
Efficient Image Distribution on the Web
Instant Texturing for Collaborative Visualization of Virtual Environments

Michael Englert, Yvonne Jung, Jonas Etzold, Marcel Klomann and Paul Grimm
Fulda University of Applied Sciences, Marquardstr. 35, 36039 Fulda, Germany

Keywords: HTML5, WebGL, GPU Decoding, Mobile Devices, Progressive Image Transmission, Collaboration.

Abstract: In this paper, we present a browser-based Web 3D application that allows an instant distribution of image data
even over mobile networks as well as textured rendering of large image collections on mobile devices with
restricted processing power. Applications utilizing a lot of image data require an adaptive technology to build
responsive user interfaces. This applies especially for the use in mobile networks. Furthermore the up- and
download of the massive amount of image data should be transmitted in a progressive manner to get an instant
feedback. While people are used to instant reaction of web applications and do not care about the amount of
data that has to be transferred, the instantaneous display of imperfect content that gets continuously refined is
state of the art for many application areas on the web. However, standard 2D image transmission technologies
are usually inappropriate within a 3D context. In 2D, image size as well as resolution are often set during the
authoring phase, whereas in 3D applications size and displayed resolution of textured 3D objects depend on
the virtual camera. Our GPUII approach (GPU-based Image Interlacing) follows a client-server architecture,
which allows an instant distribution of new data while also reducing the CPU load and network traffic.

1 INTRODUCTION

Today, the combination and integration of real world
information into virtual environments is a well-known
task in Augmented and Virtual Reality research. The
increasing performance of mobile devices and wear-
ables like Google Glass additionally promote this re-
search area. Applications like Google Streetview
(Anguelov et al., 2010), as well as Microsoft Photo-
synth or Photo Tourism (Snavely et al., 2006) already
use a huge amount of real world image data to recon-
struct 3D geometry directly from digital photos and
show that this type of application is getting more and
more important.

Another important fact is the increasing availabil-
ity of 3D web applications. Web applications can
be a good alternative to native apps because of their
great deployment possibilities even on mobile de-
vices. Standards like HTML5 and WebGL as well
as 3D frameworks like Three.js (Cabello, 2013) or
X3DOM (Behr et al., 2010) facilitate the develop-
ment of such applications and additionally provide
an easy integration of 3D real-time graphics into web
pages without installing further plugins. To be able
to cope with the requirements of modern client-side
web apps not only new web standards were devel-

oped but also the performance of JavaScript engines
did increase enormously the last few years. Further-
more, browser vendors and the W3C accomplished
more features through their API specifications, which
e.g. allow direct access to the devices’ media hard-
ware like the camera or other sensors.

Building on these APIs, the collaborative con-
struction planning system recently proposed by (Et-
zold et al., 2014b) clearly shows that complex Mixed
Reality applications can be developed using only web
standard technologies. It combines CAD planning
data with real world information by placing real pho-
tos and annotations within the virtual 3D scenes gen-
erated from the CAD blueprints. Therefore, the au-
thors are using the camera access and other web tech-
nologies to visualize the combined data via hardware
supported 3D rendering. Furthermore, a server-based
collaboration component allows all involved people,
like workers on the building site as well as supervisors
or even investors to discuss about the current state or
problems during the construction phase.

Here, not only static scenes are used, but new im-
age material is integrated into the 3D scene at the
original camera pose by using the sensor informa-
tion (such as GPS, gyroscope, etc.) of the mobile de-
vice, whenever new photos are captured (Etzold et al.,

478 Englert M., Jung Y., Etzold J., Klomann M. and Grimm P..
Efficient Image Distribution on the Web - Instant Texturing for Collaborative Visualization of Virtual Environments.
DOI: 10.5220/0005345704780485
In Proceedings of the 10th International Conference on Computer Graphics Theory and Applications (GRAPP-2015), pages 478-485
ISBN: 978-989-758-087-1
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Unordered photo collection that represents parts
of a room or building and reorganization within a 3d scene.

2014a). As a consequence, the updated scene data
including the newly taken images first has to be up-
loaded to the server and then the data has to be dis-
tributed to all connected clients in order to get a dis-
cussion base. In a short time a lot of photos are in-
tegrated into the virtual scene this way (see figure 1).
However, since the authors are using only standard
textures and do not focus on a more advanced stream-
ing approach, connected users have to spend a lot of
time to receive new image data, especially when using
slow mobile networks.

