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Abstract: In this paper we address the problem of defining a work assignment for train drivers within a monthly 
planning horizon with even distribution of satisfaction based on a real-would problem. We propose an 
utility function, in order to measure the individual satisfaction, and a heuristic approach to construct and 
assign the rosters. In the first phase we apply stated preference methods to devise a utility function. The 
second phase we apply a heuristic algorithm which constructs and assigns the rosters based on the previous 
utility function. The heuristic algorithm constructs a cyclic roster in order to find out a minimum number of 
train drivers required for the job. The cyclic roster generated is divided into different truncated rosters and 
assigned to each driver in such way the satisfactions should be evenly distributed among all drivers as much 
as possible. Computational tests are carried out using real data instance of a Brazilian railway company. Our 
experiments indicated that the proposed method is feasible to reusing the discrepancies between the 
individual rosters. 

1 INTRODUCTION 

Manpower scheduling is a well-studied NP-hard 
problem in computer science and operation research 
studied (Lau, 1996; Tien and Kamiyam, 1982). 
Several variants of manpower scheduling have been 
studied. Bodin et al., (1983) describe the state of the 
art about scheduling of crews in transportation 
companies. Crew rostering problem (CRP) and crew 
scheduling problem (CSP) are related problem we 
find in crew management in any large transportation 
company (Vera Valdes, 2010; Ernst et al., 2004).  
Although they are related, usually CRP and CSP are 
solved sequentially, but recently we find propose of 
integrated optimization model (Ernst et al. 2001; 
Valdes, 2010). 

Crew scheduling is related to construct of shits 
for a short period of time like a day (or few days e.g. 
when there are long trip). In this phase the shifts are 
not yet assigned to individual crews.  

Crew rostering is a second phase in crew 
management in which the shifts generated during the 
crew scheduling phase are sequenced together in 
order to form a roster for each crew for a larger 
planning horizon (typically a week or a month). 

Crew scheduling is the main topic studied in the 
literature, where the main focus is the cost reduction, 
whilst crew rostering is more related to aspects like 
quality of life than to costs (Valdes, 2010). 

In this paper we are interested in a CRP which 
arises in a Brazilian railway company where the 
crew scheduling is not considered because usually 
the trips are of long duration. A solution in a CRP 
must satisfy all the related constraints over the crew 
working shifts which stems from the union rules and 
regulation covering all aspects over the train drivers 
work.  

Usually, two approaches to find solutions to the 
CRP are reported in the literature (Xie, L. and Suhl, 
2015; Tien and Kamiyama, 1982; Lau, 1996; 
Khoong et al., 1994), one is cyclical or rotating 
(Caprara et al., 1998) and the other is personal or 
non-cyclical (Bianco et al., 1992). In cyclic rostering 
the work patterns are generated and rotated them 
among workers, therefore, theoretically all workers 
do the same roster. While the no-cyclical approach 
where cyclic and personal rostering are combined 
for constructing schedules. Usually this last one use 
personal preference and it is more flexible that 
cyclic scheduling but also fairer than cyclic rostering 
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because all works’ preferences are considered 
simultaneously. Non-cyclic rostering provides more 
freedom to take holidays and special events into 
account. 

Techniques for solving the CRP are reported in 
the literature which includes Mathematical 
Programming (Glover and McMillan, 1986), 
Constraint Logic Programming (Caprara et al., 
1998), heuristic algorithms (Carraresi and Gallo 
1984; Bianco et al., 1992) and fuzzy set (El Moudani 
and Mora-Camino, 2000). These techniques are 
strongly dependent on the domain for which they 
were written, therefore, it is an easier work to 
develop a new one from scratch rather than to try to 
adapt them. Much of this research concentrates on 
the point of view of the enterprises minimizing their 
operational costs. From point of view of the driver is 
interesting to consider the workload and the 
preferences. Although, this last point of view reflects 
the quality of life of the drivers it have been received 
less attention.  Sometimes, an even distribution of 
the workload among the crew involved is applied 
(see Bianco et al., 1992; Carreresi and Gallo, 1984; 
Jachnik, 1981; Caprara et al., 1998), but normally 
the workload is only based on the time worked. In 
the work of Carraresi and Gallo (1984) the drivers 
assign weights to each shift; such weights are based 
on hours worked and sometimes they take into 
account other factors. In the work of Ernst et al. 
(1996, 2000) rosters are built trying satisfying some 
quality standards (referred to as quality of life) for all 
drivers in a train company attempting to satisfy their 
personal preferences. The worker’s resting day 
preference is also refereed in the work of Lau 
(1996). Recently Mühlenthaler and Wanka (2014) 
applied the concept of fair distribution in the context 
of course timetables, considering the distribution of 
resources, costs and penalty over a set of 
stakeholders.  

