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Abstract: This paper proposes a new approach for the analysis of physical processes. Based on several assumptions 
regarding the information available regarding the physical processes, we constrain the generation of the 
transition system. The method is based on the theory of regions that allows for the building compact 
representations as Petri Nets of transition systems and a set of explicit descriptions for some of the 
activities. The resulting compact model will exhibit the same behaviour as the input transition system. In 
order to evaluate the resulting process model, several quality dimensions have been established. 

1 INTRODUCTION 

This paper proposes a new approach for the analysis 
of physical processes. For this, we employ a 
technique from the field of process mining – the two 
step approach (Aalst, 2010) which works by 
constructing a transition system from an observed 
event log, followed by its transformation into a Petri 
Net using an algorithm based on the theory of 
regions. 

We propose a new method of building the 
transition system based on state variables. In order to 
achieve this, we make several assumptions about the 
information available regarding the processes: 
knowledge of the preconditions and effects of the 
actions that triggered the events and the initial state 
of the system. 

2 RELATED WORK  

Process mining is a newly developed research field 
that provides methods for analysing processes 
starting from their observed behaviour.  

This observed behaviour is encapsulated in event 
logs and it is readily available in most PAIS (Process 
Aware Information Systems) usually deployed in 
enterprise environments. Furthermore, the 
information contained in the event logs, can also be 

collected from other types of systems, such as 
embedded systems, using an array of sensors. 

Each event in a log is referring to an activity or 
action performed in the system (that led to a change 
in the system’s state) and to a process instance or 
case. An event log contains sequences of events 
collected from the observed processes instances or 
cases. Each of these sequences is also called a 
process trace. For different process instances the 
same trace may be recorded, but the order in which 
different cases are logged is not relevant to the 
analysis. Because of this, the event log is 
represented as a multi-set or bag of event sequences. 

The three main tasks considered in the field of 
process mining are process discovery, conformance 
checking and process model enhancement. 

The process discovery problem is concerned with 
finding a process model which best represents an 
observed behaviour contained in an event log. 
Usually, a simple event log is considered, one that 
contains events that only refer to an activity and a 
process case. (Moisescu, 2013), (Repta, 2013). 

Several algorithms have been proposed as 
solutions to the process discovery problem, such as: 
the (extended) alpha algorithm, heuristic miner 
(Weijters, 2003), genetic miner, fuzzy miner, ILP 
miner (Werf, 2008) and the two-step approach based 
on state-space theory of regions (Aalst, 2010). An 
analysis of the proposed process discovery 
algorithms is beyond the scope of this paper, but 
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several reviews have been made such as (Tiwari, 
2008) in which various approaches to process 
discovery are comparatively described and 
evaluated. 

Conformance checking is used to evaluate a 
process model against an event log. Techniques 
proposed in this subfield of process mining can be 
used in a variety of scenarios such as assessing a 
discovered process model or analysing the 
implementation of a process by comparing the base 
model with the observations from the production 
system. Recently, several quality dimensions have 
been established in order to evaluate process models: 
fitness, simplicity, precision and generality. Fitness 
quantifies the amount of observed behaviour that can 
be generated by the evaluated model. It is desirable 
for the process model to have perfect fitness, 
meaning that all the observed traces can be 
generated by it. This quality metric is evaluated by 
replaying each collected trace on the process model 
and penalizing misalignments (Aalst, 2012). The 
“simplicity” quality dimension refers to the size and 
complexity of the process model and it is related to 
the Occam’s razor principle. A metric based on the 
number of elements in the process model is usually 
used to evaluate this quality dimension. It should be 
noted that in some cases, a compact process model 
will not be the best representation of a process from 
an analysts’ perspective. Lastly, precision and 
generality refer to the amount of unobserved 
behaviour that the process model can generate. They 
are concerned with the problems of under-fitting 
(too general) and over-fitting (too precise) process 
models. A balance must be reached between the 
amount of behaviour that the resulting model allows 
and the behaviour expressed in the input event log. 
On one hand, we cannot expect that all possible 
behaviour will be found in the observed log. This is 
particularly obvious in the case of parallel activity 
sequences, where not all possible instantiations are 
expected to appear in the log. On the other hand, a 
process model that allows too much behaviour won’t 
be useful for the user or analyst as it discards the 
dependencies / constraints of the real process. 

