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Abstract: Cavity – resonator - integrated guided - mode resonance filters (CRIGFs) are promising structures that afford 
a very fine spectral width less than 1 nm. We study another structure to compare compare it to CRIGF. The 
angular acceptance of CRIGF is an order of magnitude greater than in classical gratings, even with complex 
pattern. To identify the phenomenon responsible for the extraordinary large angular acceptance of CRIGF, 
we study the dispersion curve of the mode excited in the CRIGF. 

1 INTRODUCTION 

With the increase of applications requiring spectral 
filtering, free space optical filters are the focus of 
several studies. 

Fabry-Perot multilayer filters are the most widely 
used free space filters but show limits for narrow band 
filtering. To get a narrow spectral width with this type 
of filters, one needs a large number of layers thus 
increasing the size of the component which becomes 
unstable over time and with temperature. 

Resonant grating filters are a very promising 
alternative relative to conventional multilayer filters. 
The resonant grating filter is composed of a stack of 
several dielectric layers on top of which a periodic 
nanostructure is engraved. The multilayer stack  plays 
the role of a planar waveguide and the engraved 
structure allows to couple and decouple  one  
eigenmode  of  the  structure  to  the  incident  wave  
through  one  diffraction  order  of  the  grating.  When 
the component is illuminated, a resonance peak 
occurs in the reflectivity or transmittivity spectrum. 
The characteristics of the peak, namely the centering 
wavelength and width, are mainly governed by the 
grating parameters. Those resonant grating structures 
are commonly called GMRF (Guided-mode 
Resonance Filters) and are known to have a very 
small angular tolerance. However they have a high 
quality factor and a very high rate of rejection.  

The small angular tolerance is observed especially 
when the GMRF is illuminated under oblique 
incidence. That is to say when one single mode is 

excited through one diffraction order, usually the first 
order.  In this configuration, it is possible to show 
(Evenor et al., 2012). 

The spectral and angular width depends on the 
same parameters of the grating, namely the height h 
of the grating and its 1st Fourier coefficient. A small 
angular tolerance leads up to the degradation of the 
rate of rejection and to the spreading of the spectrum 
when the grating is illuminated with a beam with a 
large divergence. But if our grating is illuminated 
under normal incidence, two counter propagating 
modes are excited. In this configuration, the angular 
width depends on the 2nd Fourier coefficient while 
the spectral width depends on the first coefficient as 
shown in. (Evenor et al., 2012). Resonant grating 
filters with complex basic pattern have been proposed 
(Fehrembach et al., 2010), leading to an angular width 
of 0.5° at 1550nm for a bandwidth of 0.28nm. Yet, 
these record performance may be still insufficient for 
applications where the component have to be 
illuminated with a focused beam. In this optic another 
structure called CRIGF was introduced (X. Buet et 
al., 2012) and (K. Kintaka et al., 2012). It consists of 
a GMRF and a pair of distributed Bragg reflectors 
(DBRs) constructing a waveguide cavity resonator. 
We inserted a phase section between each DBR and 
the GMRF to optimize the reflectivity of the CRIGF. 
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2 OBJECTIVES AND 
COMPARISION OF THE TWO 
STRUCTURES 

The objective of our research is to improve the 
performances of resonant gratings. To begin, we 
compare two structures. The first component is 
periodic and is called “doubly periodic” structure 
(Figure 1). It is composed with a coupling grating 
(GMRF) and a Bragg grating with half filling factor 
and a period two times smaller than the GMRF 
grating. The two gratings are located one above the 
other. The second structure (Figure 2), called CRIGF 
(Cavity - Resonator -Integrated guided -mode- 
resonance filters), is non-periodic it is composed with 
one GMRF section and two Bragg reflector sections. 
The GMRF period is d and the DBR periods is d/2.  
The phase section is δ.  

 

Figure 1: “doubly periodic" structure. 

Figure 2: CRIGF structure. 

