
Investigating the Difficulty of Commercial-level Compiler Warning
Messages for Novice Programmers

Yoshitaka Kojima1, Yoshitaka Arahori2 and Katsuhiko Gondow2

1formerly Department of Computing Science, Tokyo Institute of Technology, Tokyo, Japan
2Department of Computing Science, Tokyo Institute of Technology, Tokyo, Japan

Keywords: Programming Education, Commercial-level Compiler, Compiler Warning Messages, Novice Programmer,
Sample Code Set.

Abstract: Many researchers refer to the folklore “warning messages in commercial-level compilers like GCC are dif-
ficult for novice programmers, which leads to low learning efficiency.” However, there is little quantitative
investigation about this, so it is still unknown if (and to what extent) the warning messages are really diffi-
cult. In this paper, we provide a quantitative investigation about the difficulty of the warning messages. More
specifically, as a sample code set we first collected 90 small programs in C language that are error-prone for
novice programmers. Then we performed the investigation on the warning emission and its difficulty for 4
compilers and 5 static analysis tools, which are all commercial-level, using the sample code set. The diffi-
culty of warning messages were evaluated by 7 students as research participants, using 4 evaluation criteria of
clarity, specificity, constructive guidance, and plain terminology. As a result, we obtained several important
quantitative findings: e.g., the deviation of warning emission presence in compilers and static analysis tools
is large; and 35.7% of warning messages lack clarity, and 35.9% of warning messages lack specificity, which
suggests roughly one third of warning messages are difficult for novice programmers to understand.

1 INTRODUCTION

Many researchers refer to the folklore and experi-
ence “warning messages in commercial-level com-
pilers like GCC are difficult for novice program-
mers, which leads to low learning efficiency.” (Pears
et al., 2007; Nienaltowski et al., 2008; Marceau et al.,
2011b; Marceau et al., 2011a; Traver, 2010)

For example, for the code fragment
if(a==2&b==4) in the C programming language,
where & (bitwise-and operator) is misused instead
of && (logical-and operator), GCC-4.7.2 emits the
message:

warning: suggest parentheses around com-
parison in operand of ’&’

Since == has the higher precedence than &
in C, GCC interprets the code fragment as
if((a==2)&(b==4)) and the message suggests to
modify it to if(a==(2&b)==4). But this warn-
ing message is very difficult for novice program-
mers, since this modification does not solve the prob-
lem, and it is difficult for novice programmers to
imagine that the warning message points out the

possibility of &’s precedence problem. This is a
false positive of GCC warning mechanism that sug-
gests to modify, for example, if(x&0xFF00==0) to
if((x&0xFF00)==0), where the message becomes
correct.

However, as far as we know, there is little quan-
titative investigation about this (see Sec. 2), so it is
still unknown if (and to what extent) the warning mes-
sages are really difficult. In this paper, we provide
a quantitative investigation about the difficulty of the
warning messages. This kind of investigation is cru-
cial in the following points:

� The result can be used as a comparison or bench-
mark to research and develop better compiler mes-
sages.

� The result can also be used for programming in-
structors to select more appropriate compilers for
their students.

Moreover, this kind of investigation is not trivial
in the following points:
� There is no sample code set including small error-

prone programs for novice programmers. Thus, it
is necessary to first build such a sample code set.

483Kojima Y., Arahori Y. and Gondow K..
Investigating the Difficulty of Commercial-level Compiler Warning Messages for Novice Programmers.
DOI: 10.5220/0005437404830490
In Proceedings of the 7th International Conference on Computer Supported Education (CSEDU-2015), pages 483-490
ISBN: 978-989-758-108-3
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

� It is impossible to provide an absolute criterion of
the difficulty. Thus, the investigation is essentially
based on subjective judgment, and the criteria of
difficulty varies to some extent among investiga-
tion participants. Moreover, the investigation it-
self is a big burden on the participants, since they
have to carefully read many programs and warn-
ing messages. These issues make it challenging to
design the investigation.
In this paper, we provide a quantitative investiga-

tion about the difficulty of C compiler warning mes-
sages using the following steps.
� Step 1: As a sample code set, we first collected

90 small programs that are error-prone for novice
programmers, mainly including semantic errors
and logical errors (Sec. 3.2).

� Step 2: We then obtained all the warning mes-
sages for the above sample code set by 4 com-
pilers and 5 static analysis tools which are all
commercial-level.