In this paper we take into account both workload 
and preference represented by a utility function. 
Utility function in the context of economic 
represents an individual’s or group’s degree of 
satisfaction (Mansfield, 1985). The utility function is 
a mathematical expression that attempts to model the 
worker’s satisfaction. We apply Stated Preference 
(SP) methods (Benjamin et al., 2014; Carson and 
Louviere, 2011; Kroes and Sheldon, 1988; Ben-
Akiva and Leman, 1985) to devise a utility function 
to address the drivers’ preferences and workload 
balance. The major advantage of our approach is that 
our utility function takes into account all the 
following factors: kind of duty, preferred days off, 
night shifts, total number of hours and overnight 

hours. For the best of our knowledge this is the first 
study applying this methodology in order to try to 
construct fair rosters so that no worker is favored 
over another. 

The remaining of this paper is organized as 
follows. In section 2 we give a description of the 
railway company and the CRP. In section 3 we 
describe an application of the stated preferences 
methods to CRP for building Personal Rosters, in 
this section we also describe the two modules to 
solve the addressed CRP where the first module we 
propose an algorithm to construct a cyclic roster and 
the second module constructs the personal rosters 
applying local search on the previous cyclic roster. 
In section 4 we state the time complexity of the 
modules used. In section 5 we discuss the 
computational results over real data. Finally, we 
draw the main conclusion in the Section 6.  

2 CREW ROSTERING PROBLEM 
DESCRIPTION 

This work was developed for a Brazilian cargo 
railway company which main activity is mineral 
transportation. Eventually, a trip may also carry 
people and other cargo. Its set of trips is changed 
very often imposing to a manager the task to 
construct (manually) a new roster. The manager 
involved in the task had to deal with two main 
problems: how to quickly build a (cyclical) 
optimized roster (satisfying union regulations and 
operational constraints) and how to distribute the 
satisfaction (workload and preference) evenly 
among the crew. In the satisfaction it had to be 
considered the following factors: total number of 
hours and overnight hours, type of duties and 
preferred resting days. Naturally, due to the 
complexity of the problem, sometimes the above 
mentioned task turns to be a hard work. 

We present a railway company where a crew 
member always start and finish their working shifts 
in the same station that is both source and 
destination of a duty, this station is called the home 
station  (the town where the crew live); the duties 
(journeys or roundtrips) are repeated every day 
regardless it is a Sunday or a holiday; most of the 
duties are trips, but there are two other activities 
(duties): readiness (a driver stays in the company 
premises awaiting for an eventual call) and shunting 
(a short trip within a metropolitan area); the trip 
duties are divided in two categories: short duties 
(trips that take up to 8 hours) and long duties (long 



trips consisting of two consecutive short trips 
divided by an external rest). Our roster is a railway 
station working schedule that must follow some 
hard constraints (the union regulations and the 
operational constraints) and should follow some soft 
constraints (workload properties that improve 
drivers’ safety and life style). A working day is the 
period of time from 00:00 to 24:00 hours. There are 
two hard constraints:  

• The minimum resting time between 
consecutive duties which is of 11 hours;  

• It is allowed a block of at most 7 (5 is 
desirable) consecutive working days 
between two resting day, we refer this set of 
consecutive working days as a block.  