Along with the improving quality of images (e.g.,
captured by digital cameras), their sizes and resolu-
tion also increase, which is why the integration of sev-
eral images into the applications requires a lot of data
transmission that can be very problematic while using
mobile devices and their often strictly limited band-
width on mobile networks. While people are used to
instant reaction of web applications (responsive user
interfaces) and do not care about the amount of data
that has to be transferred, the transmission of this im-
age data can take a lot of time, which can lead to a
frustrating user experience. Users are getting bored,
if the system shows no reaction after a few seconds
and in the worst case they even leave the page.

Besides using smaller images, a good and ele-
gant approach to improve the application’s startup and
runtime behavior during synchronization with other
clients is to employ progressive image transmission
(PIT) strategies (Chee, 1999). Instead of transferring
a single entity the images are divided into smaller
parts, which are transmitted consecutively and can
also be used as preview. The first levels are rough
approximations while the quality increases with each
additional detail level. The instantaneous display of
imperfect content that gets continuously refined is
state of the art for many application areas on the web.
While the PNG and JPEG standards have become a
well-established method for progressive delivery of
2D image data, there was no focus on suitable meth-
ods for progressive transmission of textures in inter-
active 3D web applications.

Also browsers still only support the parallelization
of working processes in a rather limited way, so ac-
cessing the raw byte stream including the decoding
process during loading phase substantially impacts
the interactive framerate (Herzig et al., 2013). Other
possibilities have to be developed that better deal with
the extremely limited processing power of mobile de-
vices and concurrently transmit the image data in a
progressive way to support an instant feedback.

To overcome these problems, our proposed web
application shows how a huge amount of real world
image data can be efficiently distributed to an arbi-
trary number of connected clients using different de-
vices and bandwidths. Our GPUII method for texture
streaming and level-of-detail (LOD) has a minimal
overall data rate, easy and fast en- and decoding with
small first previews. In addition, we derive a control
function to specify the maximum refinement levels of
each texture based on the required rendering quality
and the current camera state. For load balancing be-
tween CPU and GPU during the decoding phase our
approach is optimized for mobile devices with less
processing power and allows an instant texturing in
3D web applications using the roughest approxima-
tion given by the first refinement level.

2 RELATED WORK

There exist different progressive technologies for 2D
image transmission schemes, which are shortly dis-
cussed in order to select and transfer the best practice
as far as possible to a new progressive texture trans-
mission approach that allows instant texturing of vir-
tual 3D objects and fits well with the limited process-
ing power of mobile devices.

While all web browsers support image formats
like PNG, JPEG, and GIF, different progressive strate-
gies to download them are natively implemented and
intermediate download results cannot be accessed
from within JavaScript/ WebGL. Though all browsers
present several previews of the image during trans-
mission, their efficiencies vary. In this regard, the
Adam7 interlacing scheme of the PNG file format
(Costello, 2003) allows a very fast first impression
of the image due to the simplicity of the algorithm.
Adam7 is a 2-dimensional interlacing scheme. Its en-
coding strategy consists in transposing the pixel order
from a sequential to a 2-dimensional distribution by a
8� 8 pixel pattern with exactly seven steps. Within
these seven steps, the resolution increases by a factor
of two with respect to the previous step.

Utilizing the original Adam7 interlacing for tex-
tures in 3D scenes imposes several problems that have

Efficient�Image�Distribution�on�the�Web�-�Instant�Texturing�for�Collaborative�Visualization�of�Virtual�Environments

479

to be resolved, as already discussed in (Herzig et al.,
2013). On the one hand, it is not possible to get
access to the exact preview steps, and on the other,
web browsers do not allow accessing this stream in
an efficient way. The byte stream has to be con-
verted using JavaScript, which could be rather time-
consuming. The Adam7 interlacing scheme strictly
uses seven (preview) steps. This can be problematic,
if very big images should be transferred, as the first
version already could be too big for slow mobile net-
works. Although in 3D scenes often not the whole
quality of a texture is required, for instance because
of a larger distance to the virtual camera, in the orig-
inal Adam7 method the stream cannot be paused if
enough data is already visualized. Furthermore, the
Adam7 technique is only implemented for the PNG
image format, and JPEG compression cannot be ex-
ploited efficiently this way.