� Step 3: The difficulty (or effectiveness) of warn-
ing messages were evaluated by 7 students as re-
search participants1, using 4 evaluation criteria
of clarity, specificity, constructive guidance, and
plain terminology (Sec. 3.4).
The main contributions of this research is as fol-

lows:

� We have provided the first sample code set in C
language that are error-prone for novice program-
mers, and can be used to measure the difficulty of
compiler warning messages.

� We obtained several important quantitative find-
ings: e.g., the deviation of warning emission
presence in compilers and static analysis tools is
large; and 35.7% of warning messages lack clar-
ity, and 35.9% of warning messages lack speci-
ficity, which suggests roughly one third of warn-
ing messages are difficult for novice programmers
to understand.

2 RELATED WORK

There are several papers on compiler messages, sum-
marized in this section. To our knowledge, however,
none of them quantitatively investigate the difficulty
of warning messages of commercial-level compilers.

1Four 4th-year undergraduates and three 1st-year grad-
uates in Dept. of Computer Science of Tokyo Institute of
Technology. They are all members of author’s laboratory,
and they took programming exercises in C, Scheme and
Java through the lectures.

Thus, this paper is a first trial towards the quantitative
investigation.

Nienaltowski et al. studied the effect of different
compiler message styles (short, long, visual form) on
how well and quickly students identify program errors
(Nienaltowski et al., 2008). The students were asked
to answer the cause of the error for 9 multiple choice
questions. The aim of this study is not to explore the
difficulty of warning messages, and only 9 questions
were used, while in our study 1,296 questions for 90
small programs are used.

Marceau et al. pointed out that there are few
rigorous human-factors evaluation on compiler mes-
sages (Marceau et al., 2011b), and they investigated
the effectiveness of compiler messages of DrRacket
(Marceau et al., 2011b; Marceau et al., 2011a) Dr-
Racket is not a commercial-level compiler, but a pro-
gramming environment for novice programmers.

Jackson et al. identified common Java errors for
novice programmers using their automated error col-
lection system (Jackson et al., 2005). Kummerfeld
and Kay proposed a novel method to help novice
programmers better understand the error messages,
by providing a Web-based reference guide that cat-
alogues common incorrect programs, compiler error
messages for them, error explanations, and possible
corrections (Kummerfeld and Kay, 2003). Dy and
Rodrigo proposed a detection tool that checks novice
student code for non-literal errors (i.e., compiler-
reported errors that do not match the actual error)
and produces more informative error reports (Dy and
Rodrigo, 2010). All these papers focused on sim-
ple syntax errors like an undefined variable, and did
not investigate the difficulty of compiler messages,
while our research investigate the difficulty of com-
piler messages for semantic and logic errors.

BlueJ (Kölling et al., 2003)Expresso (Hristova
et al., 2003) Gauntlet (Flowers et al., 2004) are pro-
gramming environments for novice programmers that
aim to provide more understandable error messages.
Gross and Powers surveyed programming environ-
ments for novice programmers such as BlueJ (Gross
and Powers, 2005). None of these papers mentioned
or compared with the error messages of commercial-
level compilers like GCC.

3 INVESTIGATION METHOD

3.1 Purpose and Outline of the
Investigation

The purpose of our research is to provide a quantita-

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

484

Table 1: Compilers and static analysis tools used in investi-
gation.

Abbrev. Compiler names
GCC GCC-4.7.2
VS Microsoft Visual Studio Express 2012

for Windows Desktop (Visual C++ Com-
piler)

Clang Clang-4.2.1
ICC Intel C++ Studio XE 2013 for Linux
Abbrev. Static analysis tool names
Eclipse Eclipse CDT: Juno Service Release 1
VS-SA VS Code Analysis
C-SA Clang Static Analyzer 269
ICC-SA ICC Static Analysis
Splint Splint-3.1.2 (22 Sep 2012)

tive investigation about the difficulty of the warning
messages of commercial-level compilers and static
analysis tools. More specifically:

� As targets of our investigation, we selected 4
compilers and 5 static analysis tools listed in Ta-
ble. 1 (the compilers/tools for short), which are all
widely used, easily available and of commercial-
level quality.

� As a sample code set, we collected 90 small pro-
grams that are error-prone for novice program-
mers, mainly including semantic errors and log-
ical errors (Sec. 3.2).