Finally, the task of process model enhancement 
takes as input an existing process model and event 
log and aims at improving or extending the model 
using the information provided in the log. These 
techniques require more information than what is 
contained in a simple event log. Decision mining (de 
Leoni, 2013) – identifying the conditions associated 
with the decision points in process models – requires 
additional data attributes associated with the events 
in the log, based on which classification problems 

are instantiated. Social network analysis (Aalst, 
2004), (Song, 2008) that aims at identifying the 
relations between the actors involved in the 
execution of the process require that each event 
references the entities that participated in the 
completion of the activity. Furthermore, timestamp 
of the events can be used analyse the execution time 
of processes and determine performance data or 
identify bottlenecks. 

The ability of the proposed process discovery 
and enhancement techniques to tackle problems 
from various domains has been extensively studied. 
In (Rozinat, 2009), the Heuristic Miner and the 
Decision Miner are used to analyse and diagnose a 
multi-agent system composed of soccer playing 
robots. In (Aalst, 2007) a billing process in a public 
administration office is analysed using various 
process mining techniques demonstrating their 
utility in the case of large organizations. Finally, a 
case study on industrial production systems is 
discussed and analysed in (Rozinat, 2009) (Gunther, 
2010). This last example reveals some of the 
shortcomings of existing approaches to process 
discovery in the case of less-structured processes.  

The approach presented in this paper belongs to 
the process discovery task, but requires additional 
information beyond an elementary event log.  
Namely, we investigate the use of an explicit state-
space representation of the actions associated with 
the events from the input log, as prior information. 
This information is used in the two-step process 
discovery approach (Aalst, 2010) to construct a 
“more accurate” transition system. 

3 PROBLEM STATEMENT 

We consider that the assumptions we make 
regarding the availability of the additional prior 
information are feasible in the considered scenario 
of physical processes. 

In this case, it is conceivable that at least a subset 
of the events in the log is retrieved using data from 
sensors deployed in the environment, thus making 
available at least a part of the real state of the 
system. This additional information will result in the 
discovery of a process model that is closer to the 
reality. 

In fig. 1 depicts the example process considered 
in this paper (the implicit places in the Petri Net are 
hidden). 

The example process can depict two vehicles (A 
and B) that move independently in an environment 
partition  into  several  areas.  The  events  “Ax”  and 
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Figure 1: Example process model. 

“Bx” correspond to movement actions of vehicle A 
and B between the areas of the environment. The 
goal of this process is to perform 2 “work” actions – 
X and Y - in two separate, pre-determined areas. 
These “work” action require that both vehicles are in 
the same area, at the same time. 

In this case, the events regarding the movement 
of the vehicles in the environment can be 
automatically collected, leveraging an existing 
access-control system. 

4 TWO STEP PROCESS 
DISCOVERY 

In this section we make a short description of the 
two step method of process discovery, discussed in 
(Aalst, 2010) with a focus on the impact of various 
methods of building the transition system on the 
precision and generality of the discovered model. 

The method is based on the theory of regions that 
provides a method of building compact 
representations as Petri Nets of transition systems. 
The resulting compact model will exhibit the same 
behaviour as the input transition system.  

The considered process discovery method first 
builds a transition system based on the information 
from the log and then converts it - the second step - 
in a compact Petri Net representation. 

DEF (Transition system) – A transition system 
TS = (S, E, T), in which S represents the set of 
states, E is the set of transition labels (including the 
silent transition) and T ⊂ S × E × S is the transition 
relation. 

The transition system can be viewed as a directed 
graph in which the initial states are the states with no 
incoming arcs, while the final states have no 
outgoing arcs. 