There are also two soft constraints:  
• A block should have at most 3 consecutive 

overnight duties; 
• The resting time between blocks should be 

as long as possible – our roster deals with 
this property postponing the block starting 
time.  

Soft constraints are desirable but not necessarily 
satisfied by the roster. Note that, these constraints 
are referred as quality of life of the crew.  

Our objective is construct personal rosters (for 
each driver) over a 30 day planning horizon using a 
minimum number of drivers. Furthermore, the main 
concern is to balance the satisfaction among the 
drivers involved. The satisfaction is measured by a 
utility function (devised from stated preference 
methods) which considers several factors described 
in the beginning of this Section. 

3 THE CRP RESOLUTION 
PHASES 

To find a solution to our CRP for the railway 
company our project was split into the following two 
phases: 

1. PHASE 1: Apply the SP methods to estimate 
a utility function from the crew’s preferences 
in order to measure the fairness of the rosters. 

2. PHASE 2: A development of an algorithm 
divided into two modules: construction 
algorithm and weighted distribution module. 
• The construction algorithm constructs a 

master roster (a cyclic roster covering 
whole set of duties minimizing the size of 
the crew); 

• The weighted distribution module 
constructs personal rosters tries to 

breaking the cyclic roster constructed in 
the previous module. The even 
distribution of duties among the crew is 
reached by applying a utility function 
developed on the phase 1. 

3.1 Applying the Stated Preference 
Methods 

The Stated Preference (SP) methods were originated 
in mathematical psychology (Krantz and Tversky, 
1971), developed and often used in marketing 
research early in the years 70 – by that time these 
methods were called “trade-off” analysis. Attention 
to these methods regarding transport started late in 
this decade and their popularity had grown in the 
years 80. For more detail about SP methods the 
reader are referred to Benjamin et al., (2014), Carson 
and Louviere (2011), Hensher (1994), Koes and 
Sheldon (1988), Louviere (1988) and Ben-Akiva and 
Lerman (1985). 

In a short, SP methods mean a family of 
techniques that uses individual respondent 
statements about his/her preferences over a set of 
alternatives to estimate a utility function (which 
describes the structure of the respondent’s 
preference). The alternatives (scenarios or options) 
are typically descriptions of fictitious situations or 
contexts constructed by a researcher. Those 
descriptions are printed in a set of cards prepared 
statistically by experimental design. Subsets of these 
cards are provided to respondents that are asked to 
express their preferences by sorting the alternatives 
in decreasing order of preferences, or by giving a 
rating value for each card. The next step is to devise 
the implicit utility (preference) function related to 
the respondent. This function can be inferred by the 
use of appropriate statistical techniques (e.g. 
maximum likelihood LOGIT, non-metric regression, 
Monanova). In SP methods it is usual to assume that 
the utility function is a linear weighted function as 
follows:  

U = 
=

fn

i
ii x

1

α  (1)

were 
U = total weighted utility function; 
nf = number of factor (variables or attributes) 

considered; 
xi = factor i; 
αi = utility weight of factor i. 



Table 1: The set of 96 scenarios broken down into 12 groups with 8 alternatives (cards) each. 

Card Group 
1 

Group 
2 

Group 
3 

Group
4 

Group
5 

Group
6 

Group
7 

Group
8 

Group
9 

Group 
10 

Group 
11 

Group 
12 

1 0000 0021 0012 0010 0022 0001 5010 5022 5001 5020 5011 5022 
2 4112 4100 4121 4101 4110 4122 6001 6010 6022 6022 6020 6011 
3 1021 1012 1000 1021 1001 1010 7022 7001 7010 7011 7022 7020 
4 2000 2021 2012 2010 2022 2001 0110 0122 0101 0120 0111 0102 
5 5111 5100 5121 5101 5110 5122 4001 4010 4022 4002 4020 4011 
6 3021 3012 3000 3022 3001 3010 1122 1101 1110 1111 1102 1120 
7 6100 6121 6111 6110 6122 6101 2110 2122 2101 2120 2111 2102 
8 7112 7100 7121 7101 7110 7122 3101 3110 3122 3102 3120 3111 

 
Note that other mathematical forms of utility 
functions expressing different hypothesis about the 
way respondents combine their overall preferences 
can be tested (Lerman and Louviere, 1978). 