The GMRF and the Bragg sections have both a 
groove width a = 100 nm and depth h1 = 120 nm. The 
guiding layer thickness is h2 = 165 nm. The indexes 
of the materials are 1.46 for the gratings and 1.97 for 
the guiding layer. The superstrate is air with index 1.0 
(the same for the grating grooves) and the substrate is 
silica, with index 1.46. The period of the central 
section is d = 532 nm. The GMRF and Bragg 
reflectors included in the CRIGF have the same 
parameters than the “doubly periodic structure, and 
the phase section of the CRIGF is δ = 1.05d. The 

CRIGF is composed with 21 periods of GMRF and 
200 periods. 

Our aim is to compare the dispersion relations of 
the periodic and the non-periodic structures.  

We plot on figure 3 the reflectivity versus the 
wavelength λ and the polar angle of incidence θ. The 
map shows a forbidden band, as it is well known for 
infinite resonant gratings. The reflectivity map is 
calculated for a planar incident wave. When a 
Gaussian beam is used, other calculations, not plotted 
here, show that the maximum of the reflectivity at 
resonance decreases with the size of the beam at waist 
when the beam divergence becomes too wide as 
compared to the angular tolerance of the component. 

 

Figure 3: reflectivity of the "doubly periodic" with respect 
to the angle of incidence and wavelength, showing a 
forbidden band. 

When we plot the reflectivity versus the 
wavelength λ and the polar angle of incidence θ for 
the CRIGF (figure 4), we observe a spot where the 
reflectivity is maximum. The spot is centered at λ = 
864.9 nm and normal incidence. The incident beam is 
a Gaussian beam with a radius at waist of 5.2 µm, for 
which the maximum reflectivity at resonance is 
maximum (calculations not shown here). 

This map is very different from that of the infinite 
grating plotted in figure 3. When the angle of 
incidence increases (in absolute value), or the 
wavelength moves away from 864.9 nm, the reflected 
energy decreases: the resonance degrades. This 
device has a wide angular acceptance, from -2° to 2°, 
together with a thin spectral width. The results of the 
calculations presented here were obtained using a 
home-made numerical code based on the Fourier 
Modal Method, also known as Rigorous Coupled 
Wave Analysis (RCWA), improved by using the 
more rapidly converging rules of factorization of 
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product of discontinuous functions enounced at (Li, 
1997). The number of Fourier harmonics is truncated 
to from -700 to 700. To model a CRIGF with our 
RCWA code dedicated to model periodic structures, 
we use the so-called ”super-cell” method, which 
consists in considering the CRIGF as the basic pattern 
of a grating. For the modeling to be valid, it is 
necessary to isolate each basic cell from its neighbors. 
For this reason, the opportunity to add an absorbing 
layer between each basic cell is implemented. The 
absorbing layer consists of nslices slices of 
homogeneous layers with a total thickness LABS and 
are characterized by an optical index n varying as n(x) 
= n(x0) + i[(x − x0)/LABS]2, where x0 is the x-starting 
position of the absorbing layer. The absorbing layer 
can be added inside the grating region, and waveguide 
region. 

 

Figure 4: R (θ, λ) map of the CRIGF. 

3 EIGENVALUES 
CALCULATION 

To understand more the phenomenon presented on 
figure 4, we studied the behavior of the complex 
propagation constant of the excited eigenmode with 
respect to the angle of incidence, that is to say the 
dispersion relation. We employed the method 
described in ref. (Q. Cao et al., 2002). It consists in 
calculating the T-matrix of the structure from one 
edge to the other (from x=0 to x=L, see figure 2) The 
complex propagation constant g of the eigenmodes 
are related to the eigenvalues  of the T matrix trough 
the relation:   

 = exp (iL 

L being the total length of the structure. For this 
calculation, the structure is repeated periodically 
along the z-direction, and we include absorbing layers 

between two adjacent structures.This configuration 
reduces the period of the problem considered for the 
numerical calculation and thus the truncation order of 
the Fourier series. 

 

Figure 5: Imaginary parts of the propagation constants of 
the eigenmodes of the CRIGF with respect to the 
wavelength. 