Already Chee (Chee, 1999) classified approaches
to transmit images in a progressive way into four dif-
ferent categories: successive approximation, multi-
stage residual coding, transmission sequence based
coding, and hierarchical coding. Some approaches
only target an efficient transfer, deal with massive
amounts of pixels, and visualize them in a 2D context,
like Deep Zoom Images (DZI) (Kopf et al., 2007),
or they require a sophisticated encoding. Following
the classification scheme of (Chee, 1999), DZI can
be seen as hierarchical coding strategy, because of its
quadtree-based layout.

The pyramid transmission scheme of (Herzig
et al., 2013) uses a quadtree to divide and transfer
images as well as 3D data. The authors show that
such a strategy can be utilized as well in a 3D con-
text, to access 3D terrain data progressively. How-
ever, their method still exhibits some disadvantages,
as esp. the data transfer lacks efficiency, because all
pixels of the first preview are transferred twice when
transmitting the next level, and a third time on the
next coarser level, etc. Other approaches to stream
images progressively try to extract the regions of in-
terest and transmit the preferred image parts as soon
as possible like (Hu et al., 2004), or esp. (Lim et al.,
2010), who already exploits a quadtree-based method
to select and transmit the preferred image parts first to
quickly get better previews.

Furthermore, other authors adapt images on the
server for different devices to better exploit the some-
times rather limited bandwidth (Wilcox, 2014), since
for example on mobile devices with small screens
only low resolution images need to be visualized.
This way, images can automatically be provided for
every required size by a PHP script (instead of the
typically manual process of preparing images in vari-

ous sizes as needed for different media queries/ screen
sizes in responsive web design), but they cannot be
transmitted progressively.

Especially for texture compression in hardware-
accelerated 3D graphics, the DXT formats (Pat Brown
et al., 2013) where developed. In contrast to image
compression algorithms like JPEG they have a fixed
data compression rate and require only one memory
access per texel for decompression. To overcome
artifacts arising with e.g. normal maps, (Munkberg
et al., 2006) later outlined several techniques to im-
prove quality also for normal map compression (cp.
(van Waveren and Castano, 2008) for a more detailed
discussion). However, all these methods are not yet
available in WebGL and only aim at reducing storage
memory and bandwidth, but do not provide any means
for progressive texture transmission over the web.

Since the broad support of WebGL (Khronos
Group, 2014) with its hardware-accelerated 3D ren-
dering in all major web browsers along with 3D
web frameworks like X3DOM (Behr et al., 2010)
or three.js (Cabello, 2013) for simplifying the devel-
opment of 3D web apps, adaptive methods not only
for images but also for textures in 3D scenes gained
importance. Thus, in (Schwartz et al., 2013b) and
(Schwartz et al., 2013a) recently a shader-based algo-
rithm that supports progressive transmission as well
as access to the dataset within a 3D context was pre-
sented in order to stream a BTF (bidirectional texture
function) to allow for photorealistic rendering using
WebGL, though encoding is still very specialized.

3 TEXTURE REPRESENTATION

Mixed Reality (MR) applications like the web-based
support and collaboration tool presented in (Etzold
et al., 2014b) and (Etzold et al., 2014a) for con-
struction planning and supervising scenarios use a
lot of images to reconstruct virtual worlds combined
with real world data. The tool combines classical
CAD planning data with photo collections represent-
ing temporal snapshots of the associated construction
site, which can be integrated into the already existing
3D scene during runtime. After arranging new pho-
tos within the scene using sensor data and other MR
methods they have to be distributed to all connected
clients. A scene can obtain hundred or even more im-
ages (figure 1 should give an idea of this use case).
On every single start of the application all data has to
be transferred via network before it can be used on the
client, which can be rather time consuming.