� We obtained all the warning messages that the
compilers/tools emitted for the 90 error-prone
programs. Then, we analyzed their emission rates
and deviation.

� We investigated, by the questionnaire of 1,264
questions (4 evaluation criteria for the total 316
warning messages), to what extent and how the
warning messages are difficult for novice pro-
grammers. The 90 error-prone programs and
316 warning messages were given to 7 research
participants, and then they answered the ques-
tions using 4 evaluation criteria of clarity, speci-
ficity, constructive guidance, and plain terminol-
ogy (Sec. 3.4), allowing subjective judgment to
some extent.

In our investigation, we used the compiler options
that emit as many warning messages as possible, ex-
cept the options for optimization. For example, we
used the GCC option: -Wall -Wextra -pedantic
-Wfloat-equal. This is because we wanted to know
the upper limit of the power that the compilers/tools
emit warning messages.

#include <stdio.h>
int main (void) {

int n = 15;
if (

:
1
:::
<=

::
n
:::
<=

::
10)

printf ("1 <= %d <= 10\n", n);
}

Figure 1: An example of logic errors: the programmer’s
intention is (1<=n && n<=10).

Table 2: Error categories and their numbers of the collected
small sample programs

error category # of programs
pointer/array 31
conditional 16

function 16
variable 14

expression/statement 13
total 90

3.2 Error-prone Programs for Novice
Programmers

Although the level of “novice” varies, we define
“novice” as a programmer who can correct syntax er-
rors somehow, but is not good at correcting semantic
errors and logic errors. This reason is twofold. First,
the related work (Jackson et al., 2005; Kummerfeld
and Kay, 2003; Dy and Rodrigo, 2010) mainly dealt
with syntax errors, but did not dealt with semantic er-
rors and logic errors. Second, in our observation, se-
mantic errors and logic errors are far more difficult for
novice programmers than syntax errors.

Here we use the term “semantic error” as a pro-
gram that is semantically incorrect and causes a warn-
ing message such as division by zero, type mismatch,
undefined behavior, and unspecified behavior. Note
that from “semantic errors” we exclude some explicit
errors at compile-time such as doubly defined vari-
ables, since they are relatively easy for novice pro-
grammers.

Also we use the term “logic error” as a program
that is correct syntactically and semantically, but con-
trary to the programmer’s intention. Fig. 1 shows
an example of logic errors; the operator <= is left-
associative, so the conditional expression in Fig. 1 is
equal to ((1<=n)<=10), whose result value becomes
always true since the result of (1<=n) is 0 or 1. This
is apparently contrary to the programmer’s intention,
which is probably (1<=n && n<=10).

3.3 Collecting Small Sample Programs

As a sample code set, we collected 90 small programs
in C language that have semantic errors or logic errors
mentioned in Sec. 3.2; all of them are error-prone for

Investigating�the�Difficulty�of�Commercial-level�Compiler�Warning�Messages�for�Novice�Programmers

485

#include <stdio.h>
int main (void) {

int a = 2, b = 4;
if (a == 2

:
& b == 4)

printf("a = 2 and b = 4\n");
}

Figure 2: Example of mistakes where bitwise-and & is mis-
used instead of logical-and &&.

novice programmers. This section describes how to
collect them.

To cover the various types of error-prone pro-
grams, we thoroughly investigate 8 Web program-
ming forums2 and C FAQ3, and then collected 90
error-prone programs from there. All of them are
small with around 10 lines of code. Fig. 1 is an exam-
ple of the collected programs. Table. 2 shows the er-
ror categories and their numbers of the collected pro-
grams4.

Since the programmer’s intentions are not obvious
only from the programs, we simply provided the pro-
grammer’s intentions to the research participants. For
Fig. 1, for example, “Error description: 1<=n<=10 is a
mathematical comparison notation; Solution: change
it to (1<=n)&&(n<=10)” in Japanese was given.

Through this collecting activity, we obtained the
following valuable findings:

� The collecting activity was very tedious and time-
consuming, since the Web forums that we used
have a lot of similar redundant or unrelated ques-
tions to our research purpose (eg. questions about
syntax errors, coding styles and API usage).

� The sample code set attached to Clang was use-
less for our purpose, since it aims to help compiler
writers, not novice programmers.