The first step in the design of a SP exercise is the 
definitions of the factors of interest and their 
corresponding levels (discrete values). Those factors 
are needed to be evaluated by the respondents. In 
our application we identified (chosen) four 
important factors in a typical roster based on the 
company requirements described in the Section 2. 
The four factors are the following:  

x1: is a mix of different duties (long trip, short 
trip, readiness shunting) in a roster. 

x2: is related to weekday with resting. 
x3: is the perceptual of overnight hours worked in 

the block. 
x4: is the number of progressiveness violation. 

We define progressiveness when a duty starts 
earlier than the consecutive duty. The 
objective is to avoid the non-occurrence of 
the progressiveness between two consecutive 
duties.  

For each factor was considered different levels as 
follows: 

x1: We considered eight levels (0 to 7), each one 
is a possible combination of different duties 
in a block. 

x2: two levels: 
 0: resting in a Sunday or holiday; 
 1: resting in a weekday or Saturday. 
x3: three levels: 
 0: 0 to 33%; 
 1: 33% to 66%; 
 2: 66% to 100%. 
x4: thee levels: 
 0: zero or one occurrence; 
 1: two occurrences; 
 2: three or four occurrences; 
In our SP exercise each alternative (that will be 

printed in a card) is a descriptions of a possible 
block of duties over a period of consecutive working 
days (each alternative is a combination of the factors 
levels).  Of course, the total number of all possible 
combinations of factor levels is enormous. 
Therefore, respondents can only evaluate a fairly 
limited number of alternatives at a time which 
typically falls between 9 and 16 (Kroes and Sheldon, 
1988). The full factorial design (all possible 
combinations) can only be used if there are very few 
factors with very few levels each. In our case, a full 
factorial design consists of 144 (23×21×31×31= 
24×32) possible alternatives from which we selected 
a set of 96 in the same fashion of the “fractional 
factorial design (2/3)” by Mc Lean and Anderson 
(1994).  

To conserve space we do not reproduce here the 
exercise that generated the 144 alternatives (all 
possible combination of factors and levels) nether 
the selection of the 96 alternatives. The set of 96 
alternatives was broken down into 12 groups with 8  
alternatives each (Table 1) and were printed on cards 
(illustrated in Figure 1). The groups of these cards 
were provided to a single respondent to sort the 
alternatives in decreasing order of preferences. Due 
to operational difficulty we selected the railway 
company’s manager as the respondent to represent  

 
 ROSTER (Block) 

 
  START Week-Day SYMBOL    TASK 
  00:00      MO           SHT         SHUNTING          
  22:00      TU          MIN          MINERAL 
           WE           CNT         continuation        
  10:00        TH        CRG         CARGO        

       FR         CNT         continuation          
             SA           RST            REST 

 

Figure 1: An example of a card with fictitious scenario 
(roster). 



the preference of the group of the crews. This phase 
of study consumed some weeks of work. 

After applying this survey and collect the data, 
we applied a maximum likelihood (LOGIT) 
technique to analyses the respondent selection (Ben-
Akiva and Lerman, 1985).  

After computational adjustment we detected that 
the factor x4 was not statistically significant, and 
then it was removed. For the other hand, we 
decomposed the factor x1 into five factors in order to 
enter explicitly some information as follows: 

x11: number of trips with load of minerals; 
x12: number of trips with heterogeneous load 

(named cargo); 
x13: number of shunting; 
x14: number of readiness;  
x15: total sum of hours worked in the block; 
As the most applications of SP, in this work we 

adopted the multinomial logit (MNL) model. The 
results of maximum likelihood estimation of MNL 
model are summarized in Table 2. All parameters 
are statistically significant at 99% confidence level, 
which indicates a good model fit. 