In fig. 2 the first step of the process discovery 
process – the construction of the transition system – 
is   depicted.   Each   state   is   constructed   using  a 

 

Figure 2. 

function “state(σ, k)” that takes as arguments a 
sequence of events and an index k. The state 
function assigns to each k-length prefix or suffix of 
the sequence σ a state from the state space of the 
transition system. In order to build a transition 
system from the input event log, the state function 
must be applied on each sequence of events to all of 
its indexes. In the original approach, the authors 
propose several method of representing each state – 
as a set of events, a bag (multi-set) or list. In the 
example presented in fig.2, each state is constructed 
by transforming the prefix of each sequence of 
events into a set. 

Beyond these simple transformations, the state 
generation function can be enhanced through the use 
several “abstractions” that limit the horizon on 
which the transformation is applied, the size of the 
resulting collection, or the labels that are included in 
the final state representation. 

After the creation of the transition system, 
several operations that can be applied on it in order 
to improve the quality of resulting process model – 
removing self-loops or closing “diamond” 
structures. 

The second step of the process discovery 
approach involves the creation of a Petri Net that 
exhibits the same behaviour as the transition system. 
This step is based on the results of the research into 
the synthesis problem – the problem of synthesising 
a Petri Net whose behaviour coincides with a 
specified behaviour. 

There are two approaches to this problem – state-
based region theory and language-based theory of 
regions. Although the basic principle is similar, the 
input – the behaviour specification – is different. 
While the state-based approach uses as input a 
transition system, the language-based methods uses 
a regular language – a finite set of sequences (the 
log). Naturally, given the generated transition 
system, a state-based approach will be used in the 
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second step of the described approach. 
A region represents a set of states that fulfil the 

condition that all transitions having the same label 
either enter, exit or don’t cross the region. In the 
simplest case, of excitation-closed transition systems 
(Carmona, 2008), the employed algorithm will 
identify the minimal, non-trivial (empty set of states) 
regions, and each one will correspond to a place in 
the resulting Petri Net. For each place, the events 
that enter the region correspond to a transition 
generating tokens in that place and events that exit to 
transitions that consume tokens. The resulting Petri 
Net will be able to simulate the specified transition 
system – “bi-similarity property”. In the case of 
arbitrary transition system, the “excitation-closure” 
property must be first enforced. A proposed 
technique uses “label splitting” (Cortadela, 1998) in 
which the sets of transitions having the same label 
are partitioned thus adding new labels to the system. 

5 EXPLICIT STATE 
REPRESENTATION 

In this section we present a slightly modified 
procedure of generating the transition system 
required in order to build the Petri Net.  

In order to enable this method that uses an 
explicit representation of the system’s state, we 
make several assumptions: 

- Activity definitions based on state variables can 
be defined for a subset of the events 

- The initial state of the transition system, 
expressed in terms of state variable values is known 

- The explicit description of activities must be 
accurate and the actors involved in the process use 
the optimal path in the state-space in order to 
achieve their goal 

We consider these to be feasible assumptions 
given that the focus of our approach is represented 
by physical processes. In these scenarios, it is 
considered that at least some events in the input log 
are derived from sensor observations – and a subset 
of the real system state in known. 

We redefine the generic definition of state and 
transition system used in the two-step process 
discovery technique using state variable. 

DEF (State) – A state S ∈ D1 × D2 × .. × Dn, 
where D1...Dn are the (finite) domains of the state 
variable v1...vn ∈ V, where V is the set of state 
variables. Each state variable has a unique index 
assigned by the function idx: V → N. 

DEF (Explicit action definition) – An explicit 

action definition is a pair (P, E) of conditions and 
effects: 

- P ⊆ D1 × D2 × ... × Dn – the set of states in 
which the action A is enabled 

- E ∈ ܦଵതതത × ܦଶതതത × … × ܦ௡തതതത – the effect of 
executing the action. For each state variable vi, the 
set ܦపഥ = ௜ܦ ∪ {݁} , where e is the null element, 
signifying that the action doesn’t affect the value of 
the state variable. 

In the following sections, we will use a simpler 
notation of states and actions: s1 = (pos_vehicle_1 = 
gate_1, pos_vehicle_2 = work_area), 
move_1_vehicle_1 = (pos_vehicle_1 = gate_1, 
vehicle_inactive = true; pos_vehicle_1 = work_area)  

We distinguish between two types of actions – 
explicit, for which descriptions of the conditions and 
effects are available and expressed using the state 
variables and implicit, for which these descriptions 
and missing.  