Most of the time clients are connected by mo-
bile devices combined with their strictly limited band-

GRAPP�2015�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

480

Client 1
Client
2..n

Server

Produce GPUII level

loop

[Till end of GPUII level reached]

Send next GPUII level

Create new GPUII Image

Storing new GPUII level

alt

[Is First level of new GPUII Image]

Request for next required level

loop

[Till all GPUII parts are loaded]

Create GPUII Image

Required level if already available

Figure 2: Sequence diagram for upload and distribution of
a newly captured and positioned photo using GPUII levels.

width due to mobile networks. If someone wants to
share a photo he or she has to upload it. Unfortu-
nately, the upload is usually even much slower than
the download, so one has to wait a long time. After
the upload the image also has to be downloaded by all
other connected (mobile) clients. But there are more
challenges to solve when using mobile devices. They
are not as powerful as a modern desktop PC or note-
book. Thus, encoding and decoding has to be very
cheap and efficient.

In this section, we therefore present our approach
for progressive image transmission to allow instant
textured rendering in distributed, web-based 3D ap-
plications using mobile devices, which we call GPUII
(GPU-based Image Interlacing). The goal of our work
is to allow an efficient texture transmission for 3D
web applications. For instant response a first refine-
ment level should be delivered very fast, which results
in a small preview image. The quality of the trans-
mitted textures should be controlled dynamically by
their size and displayed resolution in the final render-
ing. The amount of transmitted data should be mini-
mal, which means, that each refinement level is inte-
grated into the next one, so that no pixels are trans-
mitted twice. We do not focus or optimize for a spe-
cific image format in order to support a broad range
of applications and to allow the usage of all com-
monly supported image formats of a browser exploit-
ing their specific advantages. To allow using massive
amounts of images and to minimize the requirements
for the web browser the proposed approach should
be lightweight regarding CPU and memory resources,
and should also scale well for all server jobs.

3.1 Encoding Scheme

We use a technique that exploits a 2-dimensional
interlacing to split original images, independent of

their original format, into a subset of preview images.
The result is an image set with progressively increas-
ing resolution, where the original image format only
serves as container format. Instead of utilizing a static
count of subimages the number of images is calcu-
lated based on the original image size. We split the
original image until a minimum size (e.g. 128� 128
pixels) is reached, which can be dynamically defined.
In case of a 512�512 pixel image we produce a sub-
set of only five images. If an image with a resolution
of 4096� 4096 pixels shall be used, we encode the
image into a subset of eleven preview steps.

Before creating all GPUII levels, we scale the
original image to the best matching power-of-two
(POT) representation to provide better performance
and MipMap support to prevent flickering during
camera movement. After this the count of image lev-
els for the resulting GPUII data has to be calculated.
This is done in dividing width and height by two in
an alternating manner, till one of both dimensions
reaches the defined minimum resolution. After scal-
ing and calculation of the iterations the actual encod-
ing can be started. The encoding scheme, we exploit
in our application is oriented on the Adam7 interlac-
ing scheme (Costello, 2003). In contrast to the orig-
inal implementation there is no restriction to exactly
seven steps. Thus, better adaption on large images are
possible, which results in predictable loading times
of the first preview independent of the image size. In
addition, refinement control is possible.

To provide interactive framerates during encoding
we use worker threads to produce all image levels.
Through workers, browsers allow parallel processing.
Functions can run as long as needed without affect-
ing the framerate or user interface of the application.
During encoding a CPU-based approach is no prob-
lem, because only one image has to be converted si-
multaneously. Decoding is in our application a little
bit more tricky, because a lot of images have to be
decoded concurrently.

3.2 Decoding Scheme

During the encoding step, the original image was
splitted into a set of preview images with progres-
sively increasing resolution. The number of subim-
ages is varying and stored with the following naming
scheme: [1]:[f ormat]� [n]:[f ormat]. To decode the
image correctly, the previews are loaded in a chrono-
logical manner starting from preview number 1 to n.
After loading one or several levels of the image, it has
to be decoded before presentation, where the highly
parallelized computing power of the GPU is used.
Moreover, every image pixel is transmitted only once

Efficient�Image�Distribution�on�the�Web�-�Instant�Texturing�for�Collaborative�Visualization�of�Virtual�Environments

481

Upload GPUII detail levels sequenally Load available /
required levels

d)c)b)a)

Figure 3: Distribution of a) newly captured and arranged photo with b) upstream of the levels of GPUII dataset, c) storage of
the GPUII dataset on the server and distribution to connected clients d) using progressive download with different bandwidth.

during download, which is ensured through our en-
coding strategy.