With this result we have a decomposition of the 
overall preferences into the following utility 
weighted function:  

U =α11x11+α12x12+α13x13 +α14x14+α15x15+ 
α2x2+α3x3  

(2)

This function is used in section 3.3 for estimating 
the level of the satisfaction of the crew and for 
assigning personal rosters to drivers. 

Table 2: Estimation Results of Multinomial Logit. 

Weight Value t-statistic
α11 -5.4235 -19.16
α12 -5.9182 -15.74
α13 -2.1471 -15.10
α14 -3.0419 -13.46
α15 -12.2412 -4.40
α2 7.7781 13.12
α3 -1.7855 -3.09

Number of observations 672
Log-likelihood at zero -127.255
Log-likelihood at convergence -56.947
Log-likelihood ratio (adjusted ρ2 ) 0.551

3.2 The Construction Algorithm 

This module builds a cyclic master roster that 
determines the minimum size of the crew needed for 
the job. This roster is used by the weighted 
distribution module to build the personal rosters. Let 
D = {a1, a2, ..., an} be a set of n duties of a given day 
where each duty has a start time, si and end time, fi. 
Since all duties are repeated seven days a week it is 
possible to construct cyclic roster as illustrated in 
Figure 2. This (cyclic) master roster consists of a 
sequence of 27 duties that spans into 42 days. The 
27 duties are divided into 7 blocks where each block 
spans into 5 days with resting times between blocks 
with at least one entire weekday. According with 
this roster a crew of 42 drivers are needed to 
perform the daily occurrences of a1, ..., a27 as 
follows. Driver number 1 performs: duty a1 on day 
x, duty a2 on day x+1, ..., no duty on day x +41, duty 
a1 on day x+42 again, and so forth. Driver number 2 
performs: duty a2 on day x, duty a3 on day x+1, ..., 
duty a1 on day x+ 41, duty a2 on day x+42 again, 
and so forth. Finally, driver number 42 stays off on 
day x, performs duty a1 on day x+1, ..., duty a27 on 
day x+41, stays off on day x+42 again, and so forth. 

 
workday 1 workday 2 workday 3 workday 4 workday 5 workday 6 workday 7 

a1          a2  a3   a4        a5 

        a6  a7         a8         a9           a10 

              a11       a12              a13         a14 

   a15             a16     a17  a18      a19 

  a20        a21             a22             a23  

   a24      a25          a26              a27  

X 

X

X

X 

X

X X 
 

Figure 2: An example of a roster with 42 days where X means a resting day.



Before running the construction algorithm we 
must set up the following parameters:  

nblocks: the number of blocks; 
startmin: the minimum start time of the blocks; 
restmin:  the minimum resting time between two 

consecutive duties; 
blockmax: the maximum number of consecutive 

working days; 
overnightmax: the maximum number of 

consecutive overnight duties. 
When the module stops mislaying a duty these 

parameters must modified to run the module again 
as we explain below.   

Let us define w as the length of a master roster 
(in days) which is equal to the size of the crew 
needed to cover the daily duties. The maximum 
length of a block is defined by q. 

Our construction algorithm was inspired on ideas 
proposed by Caprara et al., (1998) which uses 
information provides by an assignment problem in 
order to construct only one sequence (roster) adding 
a duty at time until have no duty remaining. Our 
algorithm constructs several sequences (blocks) 
simultaneously adding a duty to each block in each 
iteration until assign all duties. An assignment 
problem (AP) is associated to a cost matrix Cn×n 
where each cij is the minimum time, in minutes, 
between the start of the duty i and the start of the 
duty j if they can be sequenced directly, otherwise 
cij= ∞ (naturally cii= ∞). The AP is defined as 
follows. 
 


=

n

i

n

j
ijij xcMin  z

1= 1

.=  (3)
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After solving AP we have the optimal value of Z. It 
is easy to note that the value (z/1440) gives a lower 
bound for the length of the master roster. This value 
must be an integer number of days (1 day = 1440 
minutes). The minimum number of blocks in the 
master roster can be easily estimated by: 









=

q

z
nblocks 1440

1
,   (4)

where  q = 5 (desirable value of hard constraint).   