3.4 Evaluation Criteria

We selected the following 4 criteria to evaluate warn-
ing messages, which have been proposed in the previ-
ous work (Traver, 2010; Horning, 1976).

� Clarity: Does the message clearly tell what is the
problem?

2stackoverflow, GIDForums, Tek-Tips Forums, http://
bytes.com, http://www.cprogramming.com, http://dixq.net/,
http://chiebukuro.yahoo.co.jp/dir/list/d2078297650, http://
oshiete.goo.ne.jp/category/250, http://www.ncos.co.jp/
products/cgi-bin/errorcall.cgi (the last 4 forums are in
Japanese only)

3http:// c-faq.com/
4The collected programs are accessible at (Gondow,

2015).

#include <stdio.h>
int main (void) {

int i = 0;
scanf("%d",

:
i); printf("%d\n", i);

}

Figure 3: Example of mistakes where & is wrongly omitted
in the scanf parameter.

� Specificity: Does the message provide a specific
information to identify the problem?

� Constructive guidance: Does the message pro-
vides a guidance or hint to correct the problem?

� Plain terminology 5: Does the message only use
plain technical terms?

Note that these criteria depends on each other. For
example, Constructive guidance depends on Clarity,
since if the compiler wrongly identifies a logical error,
the consequent guidance will also be wrong.

The previous work (Traver, 2010; Horning, 1976)
proposed other criteria like Context-insensitivity,
Consistency, Locality, which are not used in our in-
vestigation. Context-insensitivity means a compiler
should emit the same message for the same error re-
gardless of the context; Consistency means the termi-
nology or representation of messages should be con-
sistent; and Locality means that a compiler should in-
dicate the error place near the true origin of the er-
ror. These criteria are not appropriate to our research,
since all of these criteria require a much larger scale
investigation (eg. larger programs), but the collected
sample programs are all small.

We use the 4 criteria we selected as follows:

� Grading: We ask the research participants to eval-
uate warning messages in three grades as listed in
Table. 3. This is because the evaluation is based
on a subjective judgment, which makes finer grad-
ing difficult.

� Clarity, Constructive Guidance: Fig. 2 is an ex-
ample program for that GCC emits very difficult
warning message (mentioned in Sec. 1), where
bitwise-and & is misused instead of logical-and
&&. The GCC’s warning message for Fig. 2 is

warning: suggest parentheses around com-
parison in operand of ’&’.

First, the message lacks Clarity (judged as C),
since the message does not tell that the problem
is the misuse of bitwise-and & instead of logical-
and &&, although it is difficult for compilers to
know that the programmer’s intent is logical-and

5The term “programmer language” is used in (Traver,
2010).

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

486

Table 3: Meaning of grading of evaluation criteria.

A B C
Clarity clear a little bit unclear unclear

Specificity sufficient a little bit insufficient insufficient
Constructive guidance given not given wrongly given

Plain terminology understandable not understandable compiler-dependent
representation

&&. Second, Constructive guidance for the mes-
sage is wrongly given (judged as C), since the
message suggests the use of parentheses, but this
modification does not solve the problem.

� Specificity: Fig. 3 is an example that Specificity is
a little bit insufficient, where the address operator
& is missing just before the argument i of the call
scanf. The ICC’s warning message for Fig. 3 is

warning: argument is incompatible with cor-
responding format string conversion.

In this message, there is some specific information
about the error that the cause comes from the in-
compatibility between the argument type and the
conversion in the format string. But there is no
specific information that scanf requires a pointer
type, argument in the message is i, and corre-
sponding format string conversion is %d. Thus,
Specificity is a little bit insufficient in the warn-
ing message (judged as B).

� Plain terminology: For example, some techni-
cal terms in the C standards like “unspecified
behavior” and “sequence point” are too difficult
for novice programmers (judged as B). For an-
other example, if the message has the size infor-
mation of 40 bytes for the array definition int
a[10];, the message has compiler-dependent rep-
resentation, since the size of int in C is compiler-
dependent (judged as C).

4 RESULT OF INVESTIGATION

4.1 Deviation of Warning Message
Output

Table. 4 summarizes the numbers of sample programs
that the compilers/tools emitted warning messages
for6. For the total 90 sample programs, VS-SA emit-
ted the smallest 21 warning messages, while Splint
emitted the largest 69 ones.

6Raw data, such as all collected warning messages, is
accessible at (Gondow, 2015).