We plot in figure 5 the imaginary part of the 
propagation constants  with respect to the 
wavelength. We can see many different eigenmodes 
with imaginary parts that depend quasi linearly on the 
wavelength and correspond to quasi-plane waves.  
Among these values, one eigenmode has a different 
behavior, showing an imaginary part that draws three 
major foils as a function of the wavelength. We 
identified the real part of the propagation constant of 
this different eigenmode. It is plotted on figure 6. 

 

Figure 6: Real part of the propagation constant of the 
interesting eigenmode with respect to the wavelength. 

This real part is characterized by a flat portion that 
appears around 864.9 nm, which corresponds to the 
center wavelength of the peak observed in Figure 4. 
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We note that from eq. 1, the real part of the 
eigenvalues is defined with an indetermination of 2 
/ L = 0.0529 µm-1, L being the total length of the 
structure (L = 118.6892 µm). 

Bellow, we study the evolution of the dispersion 
relations (the real and the imaginary part of ) when 
introducing different strength of the Bragg reflectors, 
by varying the number of grooves of the Bragg 
grating. The central grating length is fixed constant, 
so that when varying the Bragg grating length, the 
length LnB of the whole structure with varies. 

 

Figure 7: Evolution of the real part when varying the period 
of Bragg. 

We present on fig. 7 the evolution of the “good” 
eigenvalues when the number of the Bragg grating 
periods increases from 1 to 200. As far as the values 
of real () are determined within integer times 
2 / LnB, in order to avoid the change in this 
ambiguity, we plot the real part of   LnB / L with 
respect to the wavelength, where the total 
normalization length L = L200 = 118.6892 µm is kept 
fixed. We observe that the shape of the real part 
changes gradually with the DBR groove numbers, 
starting from the single-grating curve (calculated, 
without Bragg grating, but not shown here) towards 
the curve given in Figure 7. An increasingly flatter 
region is formed in the wavelength interval 0.863-
0.865 µm.  

In the following, we present an approached theory 
derived from the coupled-mode theory which allow to 
identify the physical origin of the extra-ordinary 
flattening of the dispersion curve. 

Let us consider a grating waveguide, invariant in 
the y direction that supports leaky modes propagating 
in the x direction, with the leakage out  due to the 

radiation into a propagating diffraction orders in the 
substrate and the superstrate. The vector field 

components of the mode F(x, z)  can be factorized in 

the form: 

gik x
F(x,z) f (z)e  (2)

The propagation constant kg is real without 
grating for waveguides made of lossless materials. 
For a grating waveguide, the radiation losses enter in 
the mode propagation constant along x and increase 
its imaginary part: 

g g out a.l.k Re(k ) i( )      (3)

with a.l.  staying for the absorption losses, if any.  

In addition to the leakage, the mode propagation 
constant and field map can be modified by the 
interaction between counter-propagating modes. The 
classical coupled-mode theory shows that this 
coupling modifies the propagation constant and forms 
a forbidden gap in its dispersion map; the 
modification resulting in a formation of two hybrid 
modes having two slightly different propagation 
constants (4): 

k K

k K





  

  
 (4)

with  

 2 2
gK k      (5)

  is the coupling strength between the two 
counter-propagating modes and is proportional to the 
overlap mode integral in transverse direction. In 
particular, if the interaction involves the same 
counter-propagating modes and is due to the grating 
that extends from 0 to h in z-direction, then 
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and T 2
mF n (x, z) 
   stays for the m-th Fourier 

transform, along x, of the square of the refractive 
index function of the grating. 

The spectral region in which gK k     is 

forbidden (band gap) in the sense that the imaginary 
part of the propagation constant increases due to the 
backward scattering. At its boundaries, the real part 

of k  has the weakest dependence on the incident 
vector component, parallel to the surface and thus the 
angular tolerances of the filter response are less tight. 

