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Abstract: The research is aimed at developing algorithms for the construction of automated systems to control active 
components of the electrical network. The construction of automated systems intended for the control of 
electric power systems requires high-speed mathematical tools. The method applied in the research to describe 
the object of control is based on the universal approach to the mathematical modelling of nonlinear dynamic 
system of a black-box type represented by the Volterra polynomials of the N-th degree. This makes it possible 
for the input and output characteristics of the object to obtain an adequate and fast mathematical description. 
Results of the computational experiment demonstrate the applicability of the mathematical tool to the control 
of active components of the intelligent power system. 

1 INTRODUCTION 

One of the main directions in power engineering is 
the adoption of components applicable to the 
implementation of a smart grid concept. This 
requires: 

• Transmission lines with variable characteristics 
(active and reactive impedance components); 

• Devices for electromagnetic conversion of energy 
with wide capabilities to adjust parameters; 

• Systems of energy storage and accumulation; 
• Switching devices with a high breaking capacity 

and large commutation life; 
• Executive mechanisms that make it possible to act 

on the active network components on-line by 
changing the network parameters and topology. 
An integral part of modern power system is 

positioned sensors and current state variables in the 
amount sufficient for the on-line estimation of the 
network state in normal, emergency and post-
emergency conditions. 

Therefore, the objective is to create control 
systems which operate in real time and allow fast 
generation of control signals to all active network 
components in order to generate optimal control 
actions. 

This method of control is only possible if new 
algorithms and techniques of power system control 
are implemented, in particular when the methodology 

on selection of input vectors that characterize 
operating conditions of power systems in terms of 
system topology are developed.  

2 STATEMENT OF THE 
PROBLEM 

In order to estimate the objective current state it is 
necessary to take into account the parameters 
characterizing power quality. 

The application of appropriate mathematical tools 
will make it possible to solve the stated problem. 

These mathematical tools should meet the 
following requirements: 

• appropriately reflect the object of control in the 
entire range of change in its characteristics; 

• afford the possibility of obtaining an  adequate 
mathematical description based on real 
characteristics of the object;  

• have high performance in its technical 
implementation. 
Generally speaking, the analysis of dynamic 

characteristics of wind power unit is based on the 
methods using differential equations.  Most of the 
researches are devoted to the specification of 
characteristics of individual components of wind 
turbine (Li, 2011, He, 2009), specification of various 
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coefficients (Manyonge, 2012) or consideration of a 
mechanical part of the turbine as a n-mass system 
(Bhandari, 2014). In practice, the initial data are 
known with some error. In this case, as a rule, 
solutions to the inverse problem turn out to be 
unstable with respect to an error in the initial data. 
Therefore, to construct stable methods we use the 
theory of ill-posed problems. (Kabanikhin, 2011). 

It is also obvious that these mathematical tools are 
difficult to use in the microprocessor software which 
in turn makes it difficult to perform control.  

The goal of this research is to test the algorithms 
for the construction of computer-aided systems for 
power system control, in which the mathematical 
models are used in the form of integral Volterra 
polynomials. 

We will name only some of the research areas, in 
which the Volterra integral power series find their 
use. These are: modelling of technical systems 
(Venikov and Sukhanov, 1982, Pupkov, 1976) and 
electronic devices (Stegmayeer, 2004), nonlinear 
identification of communications channels (Tong 
Zhou and Giannakis, 1997, Cheng and Powers, 1998) 
and visualization systems (Lin and Unbehauen, 
1992), analysis of non-stationary time series (Minu 
and Jessy, 2012), and description of automatic 
feedback control systems (Belbas and Bulka, 2011). 

Nowadays there are many methods for the 
determination of dynamic characteristics, and the 
universality of this mathematical apparatus makes it 
possible to create the software for doing experiments 
on computer. In particular, the Voltaire XL package 
(American company Applied Wave Research) has 
shown its performance in describing the electronic 
scheme by the finite sums of the Volterra series.   

An isolated electrical energy source represented 
by a horizontal-axis wind turbine was used as a real 
physical object (Solodusha, 2014). 

3 REFERENCE DYNAMIC 
SYSTEM 

It should be noted that renewable energy sources are 
an active component of modern electric power 
systems. As a reference dynamic system, we will 
consider a mathematical model of horizontal-axis 
wind turbine represented using the techniques (Pronin 
and Martyanov, 2012, Perdana, 2004, Sedaghat and 
Mirhosseini, 2012) in the following form:  
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where Tω (rad/s) is rotational speed of wind turbine 

elements, TM  (N·m) is torque created by 

aerodynamic force, CM  (N·m) is load resistance  

torque, J  (kg·m2) is moment of inertia of the wind 
turbine rotating parts, ρ  (kg·m2) is air density, S  

(m2) is blade – swept area, R  (m) is wind wheel 
radius, b  (deg) is blade lean angle, V  (m/s) is wind 

speed;  dimensionless magnitudes: pC  is wind 

energy efficiency, Z  is speed, z  is current value of 
speed. 