Table 4: The numbers of sample programs that the compil-
ers/tools emitted warning messages for.

Compilers # detected Tools # detected
GCC 45 Eclipse 39
VS 37 VS-SA 21

Clang 38 C-SA 43
ICC 36 ICC-SA 61

Splint 69

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

0"

Figure 4: Box plot of standard deviation of the presence of
warning messages.

4.1.1 Deviation is Large

The result indicates that the deviation of the presence
or absence of warning message output for the same
sample program is large among the compilers/tools.

Table. 5 shows the frequency distribution of the
numbers of the compilers/tools that emitted warning
messages for each sample program. For example,
there are only 16 sample programs out of 90 that all
9 compilers/tools emitted warning messages for. On
the other hand, there are 13 sample programs out of
90 that only 3 compilers/tools emitted warning mes-
sages for.

By quantifying the presence of a warning message
as 1 and the absence as 0, we obtain 9 numerical val-
ues (each 0 or 1) for the 9 compilers/tools and one
sample program. Fig. 4 is the box plot of the standard
deviation of this 9 numerical values for all 90 sample
programs. The median is 0.416, and the arithmetic
mean is 0.325, which indicates that the deviation of
warning message output is large.

Investigating�the�Difficulty�of�Commercial-level�Compiler�Warning�Messages�for�Novice�Programmers

487

Table 5: The frequency distribution table of the numbers of the compilers/tools that emitted warning messages for each sample
program.

compilers/tools that emitted warming messages 0 1 2 3 4 5 6 7 8 9 Total
sample programs (frequency) 4 12 8 13 9 8 5 5 10 16 90

#include <stdio.h>
#include <string.h>
int main(void) {

char *p = "Hello";
// write to string literal
strcat(

:
p, "World");

printf("%s\n", p);
}

Figure 5: Example of programs that only 3 compilers/tools
emitted warning messages.

#include <stdio.h>
#include <string.h>
int main(void) {

char from[] = "Hello";
char *to;
// write through uninitialized pointer
strcpy(

::
to, from);

printf("%s\n", to);
}

Figure 6: Example of programs that all 9 compilers/tools
emitted warning messages.

4.1.2 Example of Deviation

Fig. 5 is an example of program that only 3 com-
pilers/tools emitted warning messages for. The call
strcat in Fig. 5 attempts to write to string literal that
are not writable in the C language. For the program in
Fig. 5, only C-SA, Splint and ICC-SA emitted warn-
ing messages.

Fig. 6 is an example of program that all 9 compil-
ers/tools emitted warning messages for. It is interest-
ing that the numbers of compilers/tools that emitted
warning messages for Fig. 5 and Fig. 6 are quite dif-
ferent (3 vs. 9), but the static analysis required to emit
the warning messages are mostly the same for both of
Fig. 5 and Fig. 6.

4.2 Difficulty of the Warning Messages
for Novices

For the 90 sample programs, we performed the inves-
tigation of warning message difficulty of the compil-

7Eclipse, for example, sometimes reuses the underlying
GCC’s warning messages, which are excluded in this table.
Thus, # detected in Table. 6 and Table. 7 are less than ones
in Table. 4.

#include <stdio.h>
int main(int argc, char **argv) {

while (argv++ != NULL)
printf("%s\n", *argv);

}

main.c:5:24: Possible out-of-bounds read: *argv
Unable to resolve constraint:
requires maxRead(argv @ main.c:4:12) >= 1

needed to satisfy precondition:
requires maxRead(argv @ main.c:5:25) >= 0

A memory read references memory beyond the allo-
cated storage.

Figure 7: Example of warning messages by Splint.

ers/tools (Sec. 3.1) by 7 students as research partici-
pants, using 4 evaluation criteria (Sec. 3.4). The re-
sult of questionnaire8 is summarized in Table. 6 and
Table. 7. Table. 6 shows the frequency distribution by
the compilers/tools, while Table. 7 shows the one by
the research participants.

In Table. 6, the frequency of the GCC’s Clarity ’A’
is 186, which means that for the GCC’s 45 warning
messages, the 7 research participants judged the to-
tal 186 warning messages as ’A’. On the other hand,
in Table. 7, the frequency of Clarity ’A’ of the re-
search participant ID ’0’ is 137, which means that the
research participant ID ’0’ judged 137 warning mes-
sages as ’A’ out of the total 316 ones,

Major findings from this result are as follows:

� Table. 6: The majority of the result of Clar-
ity, Specificity and Plain Terminology is ’A’.
However, 35.7%9 warning messages lack Clarity,
and 35.9%10 warning messages lack Specificity11.
Roughly speaking, this result quantitatively indi-
cates one third of warning messages are difficult
for novice programmers to understand.