The block construction procedure is outlined as 
follows. 

 

Initialisation:  i) define a list of nblocks empty blocks; 
  ii) select an initial duty a0 to the block 

k, k=1,..., np . 
STEP 0:  start a list with nblocks (empty) blocks and 

select an initial duty a0 for a block k, 
k=1,..., nblocks . 

STEP 1:  For k=1 to nblocks  do  
Select the best duty that can 
sequenced after the last duty of block 
k; 

STEP 2:  If all duties have been sequenced or no 
duty was selected in the STEP 1 or all 
block lengths reached its maximum value 
q  STOP, otherwise return to STEP 1. 

The follow we give a more detailed description 
of the steps of the algorithm. 

Choice the initial duty 
The initial duty a0 for each block is heuristically 

chosen with base in the best value of a score. The 
score is calculated with base in the number of 
reduced costs equal to zero found in the rows and 
columns relative to activity a. As larger the number 
of zero reduced costs found in the row of the activity 
a, larger the number of activities that can be 
sequenced after the activity a without causing great 
increments in the function objective from AP. A 
similar interpretation can be made for the reduced 
costs in the column. Since the activity will be first 
duty performed at the block, we give preference to 
the duty with the smallest number of costs reduced 
zero in the column and a large number of zero 
reduced costs in row from the duty a. Moreover, 
since the initial duty should be followed by other 
duties in the same block, we penalise the duties that 
have no zero reduced cost in the column. 

Choice de next duty 
The choice of the duty j that can be sequenced 

soon after the last duty i, in the block k, also follows 
some similar criteria. For each candidate duty j 
which can be sequenced after duty i in the block k 
receive a score P(j). This score takes into an account 
the increasing of the objective function z when the 
sequencing of j after i is impose in the AP’s solution. 
Additional weight can be impose in the score in 
order to sequence the duties considered “critical”, 
i.e., duties having few number of zero reduced in the 
matrix’s row and column, long journey, or specific 
attribute. The duty j having better score P(j) is 
sequenced after duty i in the block k. 

Update the AP 
After each pair of duties has been consecutively 



sequenced, this condition imposes a new AP’s 
solution. The new AP’s solution required can be 
easily update solving the AP parametrically in the 
O(n2) time. This procedure gives us a new cost 
reduced matrix. 

Refining Procedure 
After the solution is found, we can try to improve 

it modifying the parameters and heuristic algorithm 
is re-applied. This procedure can do manually, 
providing to company manager a way to test 
alternatives in order to take decision.  

When the procedure stops leaving a duty not 
sequenced, so we manually modify some of the 
initial parameters (e.g. increase the number nblocks of 
blocks, the decrease the start time of the blocks  -
startmin, etc.) and run the procedure again. In this 
procedure the heuristic used for choosing the first 
duty for a block (STEP 0) and the candidate duty to 
follow the duties already sequenced in a block 
(STEP 1) is the same outlined in Caprara et al., 
(1998). However, our approach differs from theirs 
where they build the blocks sequentially 
(individually) and we start all blocks together and 
select one duty to each block on each iteration. This 
is particularly better approach since critical duties 
can be assigned earlier, because we have nblocks 
blocks instead of only one sequence as proposed by 
Caprara et al. (1998).  

3.3 The Weighted Distribution Module 

If a cyclical roster runs for a long period of time 
where all drivers follow the “same” roster, this 
ensures that a balanced workload among the crew 
and gives to all drivers a similar track experience. 
However, sometimes an accident or cancellation of 
some programmed trip generates an unbalance. In 
this case, a manager tries to correct such distortion 
assigning new rosters to each driver. However, the 
balance of the workload cannot be guaranteed for 
the reason that sometimes the measure of the 
workload is based on subjective aspects over 
intrinsic attributes of the roster. Furthermore, 
driver’s satisfaction is subjective information related 
to driver’s preference. We propose the following as 
an alternative solution to correct such balancing (fair 
distribution). The general idea is to break a cyclical 
roster into w (number of drivers) smaller personal 
rosters and make a balanced workload distribution of 
these new rosters among the crew. The workload is 
measured by a utility function (devised from stated 
preference methods) which considers both the 
workload history of each driver and the driver’s 
preferences as described in Section 3.1. 