One of the key tasks is to reduce the dynamic 
loads on the structure during strong winds. Control of 
blade turning makes it possible to considerably 
decrease the load on the structure. The research is 
aimed at studying the impact of the blade lean angle 
b  and wind speed V  on the angular velocity of 
rotation Tω .   

4 INTEGRAL MODELS 

The mathematical model of the input-output type 
system can be represented by the Volterra polynomial 
of the N -th degree: 
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where [ ]0t T∈ , , (1)
[0, ](0) 0, ( ) Ty y t C= ∈ .  

To construct an integral model in the form (5), (6) 
means to restore multidimensional transient 
characteristics of the nonlinear dynamic system 

1, , ni iK ... . Currently, there are quite many methods 

developed to determine the dynamic characteristics 
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(Doyle and Pearson, 2002, Rugh, 1981). The most 
widely used approach is presented in (Danilov, 1990). 
It suggests setting a multiparametric family of test 
signals consisting of a combination of Dirac delta 
functions to recover the Volterra kernels. However, 
such an approach has limited application (Ljung, 
1987). 

The technique for the  identification of  (5), (6) 
(Apartsyn, 2003, 2000, 2013) which is used in the 
paper is based on setting a group of test signals 
represented by special linear combinations of 
Heaviside functions with deviating argument. Here 
the problem of identification is reduced to solving the 
Volterra linear integral equations of the first kind, 
which allow explicit inversion formulas. 

Further in (5), we will consider only the case 
where = 2N , which is the most important for 
applications. The Volterra kernels will be identified 
by the technique (Apartsyn, 2003, 2000, 2013), using 
the midpoint rule to numerically solve (5), (6). 

The numerical procedure for solving the system 
(1) - (4) will be considered as a reference for the 
assessment of the integral model accuracy. To 
approximately solve (1) - (4) we apply the 4-th order 
Runge-Kutta method. 

The integral models are constructed to describe 
the nonlinear dynamics of the output signal 

0
( ) ( )T T Tt tω ω ωΔ = − in the case of scalar input 

signal ( )b tΔ  (or ( )V tΔ ).  

Below consideration is given to the case for the 
input signal ( )b tΔ . Practical identification of 

transient characteristics in the model   
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was carried out on the basis  of the experimental data  
for the test disturbance signals   
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Figure 1 presents the outputs of the reference 
model (1)-(4)  to the input disturbances 

1( , ) 10( ( ) ( ))b t e t e tω ωΔ = − − − . 

 

Figure 1: Experimental outputs. 1 ( , )by t ω . 

The outputs 1 ( , )by t ω  of the reference model  (1)-

(4) took part in the recovery procedure of the sought 
transient characteristics of the system in the scalar 
model (7).  

It should be specified that the recovery of kernels 

1( )K t , 11( , )K t t ω−  in (7) as a result of the 

application of the approach (Apartsyn, 2003, 2000, 
2013) can be reduced to solving special Volterra 
linear integral equations of the first kind. Search for 

the difference analog to the kernels 1( )K t , 

11( , )K t t ω−  was carried out on a uniform grid 

,it ih=  1,i n= , nh T= . The total number of the 

unknowns taking part in the experiment of 
constructing one model of form (7) was equal to  
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construction of the quadratic Volterra polynomial   
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Figure 2 presents the output 1 1 ( , )b Vy t ω  of the 

reference model (1)-(4) to the input disturbance of 

form 
1

1
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which was used in the recovery of the kernel 12K  

from the integral model (8). 
The total number of the unknowns participating in 

the experiment of constructing one model of form (8), 

was equal to  22 ( 1)n n n n+ + + . 

5 CASE STUDY 

The computational experiment consists of two stages. 
In the first stage we build the integral models of form 
(7), (8) by solving the problem of the identification of 
transient characteristics of a dynamic system. In the 
second stage we consider the problem of determining 
the control action 1( ) ( )x t b t≡ Δ , that maintains the 

output signal  ( )T tωΔ  at a set level *ω . Considering 

the transient characteristics 
1, , ni iK ...  and output ( )y t  

in (7), (8) to be known, we determine the input signal 
( )x t  which corresponds to the specified output ( )y t . 

 

Figure 2: Experimental outputs. 1 ( , )by t ω . 

In this section we present the results 
demonstrating the first of the indicated stages of the 
mathematical modeling. To ensure better accuracy, 
the amplitude α  of test signals used to determine the 
Volterra kernels in (7), (8) was aligned with the 
magnitude of the acting disturbances. It should be 
noted that the model built using only one group of 
signals cannot be considered equally suitable for the 

calculation in the entire range of admissible changes 
in the input signals. In order to improve the accuracy 
of modeling we introduced reference initial 
conditions for which the models of form (7) were 
constructed. The calculations were performed on the 
uniform grid with a step = 1h (s). 