� Table. 6: The numbers of ’A’ and ’C’ in Construc-
tive Guidance are small, which means there are a
few guidance of helpful (A) or wrong (C). This
probably indicates that the present commercial-
level compilers/tools are negative for emitting
helpful guidance not to increase wrong ones (false

8Anonymized raw data, such as the result of question-
naire, is accessible at (Gondow, 2015).

935:7% = (577+212)�100=(1423+577+212)
1035:9% = (574+220)�100=(1418+574+220)
1124% messages lack both Clarity and Specificity.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

488

Table 6: The frequency distribution table of evaluation by compilers/tools.

Compilers # Clarity Specificity Constr. Guidance Plain Term.
/Tools detected7 A B C A B C A B C A B C
GCC 45 186 77 52 181 88 46 19 260 36 297 16 2
VS 37 168 64 27 168 58 33 30 217 12 243 10 6

Clang 38 187 60 19 195 46 25 55 199 12 250 13 3
ICC 36 141 85 26 135 94 23 19 226 7 242 10 0

Eclipse 8 24 26 6 24 26 6 2 54 0 55 1 0
VS-SA 21 102 33 12 108 30 9 20 125 2 109 19 19
C-SA 20 118 20 2 98 37 5 20 120 0 133 6 1

ICC-SA 42 209 65 20 179 87 28 35 255 4 280 10 4
Splint 69 288 147 48 330 108 45 64 383 36 348 97 38
Total 316 1423 577 212 1418 574 220 264 1839 109 1957 182 73

Table 7: The frequency distribution table of evaluation by research participants.

Research # Clarity Specificity Constr. Guidance Plain Term.
Participant ID detected7 A B C A B C A B C A B C

0 316 137 131 48 127 146 43 24 289 3 218 86 12
1 316 198 86 32 189 103 24 19 278 19 288 14 14
2 316 263 44 9 239 56 21 16 290 10 292 5 19
3 316 181 88 47 201 63 52 31 271 14 298 15 3
4 316 248 49 19 221 75 20 139 149 28 286 23 7
5 316 212 60 44 166 97 53 17 284 15 292 22 2
6 316 184 119 13 275 34 7 18 278 20 283 17 16

Total 2212 1423 577 212 1418 574 220 264 1839 109 1957 182 73

positives).

� Table. 6: The result of questionnaire for Plain
Terminology in Splint is bad; ’A’ is 72.0% for
Splint while ’A’ is 93.1% on average for the oth-
ers. Fig. 7 shows an example of difficult messages
by Splint. maxRead is a Splint-specific terminol-
ogy, denoting the highest index of a buffer that
can be safely used as rvalue. Some novice pro-
grammers may understand the message indicates
a possible buffer overrun, but almost cannot un-
derstand how Splint inferred in terms of maxRead.
In our observation, this is because Splint attempts
to emit more helpful, precise and descriptive mes-
sages for the programs that the other compil-
ers/tools do not. If this assumption is correct,
this suggests that it is challenging to improve the
understandability of warning messages for novice
programmers only using plain terminology.

� Table. 7: The result of questionnaire by the re-
search participants seems to have some simi-
lar tendency, but they are significantly different
for each of 4 criteria. For example, c2(12) =
191:7p = 1:71� 10�34 < 0:05 for Clarity, where
the null hypothesis is that participants and their
judgments for Clarity are independent, and it is
rejected. This is, however, obviously because they
include subjective judgment.

5 TOWARDS USABLE
COMPILER FOR NOVICE
PROGRAMMERS

It is very important but essentially difficult to im-
prove compiler warning messages. There are sev-
eral reasons for this. It is quite difficult to auto-
matically obtain the programmer’s intention from a
program. Even worse, Nienaltowski’s study (Nienal-
towski et al., 2008) suggests more detailed messages
do not help the participant’s performance (this is the
reason why we did not use compiler’s verbose op-
tions). Kummerfeld’s method (Kummerfeld and Kay,
2003) that catalogues compiler error messages and
possible corrections might be effective, but its main-
tenance cost is very high since the catalogue must be
updated whenever new compilers are released.