In order to enable the correct generation of the 
transition system, for each implicit action a new 
state variable will be introduced. The state 
representation of the implicit actions will be 
automatically generated and will have an empty 
condition expression and, as the effect, a change of 
the associated state variable from the initial state to a 
new value. Although the empty condition expression 
for the implicit actions means that the action is 
enabled in any state, when building the transition 
system, it will be ignored.  

Notice that this representation of implicit actions 
is equivalent to representing states as sets of actions 
in the original approach. For other ways of 
representing states, such as multi-sets or lists, a 
different approach for creating the state definitions 
of implicit actions is required.  

 We assume that implicit actions will correspond 
to events from high-level activities that are logged 
by human operators or by other information systems, 
while the explicit events are logged using sensor 
data.  

In the extreme case of an event log that refers 
only to implicit actions, the resulting transition 
system will be equivalent to the one generated by the 
original approach. 

The method of generating the transition system 
will make use the available information regarding 
the state changes. First, a transition system that 
contains just the initial state will be created. After 
that, each trace from the input event log will be 
processed. Starting by considering the initial state as 
the current state, for each event, the procedure will 
insert a new transition labelled with the event name 
between the current and the next state. The next state  
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Figure 3. 

will be computed using the available information 
about the effects of the action related to the event. If 
the next state doesn’t exist in the transition system, it 
will be added. After the transition is added to the 
system, the next state becomes the current state and 
the next transition is the sequence of the event trace 
is considered. 

An example of transition system generated using 
this procedure is depicted in fig. 3. In this case, the 
state variables “p1” and “p2” are used and they have 
the save domain D1 = D2 = {LOC1, LOC2, LOC3}. 
Starting from the initial state (p1=LOC1, 
p2=LOC2), the procedure will fist consider the 
transition “A1” for which the state description is 
(p1=LOC1; p1=LOC2). As the initial state validates 
the action’s conditions, the effects are applied and 
the state (p1=LOC2, p2=LOC1) is added to the 
system. 

Notice that the algorithm will be able to detect 
inconsistencies in the definitions of the conditions of 
the explicit actions by checking them against the 
definition of the current state.  

The second part of the proposed approach will 
leverage the explicit description of the actions to add 
possible, but missing behaviour to the system.  

It is expected that the log will not contain all 
possible behaviour that can be generated by the 
system, especially in the case of parallel sequences. 
This is a major problem to existing process mining 
algorithms as it prevents the accurate detection of 
the real causal relations between the activities.  

Our approach aims at alleviating this problem by 
using the state description of the actions to introduce 
new states and transitions in the system.  

In order to achieve this, the algorithm determines 
the set of goal states for each state of the system. A 
final state F is a goal state for state S if an optimal 
path from the initial state to F passes through S. The 
cost of a path is equal to its length. 

Then, for each state S, the procedure will search 
for new optimal paths towards all the associated goal 

states. For this, all explicit action definitions whose 
conditions match the current state S are considered 
as the first transition T of the new path. A next state 
Sn is created by applying the effects described by the 
action definition to the state S. If Sn is already 
present in the transition system, the currently 
considered action will be added only if a path that 
starts with T and passes through Sn has the same cost 
as the optimal paths from S to the goal state. 
Otherwise, the procedure will use a planning 
algorithm in order to find an optimal path that starts 
with T towards the final goal. A planning domain 
will be created that contains all the observed values 
of the state variables as PDDL predicates and all 
explicit action definitions as PDDL actions. If a 
valid optimal plan is found and its length is the same 
as the optimal paths from S to the goal state, the 
algorithm will embed it the transition system by 
adding the missing states and transitions. 

The updated transition system will then be 
transformed into the final Petri Net process model 
using an existing algorithm based on the theory of 
regions.  

In our experiments we used petrify (Cortadela, 
1998) to generate the final process model from the 
transition system and LPRPG planner (Coles, 2011) 
for searching for new optimal paths in the system. 

6 EVALUATION 

In order to evaluate our approach, we considered 20 
types of traces (behaviours) that can be generated by 
the example process. These traces were compiled 
into an event log that was used as input to various 
process discovery algorithms. 