The first preview can be displayed directly without
any decoding effort. All consecutively loaded n� 1
image levels are integrated into the already existing
image, following the algorithm sketched in (Englert
et al., 2014) – here, cp. figure 2 for a visualization.
After the second level of the image has been loaded,
the new data and the currently visualized texture are
both sent to the shader. Additionally, a combination
pattern is required. The shader itself is applied to a
view-aligned quad of the targeted image size during
an offscreen rendering pass using two FBOs (Frame-
buffer Objects). The result of the rendering pass is
written to an FBO and serves in the following frames
as the new and finer representation of the surface tex-
ture. This process is repeated in a ping-pong’ing fash-
ion until the final texture resolution, depending on the
factors outlined in section 3.3, is reached.

For a combination operation we exploit two pat-
terns that are alternately applied. A pattern is a small
texture of 2� 2 px that is used as lookup texture and
that describes how to combine the pixels of two im-
ages into an intermediate result. Which pattern will be
used first is computed from the number of previews of
the decoding dataset. An even number of texture pre-
views are combined line by line, whereas in the other
case the combination is done column by column. The
colors black and white are used as index and always
define the texture whose pixel should be placed on the
resulting image. Obviously, more complex patterns
are possible this way. To implement this approach on
the GPU, two textures that should be combined are re-
quired including a pattern texture along with a scaling
vector Rx;y as uniform variable for scaling the texture
coordinates accordingly.

Rx;y =

8<:
�

rx(p1)�2b0:5nc

2 ;
ry(p1)�2b0:5(n�1)c

2

�
;2 - m�

rx(p1)�2b0:5(n�1)c

2 ;
ry(p1)�2b0:5nc

2

�
;2 j m

(1)

Here, Rx;y defines how often the pattern has to be
repeated in x and y direction (or s and t respectively).

If for instance two textures, both of resolution 64�64
should be combined and the number of desired pre-
views is odd, then the used vector would be

�64
32

�
. The

exact scaling factor is obtained via equation 1, where
rx;y specifies the resolution in x, y directions, n the
current preview number, m the preview count, and p1
the first preview image. The name GPU-based Im-
age Interlacing thus denotes the basic idea of our al-
gorithm. The consecutively ordered image levels are
downloaded progressively and are combined in an in-
terlaced manner on the GPU.

3.3 Data Distribution

To distribute photos our application consists of two
parts. First, the image has to be uploaded to the server,
followed by the distribution to all other clients. Fig-
ures 2 and 3 visualize and additionally explain the en-
tire streaming process.

Upload of New GPUII Dataset. Once we have cre-
ated a new GPUII dataset on the client, the image data
has to be transferred to the server and distributed to
all connected clients. All levels of the GPUII dataset
are transferred in a chronological manner and stored
by the server using the previously explained naming
scheme. The distribution to all other connected clients
starts immediately when the first level is available.
The server sends a message to all clients to create a
new GPUII dataset with a position and URL. They
directly start the download of the first level and then
follow the rules explained next.

Download of All Required GPUII Datasets. Tex-
tured objects in a 3D scene often cover only a small
part of the viewport. Hence, a more sophisticated
download method is necessary that also takes proper-
ties of the 3D scene, like camera position, etc., into
account, to decide which preview has to be loaded
next and, if multiple textures are used, how to sort
them for importance. We define importance using the
following criteria with decreasing priority:

GRAPP�2015�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

482

� Visibility
� Necessity of next refinement level
� Distance to camera
� Currently loaded preview step

All images are sorted along these criteria. In addi-
tion to the visibility of each image, it has to be decided
if further preview steps are needed. This information
is determined by calculating the screen space size of
the image and relating it to its pixel density (similar to
mipmapping). The advantage of this control function
is that not in every case a better resolution is required.
All images that are visible and require a finer resolu-
tion level are registered to the system for sorting along
camera distance, size, and priority.

To prevent that always the same image is preferred
by the distance criterion, distance is ordered by con-
centric circles around the virtual camera to group im-
ages with similar distance. In a last sorting step, the
images of the nearest circle are ordered by their cur-
rent preview step, where the images with the smallest
preview step are preferred to get a consistent look.