Normally, the planning horizon is over a month. 
In general, the length of a master roster is greater 
than a month. However, we intend to create personal 
rosters of a month each or less. Therefore, a master 
roster is broken down into a set of w smaller 
separate rosters as follows. Note that w is both the 
number of days needed to perform all duties of the 
master roster and the size of the crew needed to 
cover the master roster. 

Let M = (m0, m1, ..., m1440w-1) be the master roster 
consisting of a sequence of integers (cyclic roster 
with l440w minutes). Each  mi , i = 0, 1, ..., 1440w-1, 
is an integer field corresponding to a duty number. 
When a field mi is set to a value between 1 and n, 
say j, it means that the minute i of master roster M is 
spent on duty j, otherwise it is set to 0 meaning it is 
free (resting time). Let lengthj, j = 1, 2, ..., n, be an 
integer value corresponding to the length of duty j in 
minutes. For example, if duty j starts at the first k-th 
minute of the l-th day of the master roster M, in this 
case, jm wkl =−+ 1440 mod)11440( , ...,  

jm wlenghtkl j
=++ 1440 mod)1440(  (duty j starts at minute 

(1440l+k-1) mod 1440w and ends at minute 
(1440l+k-1+lengthj) on the master roster M). Let h 
be the number of days (generally a month) of the 
desired planning horizon. Let Sl, l = 1, 2, ..., w, be a 
copy of the subsequence  

wlm 1440 1))mod-(1440( , wlm 1440 1)mod1)-(1440( + , ... ,  

wlenghtl j
m

1440 1)mod1)-(1440( +  and '
1400

'
2

'
1 ,...,,( hl mmmS =

. Let the subsequence Sl be the l-th truncated roster 
of size 1440h minutes (corresponding to h days) 
starting in the first minute of day l and ending in the 
last minute of day ((l+h-2) mod w)+1. When the first 
minute of a truncated roster l is not free ( 01 ≠= jm ) 

and its lengthj-th minute is not spent on the last 
minute of duty j ( jm

jlength ≠ ) we say that the 

truncated roster l starts with a “broken” duty. In this 
case, starting from 1m we follow all consecutive 

values equal to j in the truncated roster l, let λm be 

the last of these values, we unset duty j from the 
truncated roster l by setting 0=σm , for all 

consecutive σ =1, 2, ..., λ.  
Let U(bϕ), ϕ = 1, ..., nblocks, be the measure of the 

block satisfaction value (values of the utility 
function) of the block bϕ belonging the master roster. 
Let the truncated roster satisfaction value (for roster 
Sϕ) be the sum of the measures U(bϕ) over all blocks 
bϕ belonging Sl. Clearly, truncate rosters S1, ..., Sw 
are different, and expectedly, having different 
truncate roster satisfaction values, therefore, they 



must be balanced. An important aspect we consider 
is the work performed in the past, called historical 
roster. Let Hi be the historical roster of the driver i, 
Sj be the truncate roster j, for i = 1, 2, ..., w and j = 1, 
2, ..., w.  

Now we describe the mathematical model of the 
Bottleneck Assignment Problem and outline the 
weighted distribution module. 