We compared the process models generated by 
various existing process mining algorithms with the 
ones that were generated from the transition system 
enhanced using the procedure described in the 
previous section. 

In fig. 4, the process model discovered by the 
“ILP Miner” plugin from the ProM suite is depicted. 

 

Figure 4: Process model generated using the ILP Miner. 
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The same log was also processed using the 
heuristic process discovery algorithm, and the 
resulting model is presented in fig. 3. 

 

Figure 5: Process model generated using the Heuristic 
Miner. 

Using the original two-step process mining 
discovery method, with states represented by sets of 
events with no limit in size, the process model from 
fig. 6 is generated. 

 

Figure 6. 

The process model that corresponds to the transition 
system generated using the method presented in 
previous sections is depicted in Fig. 7. 

 
Figure 7. 

Excluding the model obtained using the heuristic 
miner, that can’t reproduce all the traces in the input 
log, from a simple visual inspection it is clear that 
the last process model is the simplest. 

For each of the discovered process models we 
used the “Replay a Log for Conformance Analysis” 
and “Measure Precision / Generalization” plugins 
from ProM to compute metrics for three quality 
dimensions: fitness, precision and generalization. All 
three values are computed based on an optimal 
alignment between the process model and the event 
log (Aalst, 2012). The fitness value measures how 

well the discovered model is able to replay the traces 
in the event log, with each deviation being 
penalized. The value for fitness ranges between 0 
and 1, with 1(perfect fitness) meaning that all the 
traces in the log can be generated by the model. The 
metrics for precision and generalization are 
computed using empirical formulas, attempting to 
quantify the problems of “under-fitting” and “over-
fitting”. An “under-fitting” process model lacks 
precision by allowing “much more” behaviour than 
presented in the event log and consequently having a 
low value for the precision metric. The 
generalization metric is concerned with the opposite 
problem, of “over-fitting” models, that are only able 
to exhibit the behaviour in the event log. Such 
processes will have a low value for the 
generalization metric. 

The computed values for the 4 process models 
are depicted in Table 1. All metrics are normalized 
in the [0, 1] interval. 

Table 1. 

 Fitness Precision Generalization
Heuristic 

Miner 
0.8 0.58028 0.65238 

ILPMiner 1 0.83036 0.76173 
Transition 

system 
1 0.93304 0.72432 

Enhanced 
transition 

system 

1 0.83185 0.72432 

 

As expected, the precision value for the model 
generated from the enhanced transition system is 
smaller than the one of the model obtained using the 
original approach due to the added states and 
transitions. 

7 CONCLUSIONS 

In the future, a more detailed analysis of the 
proposed method is required, one that focuses on 
event logs collected from real processes. 

Another research direction will need to focus on 
relaxing some of the assumptions regarding the 
behaviour of the agents involved in the execution of 
the process and the exact descriptions of the explicit 
actions. It is expected that at least in some cases, the 
execution of the process won’t follow an optimal 
trajectory. Furthermore, the state description of the 
explicit actions may be incomplete, with missing 
conditions which lead to the creation of imprecise 
(under-fitting) process models. 
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It was assumed in this paper that all the available 
events were correctly partitioned into traces 
corresponding to process instances. In real systems 
however, the collection and processing of events 
may pose an important problem that needs to be 
addressed in at least a semi-automatic manner. This 
issue needs to be addressed in the future, starting 
with existing proposal such as (Rozsnyai, 2011) in 
which a method of detection correlations between 
events based on the values of their associated 
attributes is discussed. 

An issue that was not addressed in this paper 
concerns the discovery of process models that 
contain loops. In order to handle this case, a 
different approach for the representation of state is 
required. 

Finally, the proposed method is based on a set of 
explicit descriptions for some of the activities. 
Although for simple actions, such as moving from 
one area to another, the descriptions can be easily 
created, situations in which more complex actions 
can occur should be investigated. 

The work has been funded by the Sectoral 
Operational Programme Human Resources 
Development 2007-2013 of the Ministry of European 
Funds through the Financial Agreement 
POSDRU/159/1.5/S/132397. 
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