4 RESULTS AND APPLICATIONS

In this section we discuss the main benefits of our ap-
proach and also present some additional use cases.

4.1 Results

Using GPUII instead of standard image textures has
several advantages for applications, which are using
huge amounts of image data on low-end hardware like
mobile devices together with mobile networks.

Adaption. The advantage of adaption can be split-
ted into three areas. First the download can be adapted
to the bandwidth. In case of using mobile networks
the download of the GPUII preview parts can be re-
stricted. Using one step less than the entire amount
of GPUII preview versions can reduce the download
amount up to 50%. Furthermore the download can
be adapted to the storage size of the presentation de-
vice. Mobile devices are not only restricted in pro-
cessing power, but also in their memory. In our appli-
cation a lot of images should be visualized at the same
time what often leads in reaching the memory limit.
In case of extremely storage limitations the download
amount for each GPUII image can also be restricted
as previously explained. Additionally to the restric-
tion caused from bandwidth and device limitations
our approach adapts to the camera position within the
scene and the size of the viewport. This can efficiently

a) b) c)

Figure 4: a) Difference image (enhanced contrast for better
visibility) of b) original PNG texture (4096� 4096 px, 8.5
MB) and c) corresponding 4096� 4096 px GPUII dataset
(1 MB) adaptively rendered on 1024�768 px viewport.

reduce the data download amount. Often images in
3D scenes are rendered very small due to their dis-
tance to the virtual camera. And when presenting
them in fullscreen they also require only the size of
the viewport that is often less than image resolutions
of currently available digital cameras. Utilizing our
proposed GPUII method offers cost-savings of about
80% in situations with big viewport but small image
sizes. A comparison of an original PNG image with
a GPUII visualization is shown in figure 4, where a)
shows the slightly exaggerated difference image.

First Preview. Another important aspect that has to
be taken into account is the transmission efficiency of
the first preview of the image. Additionally, the first
preview should provide enough data to get a good first
impression of what will be shown later. Therefore, a
trade-off between minimal resolution and download
speed has to be considered. Adam7 is limited in its
variability and always uses statically seven steps to
reorder the pixels. This always leads to 1

64 th of the
number of pixels in the first representation, and both,
high resolution as well as low resolution images, are
restructured in the same way. This soon leads to
rather large first previews with increasing source im-
age sizes. Our proposed method in contrast exploits a
dynamic amount of preview steps and allows specify-
ing a minimum resolution in x- and y-direction, which
prevents a further subdivision of the source image. In
case of small source resolutions the dataset thus con-
sists of a small number of previews, while high res-
olution source images instead affect in an opposing
manner: the number of previews increases. The size
of the first preview is nearly identically using arbi-
trary image resolutions on the source file. For GPUII
a minimum size of 128�128 px seems most reason-
able – in our tests we found this being a good trade-off
between data size and preview quality.

Data Distribution. A fast distribution of new pho-
tos is another important aspect. While uploading
standard images, the server has to wait until all data
of the image is available before distributing it to all

Efficient�Image�Distribution�on�the�Web�-�Instant�Texturing�for�Collaborative�Visualization�of�Virtual�Environments

483

Figure 5: Using GPUII to transmit terrain data (left) or ge-
ometry images as proposed in (Gu et al., 2002) (right).

connected clients. Calculating GPUII images on the
client before uploading, the distribution can be ac-
celerated efficiently. Because of ever increasing im-
age resolutions of digital cameras the image resolu-
tion can be reduced before uploading it, adapted to the
bandwidth. Furthermore, because of using the images
as textures in WebGL, they should be power of two.
After transmitting the first preview level of GPUII,
which requires a transfer of only a few KB, the distri-
bution can be started some time earlier. This leads to
instant previews on all connected clients directly after
starting an image upload, independent from supported
data rates of the network.

4.2 Additional Use Cases

Progressive Transmission of 3D Vertex Data.
Having regular data eases progressive transmission,
where esp. terrain data is very often arranged in a
regular form. This type of data can be easily encoded
in images and streamed with our approach. Figure
5 exemplarily shows some regular terrain data trans-
mitted and rendered by using our GPUII method. The
rendered terrain is visualized with the first version of
both, the displacement data and the surface texture.
Both textures are transmitted using PNG containers,
because of the lossless decoding, although for the
color texture alternatively JPEG is possible as image
transport format, since here compression artifacts are
usually not perceivable. Using geometry images (Gu
et al., 2002), 3D models can be transformed into reg-
ular meshes. These meshes, or more precisely their
vertices, can be arranged within images as regular
RGB values depending on the topology. Therefore,
this kind of meshes can be transferred progressively
with GPUII using the same texture, which would not
be possible with standard texturing.