An�Explanation�of�the�Physical�Origin�of�the�Extra-ordinary�Angular�Tolerance�of�Cavity�Resonator�Integrated�Grating
Filters

65



Let us consider the CRIGF. To calculate his 
transmission matrix Ttotal, we need to express the 
transmission matrix of each Bragg grating, the 
transmission matrix of the GMRF (middle grating) 
and the transmission matrix at each interface 
Bragg/GMRF. We consider that we are at the 
boundary of the forbidden gap, so we have to take into 
account four modes with the propagation constants 
+k+, –k+, +k –, –k– inside each region (Bragg grating 
and GMRF) (N. Rassem et al.). 

We define for the Bragg grating and the GMRF, 
respectively the transmission matrix TB and TG. 

TB and TG are expressed respectively as functions 
of ±kB

±, ±kG
±. 

At the interfaces between the Bragg grating and 
GMRF, the interaction between the modes can be 
expressed through four overlap integrals (see ref. 5 
for the full expressions): R++ for kB

+ and kG
+ , R-- for 

kB
- and kG

- , R+- for kB
+ and kG

- , and R-+ for kB
- and 

kG
+.. 
We define an 8 x 8 transmission matrix R that 

contains the overlap integrals.  

0
0

0
0

0
0

0
0

  
(7)

The  total  transmission  matrix  is  the product  of  
the  transmission  matrices  in  the  Bragg gratings  TB   
and  the  matrix  containing  the propagation in the 
middle grating TG plus the interaction on the 
interfaces between the different gratings (R matrix):  

*
total B G BT T R T RT  (8)

In  order  to  illustrate  the  influence  of  the  mode 
interaction  at  the  interface  between  the  different 
gratings, in what follows we make several reasonable 
assumptions:  

(1) Symmetrizing the problem by assuming that: 

1

2

R R R

R R R

 

 

 

 
 (9)

We shall take these coefficients as real ( 1,2R Re ) 

(2)  Neglecting  the  radiation  losses  due  to  the 
transition  effects  on  the  interfaces  between  the 
gratings, and higher mode interactions. For this aim 
we consider the relation: 

 (10)

(3) Last, we assume that the Bragg gratings act 
as if localized on the  interfaces  x = 0  and  L  
through  the  overlap integrals  in  R,  i.e.,  

considering  the eigenvalues  of *
GM R T R   

instead of Ttotal.   
To begin, we plot on figure 8 the evolution of the 

real part of the propagation constant with respect to 
the wavelength for several values of R+-. We observe 
a behavior that is similar to that observed for the 
propagation constants calculated numerically (see 
figure 7). From these curves, we can conclude that the 
Bragg grating reflection plays a decisive role in the 
formation of the flat part in the dispersion curve, the 
stronger the coupling, the flatter the curve. 
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Figure 8: Evolution of the real part of the propagation 
constant for varying strength of coupling between the 
modes. 

4 CONCLUSIONS 

To sum up, we presented a study aiming at identifying 
the physical origin of the extra-ordinary flattening of 
the dispersion curve of CRIGF. We showed, both 
from a numerical study and from an approached 
model based on the coupled modes theory, that the 
dispersion curve flattening increases with the 
reflection on the Bragg grating. Moreover, the semi-
analytical model allows us to attribute this extra-
ordinary flattening of the dispersion curve to the 
coupling between modes that does not occur in 
infinite gratings. As it is well-known from the two-
waves coupled mode theory, the interaction between 
two counter-propagative modes leads to a creation of 
two hybrid modes, one with a larger (k+) and the other 
with a smaller (k–) constant of propagation. 

The Bragg grating cavity resonator that contains 
the central GMRF grating can leads to a well-known 
reflection of the mode “k+” into the mode “–k+” (and 
similarly for k–), but also can provide an additional 
coupling between the hybrid modes (“k+” into “–k–”) 
that does not exist without the Bragg grating box. We 

2 2
1 2R R 1 
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have shown that the strength of this additional 
coupling (proportional to overlapping integral R–+) is 
directly responsible for the flattening of the 
dispersion curve of the mode of the entire system. In 
particular, when the two types of coupling have 
similar strengths, one observes an extraordinary 
flattening of the dispersion curve of CRIGF devices. 

In order to better understand how to improve the 
performance of this component (CRIGF), we plan to 
study the influence of each parameter of the structure. 
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