 

Figure 3: Application of two integral models calculated 
using (7). Notations: “model 1”, “model 2” are responses of 
integral models for the reference integral model conditions 

0 8V = (m/s), 
0 10V = (m/s), respectively, “standard” –a 

response of the standard model (1) - (4). 

Figure 3 illustrates the application of the quadratic 
Volterra polynomial (7) to forecast the output to the 
input signals: 
     ( ) 10( ( ) ( 11)) 8( ( 11)V t e t e t e tΔ = − − + − −   

     ( 20)),e t− −  ( ) 10 ( ),b t e tΔ =  [0,20]t ∈ , 

for  0 10b =  (deg), 0 8V = (m/s), 0 10V = (m/s).

      

 

 

Figure 4: Comparison of the application of the integral 
model of form (8) and the standard model (1)-(4).  
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Figure 4 illustrates the result of modeling the 
output of the system ( )T tωΔ  to the input signals: 

( ) 5( ( 3) ( 6)) 5( ( 6)V t e t e t e tΔ = − − − − − −
( 16)),e t− −  ( ) 20( ( ) ( 8))b t e t e tΔ = − − +  

10( ( 8) ( 11)) 10( ( 16)e t e t e t+ − − − + − −
( 20))e t− − , [0,20]t ∈ , 

for 0 20b =  (deg), 0 5V =  (m/s) using the integral 

model (8). The maximum relative error in 
computations made up 4.4%. 

Table 1 presents relative and absolute errors. 

Table 1: Relative and absolute errors. 

Examples of the  
 input signals 

 
1ε  2ε  3ε  4ε  

( ) 10 ( ),b t e tΔ = −  

( ) 5 ( )V t e tΔ =  

 
0.00 0.000 0.00 0.00 

( ) 20 ( ),b t e tΔ = −  

( ) 10 ( )V t e tΔ =  

 
0.00 0.000 0.00 0.00 

( ) 10 ( ),b t e tΔ = −  

( ) 5( ( )V t e tΔ = −   
             ( 3))e t− −  

 

1.47 0.004 6.26 0.02 

( ) 10( ( )b t e tΔ = − −  

             ( 1))e t− − , 

( ) 5 ( )V t e tΔ =  

 

1.17 0.003 4.98 0.01 

( ) 10 ( ),b t e tΔ = −  

( ) 5( ( )V t e tΔ = −  
            ( 12))e t− −  

 

1.89 0.068 8.04 0.29 

( ) 20( ( )b t e tΔ = − −  

             ( 11))e t− − , 

( ) 10 ( )V t e tΔ =  

 

1.39 0.102 5.91 0.43 

( ) 20( ( )b t e tΔ = − −  
             ( 4))e t− − , 

( ) 10 ( )V t e tΔ =  

 

1.28 0.006 5.45 0.03 

( ) 20 ( ),b t e tΔ = −  

( ) 10( ( )V t e tΔ = −  

             ( 1))e t− −  

 

1.29 0.007 5.49 0.03 

The notations used in Table 1:  

1 2
1
max | ( ) ( ) |T i i

i T
t y tε ω

≤ ≤
= Δ −  (rad/s), 

2 2| ( ) ( ) |T T y Tε ω= Δ −  (rad/s), 

0

1
3 100%

T

εε
ω

= ⋅ (in %), 
0

2
4 100%

T

εε
ω

= ⋅ (in %), 

0 20b =  (deg), 0 5V =  (m/s), ,it i h= ⋅  1,20i = , 

0
23.5Tω =  (rad/s), 1h =  (s), 20T =  (s). 

The calculations show that the constructed 
integral models describe the physical process with 
admissible accuracy. 

For solving (8) with respect to the control action  

1 ( )x b t≡ Δ  we use the algorithms developed in 

(Solodusha, 2009). The study employs stable 
difference methods in which a grid step is used as a 
regularization parameter (Apartsyn, 2003). As 
applied to the problem of automatic control it is 
planned to compare the techniques for the 
identification of Volterra polynomials of form (8) 
which are based on the introduction of special classes 
of piecewise constant test input signals. The analysis 
of the studied approaches will allow us to identify the 
preferable ranges for one or another algorithm, for the 
reference model (1) - (4).  

6 CONCLUSIONS 

The presented results of the mathematical modeling 
using the finite interval of the integro-power Volterra 
series were for the first time applied to describe the 
dynamics of the horizontal-axis wind turbine.   

The technique was developed to construct the 
integral model and technically implement the high-
speed system of control. A computational experiment 
aimed at constructing the integral models of the wind 
power unit was done. 

The results of the computational experiment 
demonstrates the applicability of this mathematical 
tool to the control of active components of the electric 
power system. 

 To improve the accuracy of modeling, it is 
planned to introduce a structure with switchable 
kernels, which will envisage the adaptive behavior of 
the model in the case the input signal amplitudes go 
beyond some limited interval. 

The computer modeling was carried out using the 
author’s software created in Matlab. 

Further it is planned to apply this approach to the 
research into complex dynamic systems which 
contain an arbitrarily large amount of components of 
the active-adaptive isolated system. 
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