Geometry Streaming and LOD. Furthermore,
GPUII can be used together with progressively
streamed 3D geometries (e.g., the PopGeometry pre-

sented in (Limper et al., 2013)), where the geometry
data also gets streamed and builds up progressively
in a LOD-like manner. However, for small models
the texture data usually takes more time to transfer
and thus the progressive 3D geometry will not have
a texture until the transfer is completed. To enhance
the quality, GPUII can be combined with the POP ap-
proach so that the visual perception is more consistent
in that the geometry and texture data build up simul-
taneously, see (Englert et al., 2014). Note that smaller
loading times are possible if for a certain camera dis-
tance not the full texture quality is needed. Thus, the
texture refinement can stop at a lower level-of-detail
(LOD), just like the POP buffer geometry does.

2D Image Viewer. GPUII can also be used for
streaming texture data progressively when displaying
the image in a pure 2D context. As a result, a preview
of the corresponding image is shown almost immedi-
ately. The missing data to show the image in its full
quality is transmitted progressively to further adjust
the quality depending on the requirements. Therefore,
images can be adapted to different screen sizes. De-
pending on the actual visual part of the image, the
required data can thus be reduced to a minimum.

5 CONCLUSION AND FUTURE
WORK

In this short paper, we have presented an adaptive
bandwidth-optimized approach that allows instant im-
age distribution and web-based textured rendering on
strictly limited mobile devices and their closely linked
mobile networks. Our method uses a simple encoding
scheme, based on Adam7 interlacing, and a fast de-
coding algorithm that benefits from hardware acceler-
ation by a GPU – even with WebGL’s rather limited
instruction set. Various image sizes of the previews
are possible, including the possibility to specify the
minimal resolution of the first preview, which enables
us to generate first previews of nearly identical size
in bytes, independent of the source image size. This
allows us to get a more flexible handling of source
images containing arbitrary resolutions.

Moreover, image interlacing schemes like Adam7
do not foresee pausing the download and carrying on
if more data is required, though this can be very help-
ful to reduce the data amount to be transferred. Our
GPUII approach however allows visualizing images
in pure 2D applications in an adaptive manner, which
is esp. useful for responsive web design, where an op-
timal viewing experience for a wide range of displays

GRAPP�2015�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

484

has to be provided. Whereas in 2D the image size and
resolution are defined during authoring, in 3D appli-
cations the size and displayed resolution of textured
3D objects depend on their world space positions and
the viewpoint, which is updated every frame. So, not
in every case the full texture quality is necessary, like
for instance if an object is far away from the camera.
Therefore, our approach can also be used as a new
level-of-detail method on the texture level, indepen-
dent from the geometric model representation.

To summarize, our proposed technique can be
applied to stream surface textures for progres-
sive meshes for consistent rendering, to load large
amounts of images in a 3D scene, or to transmit reg-
ular geometry information, like e.g. displacement
maps or other vertex information. In addition to the
PNG format, all common image formats that are sup-
ported by browsers can be utilized as data transport
containers for our GPUII textures. To ease usage we
have integrated the proposed technique as special tex-
ture node in X3DOM. Moreover, in sec. 3 we have
also shown an important application scenario, where
our approach allows increasing the number of photos
in the 3D scene by a factor of at least ten to twelve.

For future work, we would like to combine our
method with a hierarchical approach to stream large
regularly organized meshes (e.g., terrain data). Be-
sides this, it would be interesting to natively imple-
ment our polyfill approach in the web browser for
transparent and even more efficient usage.

REFERENCES

Anguelov, D., Dulong, C., Filip, D., Frueh, C., Lafon,
S., Lyon, R., Ogale, A., Vincent, L., and Weaver, J.
(2010). Google street view: Capturing the world at
street level. Computer, 43.