The mathematical model of the Bottleneck 
Assignment Problem (BAP) is formulated as 
follows. 
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where  ckl = – (U(Hk) + U(Sl)) if the truncated roster 
Sl can be assigned to driver k (satisfying the union 
regulations and operations constrains), otherwise ckl 
= ∞. We consider U(Hk) and U(Sl) to be the utility 
(satisfaction) of Hk  and Sl, respectively. The 
objective this model is finding w assignments that 
minimizes the maximum workload, i.e., that 
maximizes the minimum satisfaction, using the 
algorithm proposed by Carraresi and Galo (1984). 
Generating New Truncated Rosters 
Let G be a complete graph such that each vertex is a 
block of the master roster. Now, to generate new 
truncated rosters we solve the associated Travelling 
Salesman Problem (TSP). In this problem the cost of 
the Hamiltonian cycle is given by objective function 
of the BAP where edges of G have no cost. Each 
new Hamiltonian cycle is associated (generated) to 
new truncated rosters. In this way, the first 
Hamiltonian cycle is given by the order of mater 
roster. A new Hamiltonian cycle is found applying 
classical improvement heuristic procedures such as 
2-opt and 3-opt (Lin, 1965). 

So, the algorithm that distributes the truncated 
rosters is presented as follows. 
Distribution Algorithm:  

STEP1: Solve the Bottleneck Assignment 
Problem associated with Sl, for l = 1, 2, 
..., w; 

STEP2: New truncated rosters are generated by 
permutations of the blocks belonging to 
the original master roster. Return to 
STEP 1. 

The two steps are repeated to all cyclical 
permutations. 

4 COMPLEXITY OF THE 
ALGORITMS 

The master roster construction in the construction 
algorithm is found by solving the AP which can be 
solved in time complexity O(n3) by any classical 
Primal-Dual algorithms: Hungarian Method or 
Shortest Augmenting Path method (Sorevik, 1993; 
Carpaneto and Toth, 1987), we used the latter. In our 
case the AP is solved parametrically every time that 
a duty is sequenced where this step takes time 
complexity O(n2) (in the worst case), this is done in 
sequentially (for each duty). Therefore, the overall 
time complexity of the whole step remains O(n3).  

The personal rosters construction in the weighted 
distribution module are found by solving BAP which 
can be solved in time complexity O(w2) by an 
algorithm by Carraresi and Galo (1884). A BAP is 
run each time a 2-opt procedure improves the 
Hamiltonian cycles where this 2-opt procedure (Lin , 
1965) takes time complexity O(nblocks

2), this time the 
BAP is solved on each iteration increasing the time 
complexity of this step to O((w nblocks)2). Therefore, 
the overall time complexity is O((w nblocks)2). Note 
that w > n > nblocks. 

5 COMPUTATIONAL RESULTS 

The master roster construction and personal rosters 
construction defined in previous sections have been 
implemented in PASCAL. The resulting code was 
tested on the real-world instance provided by a 
public Brazilian railway company. The master roster 
solution constructed by the algorithm is always 
fairly better in “quality” and in optimality than the 
roster constructed manually by the company 
personnel.  

We compared the result with four previous cyclic 
roster provided by the company. Our rosters 
decreased an average of about 2% on the number of 
drivers needed. The Table 3 illustrates the some 
results obtained. In addition, our rosters always 
respected all union regulations and all operational 
constraints. However, this was not observed in 
several rosters prepared by company. The 
computational results were obtained in an Intel Core 
i3CPU running Windows in less than a minute for a 
roster. 



Table 3: Computational results on real instances. 

  Company Algorithm
Name n w w
Inst1 21 43 42
Inst2 33 55 54 
Inst3 33 52 51
Inst4 31 62 60

6 CONCLUSIONS 

In the methodological point of view we presented a 
solid new approach which combines the cyclical 
approach with the individualized approach. Our 
approach by the mean of a utility function 
establishes a fair balance of the personal rosters 
taking into account several factors regarding the 
crew quality of life not considered in the literature. 
Furthermore, the ideas presented here were applied 
with sensible success on real data.  

Our weighted distribution module based on 
utility function could not be fully evaluated and 
compared with real data from company because it 
requires closer investigation during a long period of 
time. Nevertheless, we believe that the utility 
function used in this paper provides a fair way to 
distribute and consider crew preferences on the 
workload. Note that in this work a single utility 
function was used to evaluate the workload of the 
whole crew. The development of particular utility 
function for each crew member seems to be a quite 
interesting improvement to be investigated.  
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