia sites such as Wikipedia. To detect these
changes, our prototype system must keep track of the
document history. An Event Listener monitors Web
resources and as soon as differences are detected, an
action is triggered. Consequently, the user is able to
set up a rule, which checks whether changes are re-
lated to a certain category of interest or not. More-
over, it could highlight certain areas of interest or an-

other specified website and compare how significant
these changes are. If for example a Wikipedia arti-
cle has been changed in more than 10% of its original
content, a moderator should be informed to revise the
article. Thus, the system is able to directly inform the
moderator via mail.

4 CONCLUSION

Existing Condition Action Systems are limited to
Web services and discourage Web users from pro-
gramming own program code. Our goal was to cre-
ate a Condition Action System with both options;
inbuilt programming window and already existing
Event Rules. However, the system has qualified for
future performance tests against existing Condition
Action Systems.

Novelties have their greatest value if they are per-
ceived immediately, in the best case in real-time. Re-
activity stands for the focal point in instantly notifying
users or creating something new out of changes in the
Web e.g. a tweet on Twitter. Such a Reactivity en-
tity in the Web may help users in orchestrating such
behaviour.

This paper has addressed promises of a Condition
Action System that can be valuable for Web users in
orchestrating tedious tasks of Web services. Based
on one scenario, the system architecture has been as-
sessed in detecting Web changes; the system is run-
ning for more than half a year. Moreover, the pro-
posed architecture of the Condition Action System
is very powerful for the measurement of all kinds of
Web resources. Difficulties arise, however, when an
attempt is made to store data by using the architec-
ture. Event Triggers, Webhooks, Rules and Action
Dispatchers are stored in a database, the changes on
the Web, which create an event are not. It might be
interesting in future to store data of these changes in
order to use it for further data mining.

REFERENCES

Akbar, Z., Garca, J., Toma, I., and Fensel, D. (2014). On
Using Semantically-Aware Rules for Efficient Online
Communication, volume 8620 of Lecture Notes in
Computer Science. Springer International Publishing.

Anicic, D., Fodor, P., Rudolph, S., Sthmer, R., Stojanovic,
N., and Studer, R. (2010). A Rule-Based Language
for Complex Event Processing and Reasoning, volume
6333 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg.

Benslimane, D., Dustdar, S., and Sheth, A. (2008). Services

WEBIST�2015�-�11th�International�Conference�on�Web�Information�Systems�and�Technologies

94



mashups: The new generation of web applications. In-
ternet Computing, IEEE, 12(5):13–15.

Blackstock, M. and Lea, R. (2014). Towards a distributed
data flow platform for the web of things. 5th Inter-
national Workshop on the Web of Things, 2014, pages
1–6.

Dijkman, R. M., Dumas, M., and Ouyang, C. (2008).
Semantics and analysis of business process models
in bpmn. Information and Software Technology,
50(12):1281 – 1294.

Duquennoy, S., Grimaud, G., and Vandewalle, J.-J. (2009).
Consistency and scalability in event notification for
embedded web applications. In Web Systems Evolu-
tion (WSE), 2009 11th IEEE International Symposium
on, pages 89–98.

Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec,
A.-M. (2003). The many faces of publish/subscribe.
ACM Comput. Surv., 35(2):114–131.

Hasan, S., O’Riain, S., and Curry, E. (2012). Approximate
semantic matching of heterogeneous events. In Pro-
ceedings of the 6th ACM International Conference on
Distributed Event-Based Systems, DEBS ’12, pages
252–263, New York, NY, USA. ACM.

Hausmann, S. and Bry, F. (2013). Towards complex ac-
tions for complex event processing. In Proceedings
of the 7th ACM International Conference on Dis-
tributed Event-based Systems, DEBS ’13, pages 135–
146, New York, NY, USA. ACM.

Ovadia, S. (2014). Automate the internet with if this then
that (ifttt). Behavioral & Social Sciences Librarian,
33(4):208–211.

Paschke, A. (2014). Reaction ruleml 1.0 for rules, events
and actions in semantic complex event processing.
In Rules on the Web. From Theory to Applications,
volume 8620 of Lecture Notes in Computer Science,
pages 1–21. Springer International Publishing.

Paschke, A., Boley, H., Zhao, Z., Teymourian, K., and
Athan, T. (2012). Reaction ruleml 1.0: Standard-
ized semantic reaction rules. In Rules on the Web:
Research and Applications, volume 7438 of Lecture
Notes in Computer Science, pages 100–119. Springer
Berlin Heidelberg.

Trifa, V., Guinard, D., Davidovski, V., Kamilaris, A., and
Delchev, I. (2010). Web messaging for open and scal-
able distributed sensing applications. In Proceedings
of the 10th International Conference on Web Engi-
neering, ICWE’10, pages 129–143, Berlin, Heidel-
berg. Springer-Verlag.

Windley, P. (2012). The Live Web: Building Event-Based
Connections in the Cloud. Course Technology.

Wohed, P., van der Aalst, W., Dumas, M., and ter Hofstede,
A. (2003). Analysis of web services composition lan-
guages: The case of bpel4ws. In Conceptual Modeling
- ER 2003, volume 2813 of Lecture Notes in Computer
Science, pages 200–215. Springer Berlin Heidelberg.

Yahoo! (2010). Pipes [www document],
http://pipes.yahoo.com/pipes/docs?doc=overview
(accessed 18.12.14).

Facilitating�the�Reactive�Web�-�A�Condition�Action�System�using�Node.js

95