Behr, J., Jung, Y., Keil, J., Drevensek, T., Eschler, P.,
Zöllner, M., and Fellner, D. W. (2010). A scalable
architecture for the HTML5/ X3D integration model
X3DOM. In Proceedings Web3D ’10, pages 185–193,
New York, USA. ACM Press.

Cabello, R. (2013). Three.js. http://threejs.org/.
Chee, Y.-K. (1999). Survey of progressive image transmis-

sion methods. International Journal of Imaging Sys-
tems and Technology, 10(1):3–19.

Costello, A. M. (2003). Portable network graphics (png)
specification (second edition): Information technol-
ogy – computer graphics and image processing.

Englert, M., Jung, Y., Klomann, M., Etzold, J., and
Grimm, P. (2014). Instant texture transmission using
bandwidth-optimized progressive interlacing images.
In Proceedings of 19th Intl. Conf. on 3D Web Tech-
nologies, Web3D ’14, New York, USA. ACM.

Etzold, J., Englert, M., Grimm, P., Jung, Y., and Klomann,
M. (2014a). Mipos: Towards mobile image position-
ing in mixed reality web applications based on mobile
sensors. In Proceedings of 19th Intl. Conf. on 3D Web
Technologies, Web3D ’14, pages 17–25, New York,
USA. ACM.

Etzold, J., Grimm, P., Schweitzer, J., and Dörner, R.
(2014b). karbon: a collaborative mr web application
for communicationsupport in construction scenarios.
In CSCW Companion, pages 9–12. ACM.

Gu, X., Gortler, S. J., and Hoppe, H. (2002). Geometry
images. ACM Trans. Graph., 21(3):355–361.

Herzig, P., Englert, M., Wagner, S., Jung, Y., and Bockholt,
U. (2013). X3d-earthbrowser: Visualize our earth
in your web browser. In Proceedings Web3D 2013,
pages 139–142, New York, USA. ACM Press.

Hu, Y., Xie, X., Chen, Z., and Ma, W.-Y. (2004). Attention
model based progressive image transmission. In Mul-
timedia and Expo, ICME ’04, volume 2, pages 1079–
1082 Vol.2. IEEE.

Khronos Group (2014). Webgl specification. http://
www.khronos.org/registry/webgl/specs/latest/1.0/.

Kopf, J., Uyttendaele, M., Deussen, O., and Cohen, M. F.
(2007). Capturing and viewing gigapixel images.
In ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07,
New York, NY, USA. ACM.

Lim, N.-K., Kim, D.-Y., and Lee, H. (2010). Interactive
progressive image transmission for realtime applica-
tions. Consumer Electronics, IEEE Transactions on,
56(4):2438–2444.

Limper, M., Jung, Y., Behr, J., and Alexa, M. (2013). The
pop buffer: Rapid progressive clustering by geometry
quantization. Computer Graphics Forum, 32(7):197–
206.

Munkberg, J., Akenine-Möller, T., and Ström, J. (2006).
High quality normal map compression. In Proceed-
ings Graphics Hardware ’06, pages 95–102, New
York, NY, USA. ACM.

Pat Brown et al. (2013). GL EXT texture
compression s3tc. http://www.opengl.org/registry/
specs/EXT/texture compression s3tc.txt.

Schwartz, C., Ruiters, R., and Klein, R. (2013a). Level-
of-detail streaming and rendering using bidirectional
sparse virtual texture functions. Comput. Graph. Fo-
rum, pages 345–354.

Schwartz, C., Ruiters, R., Weinmann, M., and Klein, R.
(2013b). Webgl-based streaming and presentation of
objects with bidirectional texture functions. Jour-
nal on Computing and Cultural Heritage (JOCCH),
6(3):11:1–11:21.

Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo
tourism: Exploring photo collections in 3d. In
SIGGRAPH Conference Proceedings, pages 835–846,
New York, NY, USA. ACM Press.

van Waveren, J. M. P. and Castano, I. (2008). Real-time
normal map dxt compression. http://www.nvidia.de/
object/real-time-normal-map-dxt-compression.html.

Wilcox, M. (2014). Adaptive images - deliver small images
to small devices. http://adaptive-images.com/.

Efficient�Image�Distribution�on�the�Web�-�Instant�Texturing�for�Collaborative�Visualization�of�Virtual�Environments

485