One idea to improve compiler messages is to re-
place a bad warning message by a good one of other
compilers. Different compilers emit different (i.e.
good and bad) messages for the same program. By
this, accidental but not essential bad messages can be
improved. Another idea is to incorporate heuristics or
knowledge into compilers that tells how novice pro-
grammers make mistakes. For example, novice pro-
grammers are likely to misuse & instead of && (Fig. 2).

Investigating�the�Difficulty�of�Commercial-level�Compiler�Warning�Messages�for�Novice�Programmers

489

6 CONCLUSION

In this paper, we provided a quantitative investiga-
tion about the difficulty of the warning messages. As
a result, we obtained several important quantitative
findings, which suggests roughly one third of warn-
ing messages are difficult for novice programmers to
understand, so far as this investigation is concerned.

As future work, we would like to perform the in-
vestigation with more participants enough to be sta-
tistically significant. Also we would like to explore
how to improve bad compiler messages effectively
and efficiently, and how to apply it to the education
for novice programmers.

REFERENCES

Dy, T. and Rodrigo, M. M. (2010). A detector for non-literal
java errors. In Proceedings of the 10th Koli Calling In-
ternational Conference on Computing Education Re-
search, Koli Calling ’10, pages 118–122, New York,
NY, USA. ACM.

Flowers, T., Carver, C., and Jackson, J. (2004). Empow-
ering students and building confidence in novice pro-
grammers through gauntlet. In Frontiers in Education,
2004. FIE 2004. 34th Annual, pages T3H/10–T3H/13
Vol. 1.

Gondow, K. (2015). Sample code set, all compiler warn-
ing messages and anonymized result of questionnaire.
http://www.sde.cs.titech.ac.jp/cm/.

Gross, P. and Powers, K. (2005). Evaluating assessments of
novice programming environments. In Proceedings of
the First International Workshop on Computing Edu-
cation Research, ICER ’05, pages 99–110, New York,
NY, USA. ACM.

Horning, J. J. (1976). What the compiler should tell the
user. In Compiler Construction, An Advanced Course,
2Nd Ed., pages 525–548, London, UK, UK. Springer-
Verlag.

Hristova, M., Misra, A., Rutter, M., and Mercuri, R. (2003).
Identifying and correcting java programming errors
for introductory computer science students. SIGCSE
Bull., 35(1):153–156.

Jackson, J., Cobb, M., and Carver, C. (2005). Identifying
top java errors for novice programmers. In Frontiers
in Education, 2005. FIE ’05. Proceedings 35th Annual
Conference, pages T4C–T4C.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J.
(2003). The bluej system and its pedagogy. Computer
Science Education, 13(4):249–268.

Kummerfeld, S. K. and Kay, J. (2003). The neglected battle
fields of syntax errors. In Proceedings of the Fifth Aus-
tralasian Conference on Computing Education - Vol-
ume 20, ACE ’03, pages 105–111, Darlinghurst, Aus-
tralia, Australia. Australian Computer Society, Inc.

Marceau, G., Fisler, K., and Krishnamurthi, S. (2011a).
Measuring the effectiveness of error messages de-

signed for novice programmers. In Proceedings of the
42Nd ACM Technical Symposium on Computer Sci-
ence Education, SIGCSE ’11, pages 499–504, New
York, NY, USA. ACM.

Marceau, G., Fisler, K., and Krishnamurthi, S. (2011b).
Mind your language: On novices’ interactions with
error messages. In Proceedings of the 10th SIG-
PLAN Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Onward!
2011, pages 3–18, New York, NY, USA. ACM.

Nienaltowski, M.-H., Pedroni, M., and Meyer, B. (2008).
Compiler error messages: What can help novices? In
Proceedings of the 39th SIGCSE Technical Sympo-
sium on Computer Science Education, SIGCSE ’08,
pages 168–172, New York, NY, USA. ACM.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., Devlin, M., and Paterson, J. (2007).
A survey of literature on the teaching of introductory
programming. SIGCSE Bull., 39(4):204–223.

Traver, V. J. (2010). On compiler error messages: What
they say and what they mean. Adv. in Hum.-Comp.
Int., 2010:3:1–3:26.

CSEDU�2015�-�7th�International�Conference�on�Computer�Supported�Education

490

